Running pipeline stage MKMLizer
Starting job with name cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer
Waiting for job on cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer to finish
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: ║ _____ __ __ ║
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: ║ /___/ ║
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: ║ ║
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: ║ Version: 0.6.11 ║
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: ║ ║
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: ║ The license key for the current software has been verified as ║
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: ║ belonging to: ║
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: ║ ║
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: ║ Chai Research Corp. ║
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: ║ Expiration: 2024-07-15 23:59:59 ║
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: ║ ║
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer:
generation_config.json: 0%| | 0.00/147 [00:00<?, ?B/s]
generation_config.json: 100%|██████████| 147/147 [00:00<00:00, 2.14MB/s]
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer:
model-00001-of-00004.safetensors: 0%| | 0.00/4.98G [00:00<?, ?B/s]
model-00001-of-00004.safetensors: 0%| | 10.5M/4.98G [00:00<06:32, 12.6MB/s]
model-00001-of-00004.safetensors: 0%| | 21.0M/4.98G [00:01<04:24, 18.7MB/s]
model-00001-of-00004.safetensors: 1%| | 31.5M/4.98G [00:01<03:08, 26.3MB/s]
model-00001-of-00004.safetensors: 1%| | 52.4M/4.98G [00:01<01:42, 48.0MB/s]
model-00001-of-00004.safetensors: 2%|▏ | 115M/4.98G [00:01<00:35, 137MB/s]
model-00001-of-00004.safetensors: 4%|▍ | 189M/4.98G [00:01<00:19, 243MB/s]
model-00001-of-00004.safetensors: 5%|▍ | 231M/4.98G [00:02<00:30, 157MB/s]
model-00001-of-00004.safetensors: 6%|▌ | 304M/4.98G [00:02<00:19, 239MB/s]
model-00001-of-00004.safetensors: 7%|▋ | 367M/4.98G [00:02<00:18, 246MB/s]
model-00001-of-00004.safetensors: 8%|▊ | 409M/4.98G [00:02<00:17, 262MB/s]
model-00001-of-00004.safetensors: 9%|▉ | 451M/4.98G [00:02<00:16, 281MB/s]
model-00001-of-00004.safetensors: 10%|█ | 514M/4.98G [00:02<00:12, 348MB/s]
model-00001-of-00004.safetensors: 11%|█▏ | 566M/4.98G [00:03<00:12, 350MB/s]
model-00001-of-00004.safetensors: 12%|█▏ | 608M/4.98G [00:03<00:12, 340MB/s]
model-00001-of-00004.safetensors: 13%|█▎ | 650M/4.98G [00:03<00:13, 322MB/s]
model-00001-of-00004.safetensors: 15%|█▍ | 724M/4.98G [00:03<00:11, 364MB/s]
model-00001-of-00004.safetensors: 15%|█▌ | 765M/4.98G [00:03<00:12, 347MB/s]
model-00001-of-00004.safetensors: 17%|█▋ | 839M/4.98G [00:03<00:09, 430MB/s]
model-00001-of-00004.safetensors: 19%|█▉ | 965M/4.98G [00:03<00:06, 614MB/s]
model-00001-of-00004.safetensors: 21%|██ | 1.04G/4.98G [00:04<00:07, 507MB/s]
model-00001-of-00004.safetensors: 22%|██▏ | 1.10G/4.98G [00:04<00:08, 452MB/s]
model-00001-of-00004.safetensors: 29%|██▉ | 1.47G/4.98G [00:04<00:03, 1.13GB/s]
model-00001-of-00004.safetensors: 37%|███▋ | 1.86G/4.98G [00:04<00:03, 959MB/s]
model-00001-of-00004.safetensors: 40%|███▉ | 1.98G/4.98G [00:05<00:05, 517MB/s]
model-00001-of-00004.safetensors: 42%|████▏ | 2.08G/4.98G [00:05<00:05, 527MB/s]
model-00001-of-00004.safetensors: 43%|████▎ | 2.16G/4.98G [00:05<00:05, 548MB/s]
