submission_id: cgato-thespice-7b-ft-dc1_2900_v1
developer_uid: c.gato
status: inactive
model_repo: cgato/TheSpice-7b-FT-DC1-OT-2Epoch
reward_repo: ChaiML/reward_gpt2_medium_preference_24m_e2
generation_params: {'temperature': 1.0, 'top_p': 1.0, 'top_k': 40, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n'], 'max_input_tokens': 512, 'best_of': 16, 'max_output_tokens': 64}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n {bot_name} gives single line responses.\n{bot_name} gives short responses.\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:'}
reward_formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n {bot_name} gives single line responses.\n{bot_name} gives short responses.\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:'}
timestamp: 2024-03-30T20:48:28+00:00
model_name: cgato-thespice-7b-ft-dc1_2900_v1
model_eval_status: success
safety_score: 0.87
entertaining: 7.1
stay_in_character: 8.56
user_preference: 7.4
double_thumbs_up: 183
thumbs_up: 253
thumbs_down: 131
num_battles: 23513
num_wins: 12285
win_ratio: 0.5224769276570408
celo_rating: 1172.95
Resubmit model
Running pipeline stage MKMLizer
Starting job with name cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer
Waiting for job on cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer to finish
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: ║ _____ __ __ ║
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: ║ /