model-00001-of-00004.safetensors: 46%|████▌ | 2.28G/4.98G [00:05<00:04, 633MB/s]
model-00001-of-00004.safetensors: 48%|████▊ | 2.37G/4.98G [00:06<00:03, 657MB/s]
model-00001-of-00004.safetensors: 50%|████▉ | 2.46G/4.98G [00:06<00:03, 658MB/s]
model-00001-of-00004.safetensors: 51%|█████ | 2.55G/4.98G [00:06<00:03, 662MB/s]
model-00001-of-00004.safetensors: 53%|█████▎ | 2.64G/4.98G [00:06<00:03, 702MB/s]
model-00001-of-00004.safetensors: 55%|█████▍ | 2.73G/4.98G [00:06<00:03, 594MB/s]
model-00001-of-00004.safetensors: 57%|█████▋ | 2.82G/4.98G [00:06<00:03, 655MB/s]
model-00001-of-00004.safetensors: 60%|██████ | 2.99G/4.98G [00:06<00:02, 879MB/s]
model-00001-of-00004.safetensors: 67%|██████▋ | 3.32G/4.98G [00:06<00:01, 1.47GB/s]
model-00001-of-00004.safetensors: 71%|███████▏ | 3.55G/4.98G [00:07<00:00, 1.68GB/s]
model-00001-of-00004.safetensors: 75%|███████▌ | 3.74G/4.98G [00:07<00:01, 679MB/s]
model-00001-of-00004.safetensors: 78%|███████▊ | 3.89G/4.98G [00:08<00:02, 506MB/s]
model-00001-of-00004.safetensors: 80%|████████ | 4.01G/4.98G [00:08<00:01, 552MB/s]
model-00001-of-00004.safetensors: 83%|████████▎ | 4.11G/4.98G [00:08<00:01, 594MB/s]
model-00001-of-00004.safetensors: 86%|████████▌ | 4.28G/4.98G [00:08<00:00, 748MB/s]
model-00001-of-00004.safetensors: 90%|█████████ | 4.49G/4.98G [00:08<00:00, 981MB/s]
model-00001-of-00004.safetensors: 93%|█████████▎| 4.63G/4.98G [00:08<00:00, 1.07GB/s]
model-00001-of-00004.safetensors: 96%|█████████▌| 4.78G/4.98G [00:08<00:00, 1.15GB/s]
model-00001-of-00004.safetensors: 99%|█████████▉| 4.93G/4.98G [00:09<00:00, 1.03GB/s]
model-00001-of-00004.safetensors: 100%|█████████▉| 4.98G/4.98G [00:09<00:00, 537MB/s]
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer:
model-00002-of-00004.safetensors: 0%| | 0.00/5.00G [00:00<?, ?B/s]
model-00002-of-00004.safetensors: 0%| | 10.5M/5.00G [00:02<20:34, 4.04MB/s]
model-00002-of-00004.safetensors: 1%| | 31.5M/5.00G [00:03<07:38, 10.8MB/s]
model-00002-of-00004.safetensors: 1%| | 41.9M/5.00G [00:03<05:19, 15.5MB/s]
model-00002-of-00004.safetensors: 1%|▏ | 73.4M/5.00G [00:03<02:18, 35.5MB/s]
model-00002-of-00004.safetensors: 3%|▎ | 147M/5.00G [00:03<00:52, 92.2MB/s]
model-00002-of-00004.safetensors: 5%|▌ | 262M/5.00G [00:03<00:23, 205MB/s]
model-00002-of-00004.safetensors: 7%|▋ | 325M/5.00G [00:04<00:18, 249MB/s]
model-00002-of-00004.safetensors: 8%|▊ | 388M/5.00G [00:04<00:17, 260MB/s]
model-00002-of-00004.safetensors: 12%|█▏ | 587M/5.00G [00:04<00:08, 518MB/s]
model-00002-of-00004.safetensors: 22%|██▏ | 1.09G/5.00G [00:04<00:02, 1.32GB/s]
model-00002-of-00004.safetensors: 26%|██▌ | 1.30G/5.00G [00:05<00:07, 527MB/s]
model-00002-of-00004.safetensors: 29%|██▉ | 1.46G/5.00G [00:05<00:05, 609MB/s]
model-00002-of-00004.safetensors: 33%|███▎ | 1.63G/5.00G [00:05<00:04, 725MB/s]
model-00002-of-00004.safetensors: 35%|███▌ | 1.77G/5.00G [00:05<00:04, 787MB/s]
model-00002-of-00004.safetensors: 39%|███▉ | 1.94G/5.00G [00:05<00:03, 927MB/s]
model-00002-of-00004.safetensors: 42%|████▏ | 2.09G/5.00G [00:06<00:03, 833MB/s]
model-00002-of-00004.safetensors: 44%|████▍ | 2.21G/5.00G [00:06<00:03, 715MB/s]
model-00002-of-00004.safetensors: 46%|████▋ | 2.32G/5.00G [00:06<00:03, 678MB/s]
model-00002-of-00004.safetensors: 49%|████▉ | 2.45G/5.00G [00:06<00:03, 772MB/s]
model-00002-of-00004.safetensors: 52%|█████▏ | 2.60G/5.00G [00:06<00:02, 900MB/s]
model-00002-of-00004.safetensors: 54%|█████▍ | 2.72G/5.00G [00:06<00:02, 949MB/s]
model-00002-of-00004.safetensors: 58%|█████▊ | 2.88G/5.00G [00:07<00:02, 1.04GB/s]
model-00002-of-00004.safetensors: 60%|██████ | 3.01G/5.00G [00:07<00:02, 919MB/s]
model-00002-of-00004.safetensors: 62%|██████▏ | 3.11G/5.00G [00:07<00:01, 944MB/s]
model-00002-of-00004.safetensors: 64%|██████▍ | 3.22G/5.00G [00:07<00:02, 819MB/s]
model-00002-of-00004.safetensors: 66%|██████▋ | 3.32G/5.00G [00:07<00:02, 751MB/s]
model-00002-of-00004.safetensors: 68%|██████▊ | 3.42G/5.00G [00:07<00:02, 763MB/s]
model-00002-of-00004.safetensors: 70%|███████ | 3.50G/5.00G [00:08<00:02, 619MB/s]
model-00002-of-00004.safetensors: 72%|███████▏ | 3.58G/5.00G [00:08<00:02, 632MB/s]
model-00002-of-00004.safetensors: 74%|███████▎ | 3.68G/5.00G [00:08<00:01, 702MB/s]
model-00002-of-00004.safetensors: 76%|███████▌ | 3.77G/5.00G [00:08<00:01, 754MB/s]
model-00002-of-00004.safetensors: 78%|███████▊ | 3.91G/5.00G [00:08<00:01, 903MB/s]
model-00002-of-00004.safetensors: 81%|████████ | 4.05G/5.00G [00:08<00:00, 992MB/s]
model-00002-of-00004.safetensors: 84%|████████▍ | 4.22G/5.00G [00:08<00:00, 1.14GB/s]
model-00002-of-00004.safetensors: 87%|████████▋ | 4.34G/5.00G [00:08<00:00, 1.02GB/s]
model-00002-of-00004.safetensors: 89%|████████▉ | 4.46G/5.00G [00:08<00:00, 1.01GB/s]
model-00002-of-00004.safetensors: 91%|█████████ | 4.56G/5.00G [00:09<00:00, 992MB/s]
model-00002-of-00004.safetensors: 95%|█████████▍| 4.73G/5.00G [00:09<00:00, 1.16GB/s]
model-00002-of-00004.safetensors: 97%|█████████▋| 4.85G/5.00G [00:09<00:00, 1.13GB/s]
model-00002-of-00004.safetensors: 100%|█████████▉| 4.98G/5.00G [00:09<00:00, 821MB/s]
model-00002-of-00004.safetensors: 100%|█████████▉| 5.00G/5.00G [00:09<00:00, 520MB/s]
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer:
model-00004-of-00004.safetensors: 0%| | 0.00/1.17G [00:00<?, ?B/s]
model-00004-of-00004.safetensors: 1%| | 10.5M/1.17G [00:03<06:27, 2.98MB/s]
model-00004-of-00004.safetensors: 4%|▍ | 52.4M/1.17G [00:03<00:58, 19.2MB/s]
model-00004-of-00004.safetensors: 13%|█▎ | 147M/1.17G [00:03<00:15, 67.0MB/s]
model-00004-of-00004.safetensors: 19%|█▉ | 220M/1.17G [00:03<00:08, 109MB/s]
model-00004-of-00004.safetensors: 25%|██▌ | 294M/1.17G [00:03<00:05, 164MB/s]
model-00004-of-00004.safetensors: 31%|███ | 357M/1.17G [00:04<00:03, 208MB/s]
model-00004-of-00004.safetensors: 65%|██████▍ | 759M/1.17G [00:04<00:00, 712MB/s]
model-00004-of-00004.safetensors: 100%|█████████▉| 1.17G/1.17G [00:04<00:00, 1.24GB/s]
model-00004-of-00004.safetensors: 100%|█████████▉| 1.17G/1.17G [00:04<00:00, 265MB/s]
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer:
model.safetensors.index.json: 0%| | 0.00/23.9k [00:00<?, ?B/s]
model.safetensors.index.json: 100%|██████████| 23.9k/23.9k [00:00<00:00, 168MB/s]
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer:
special_tokens_map.json: 0%| | 0.00/449 [00:00<?, ?B/s]
special_tokens_map.json: 100%|██████████| 449/449 [00:00<00:00, 7.24MB/s]
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer:
tokenizer.json: 0%| | 0.00/9.08M [00:00<?, ?B/s]
tokenizer.json: 100%|██████████| 9.08M/9.08M [00:00<00:00, 30.7MB/s]
tokenizer.json: 100%|██████████| 9.08M/9.08M [00:00<00:00, 30.3MB/s]
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer:
tokenizer_config.json: 0%| | 0.00/51.0k [00:00<?, ?B/s]
tokenizer_config.json: 100%|██████████| 51.0k/51.0k [00:00<00:00, 162MB/s]
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: Downloaded to shared memory in 36.994s
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: quantizing model to /dev/shm/model_cache
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: Saving mkml model at /dev/shm/model_cache
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: Reading /tmp/tmp9hi2irnr/model.safetensors.index.json
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer:
Profiling: 0%| | 0/291 [00:00<?, ?it/s]
Profiling: 0%| | 1/291 [00:05<25:16, 5.23s/it]
Profiling: 5%|▍ | 14/291 [00:05<01:16, 3.64it/s]
Profiling: 11%|█ | 32/291 [00:05<00:25, 10.04it/s]
Profiling: 17%|█▋ | 50/291 [00:05<00:13, 18.23it/s]
Profiling: 23%|██▎ | 68/291 [00:05<00:07, 28.51it/s]
Profiling: 29%|██▊ | 83/291 [00:06<00:06, 31.16it/s]
Profiling: 33%|███▎ | 95/291 [00:06<00:05, 39.01it/s]
Profiling: 39%|███▉ | 113/291 [00:06<00:03, 54.16it/s]
Profiling: 45%|████▌ | 131/291 [00:06<00:02, 69.84it/s]
Profiling: 51%|█████ | 148/291 [00:06<00:01, 85.59it/s]
Profiling: 57%|█████▋ | 165/291 [00:06<00:01, 100.80it/s]
Profiling: 62%|██████▏ | 181/291 [00:06<00:01, 109.86it/s]
Profiling: 67%|██████▋ | 196/291 [00:07<00:01, 70.65it/s]
Profiling: 73%|███████▎ | 212/291 [00:07<00:00, 83.32it/s]
Profiling: 79%|███████▊ | 229/291 [00:07<00:00, 95.16it/s]
Profiling: 85%|████████▍ | 246/291 [00:07<00:00, 105.09it/s]
Profiling: 89%|████████▉ | 260/291 [00:07<00:00, 110.97it/s]
Profiling: 95%|█████████▍| 275/291 [00:07<00:00, 117.63it/s]
Profiling: 99%|█████████▉| 289/291 [00:13<00:00, 7.86it/s]
Profiling: 100%|██████████| 291/291 [00:13<00:00, 21.00it/s]
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: quantized model in 28.270s
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: Processed model cgato/L3-TheSpice-8b-v0.1.3 in 66.958s
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: creating bucket guanaco-mkml-models
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/cgato-l3-thespice-8b-v0-1-3-v1
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/cgato-l3-thespice-8b-v0-1-3-v1/special_tokens_map.json
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/cgato-l3-thespice-8b-v0-1-3-v1/config.json
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/cgato-l3-thespice-8b-v0-1-3-v1/tokenizer.json
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/cgato-l3-thespice-8b-v0-1-3-v1/tokenizer_config.json
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: cp /dev/shm/model_cache/mkml_model.tensors s3://guanaco-mkml-models/cgato-l3-thespice-8b-v0-1-3-v1/mkml_model.tensors
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: loading reward model from ChaiML/reward_gpt2_medium_preference_24m_e2
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:1067: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: warnings.warn(
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer:
config.json: 0%| | 0.00/1.05k [00:00<?, ?B/s]
config.json: 100%|██████████| 1.05k/1.05k [00:00<00:00, 12.4MB/s]
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:690: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: warnings.warn(
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer:
tokenizer_config.json: 0%| | 0.00/234 [00:00<?, ?B/s]
tokenizer_config.json: 100%|██████████| 234/234 [00:00<00:00, 3.20MB/s]
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer:
vocab.json: 0%| | 0.00/1.04M [00:00<?, ?B/s]
vocab.json: 100%|██████████| 1.04M/1.04M [00:00<00:00, 24.5MB/s]
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer:
tokenizer.json: 0%| | 0.00/2.11M [00:00<?, ?B/s]
tokenizer.json: 100%|██████████| 2.11M/2.11M [00:00<00:00, 15.5MB/s]
tokenizer.json: 100%|██████████| 2.11M/2.11M [00:00<00:00, 15.4MB/s]
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:472: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: warnings.warn(
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer:
pytorch_model.bin: 0%| | 0.00/1.44G [00:00<?, ?B/s]
pytorch_model.bin: 1%| | 10.5M/1.44G [00:00<00:14, 98.9MB/s]
pytorch_model.bin: 4%|▎ | 52.4M/1.44G [00:00<00:05, 264MB/s]
pytorch_model.bin: 7%|▋ | 94.4M/1.44G [00:00<00:04, 311MB/s]
pytorch_model.bin: 9%|▊ | 126M/1.44G [00:00<00:08, 157MB/s]
pytorch_model.bin: 12%|█▏ | 178M/1.44G [00:00<00:05, 229MB/s]
pytorch_model.bin: 15%|█▌ | 220M/1.44G [00:00<00:05, 244MB/s]
pytorch_model.bin: 32%|███▏ | 461M/1.44G [00:01<00:01, 727MB/s]
pytorch_model.bin: 68%|██████▊ | 975M/1.44G [00:01<00:00, 1.79GB/s]
pytorch_model.bin: 84%|████████▍ | 1.22G/1.44G [00:01<00:00, 1.93GB/s]
pytorch_model.bin: 100%|█████████▉| 1.44G/1.44G [00:01<00:00, 1.06GB/s]
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: Saving duration: 0.317s
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: Processed model ChaiML/reward_gpt2_medium_preference_24m_e2 in 5.017s
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: creating bucket guanaco-reward-models
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: Bucket 's3://guanaco-reward-models/' created
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/cgato-l3-thespice-8b-v0-1-3-v1_reward
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/cgato-l3-thespice-8b-v0-1-3-v1_reward/config.json
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/cgato-l3-thespice-8b-v0-1-3-v1_reward/special_tokens_map.json
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/cgato-l3-thespice-8b-v0-1-3-v1_reward/tokenizer_config.json
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/cgato-l3-thespice-8b-v0-1-3-v1_reward/merges.txt
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/cgato-l3-thespice-8b-v0-1-3-v1_reward/vocab.json
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/cgato-l3-thespice-8b-v0-1-3-v1_reward/tokenizer.json
cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/cgato-l3-thespice-8b-v0-1-3-v1_reward/reward.tensors
Job cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer completed after 94.82s with status: succeeded
Stopping job with name cgato-l3-thespice-8b-v0-1-3-v1-mkmlizer
Pipeline stage MKMLizer completed in 100.21s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.11s
Running pipeline stage ISVCDeployer
Creating inference service cgato-l3-thespice-8b-v0-1-3-v1
Waiting for inference service cgato-l3-thespice-8b-v0-1-3-v1 to be ready
Connection pool is full, discarding connection: %s
Connection pool is full, discarding connection: %s
Connection pool is full, discarding connection: %s
Connection pool is full, discarding connection: %s
Connection pool is full, discarding connection: %s
Connection pool is full, discarding connection: %s
Connection pool is full, discarding connection: %s
Connection pool is full, discarding connection: %s
Inference service cgato-l3-thespice-8b-v0-1-3-v1 ready after 40.29949402809143s
Pipeline stage ISVCDeployer completed in 48.27s
Running pipeline stage StressChecker
Received healthy response to inference request in 1.789914608001709s
Received healthy response to inference request in 0.6259646415710449s
Received healthy response to inference request in 1.1399924755096436s
Received healthy response to inference request in 1.1588788032531738s
Received healthy response to inference request in 1.1626691818237305s
5 requests
0 failed requests
5th percentile: 0.7287702083587646
10th percentile: 0.8315757751464844
20th percentile: 1.0371869087219239
30th percentile: 1.1437697410583496
40th percentile: 1.1513242721557617
50th percentile: 1.1588788032531738
60th percentile: 1.1603949546813965
70th percentile: 1.1619111061096192
80th percentile: 1.2881182670593263
90th percentile: 1.5390164375305178
95th percentile: 1.6644655227661131
99th percentile: 1.7648247909545898
mean time: 1.1754839420318604
Pipeline stage StressChecker completed in 6.76s
Running pipeline stage DaemonicModelEvalScorer
Pipeline stage DaemonicModelEvalScorer completed in 0.04s
Running pipeline stage DaemonicSafetyScorer
Pipeline stage DaemonicSafetyScorer completed in 0.04s
Running M-Eval for topic stay_in_character
M-Eval Dataset for topic stay_in_character is loaded
cgato-l3-thespice-8b-v0-1-3_v1 status is now deployed due to DeploymentManager action
cgato-l3-thespice-8b-v0-1-3_v1 status is now inactive due to auto deactivation removed underperforming models
admin requested tearing down of cgato-l3-thespice-8b-v0-1-3_v1
Running pipeline stage ISVCDeleter
Checking if service cgato-l3-thespice-8b-v0-1-3-v1 is running
Tearing down inference service cgato-l3-thespice-8b-v0-1-3-v1
Toredown service cgato-l3-thespice-8b-v0-1-3-v1
Pipeline stage ISVCDeleter completed in 5.31s
Running pipeline stage MKMLModelDeleter
Cleaning model data from S3
Cleaning model data from model cache
Deleting key cgato-l3-thespice-8b-v0-1-3-v1/config.json from bucket guanaco-mkml-models
Deleting key cgato-l3-thespice-8b-v0-1-3-v1/mkml_model.tensors from bucket guanaco-mkml-models
Deleting key cgato-l3-thespice-8b-v0-1-3-v1/special_tokens_map.json from bucket guanaco-mkml-models
Deleting key cgato-l3-thespice-8b-v0-1-3-v1/tokenizer.json from bucket guanaco-mkml-models
Deleting key cgato-l3-thespice-8b-v0-1-3-v1/tokenizer_config.json from bucket guanaco-mkml-models
Cleaning model data from model cache
Deleting key cgato-l3-thespice-8b-v0-1-3-v1_reward/config.json from bucket guanaco-reward-models
Deleting key cgato-l3-thespice-8b-v0-1-3-v1_reward/merges.txt from bucket guanaco-reward-models
Deleting key cgato-l3-thespice-8b-v0-1-3-v1_reward/reward.tensors from bucket guanaco-reward-models
Deleting key cgato-l3-thespice-8b-v0-1-3-v1_reward/special_tokens_map.json from bucket guanaco-reward-models
Deleting key cgato-l3-thespice-8b-v0-1-3-v1_reward/tokenizer.json from bucket guanaco-reward-models
Deleting key cgato-l3-thespice-8b-v0-1-3-v1_reward/tokenizer_config.json from bucket guanaco-reward-models
Deleting key cgato-l3-thespice-8b-v0-1-3-v1_reward/vocab.json from bucket guanaco-reward-models
Pipeline stage MKMLModelDeleter completed in 3.23s
cgato-l3-thespice-8b-v0-1-3_v1 status is now torndown due to DeploymentManager action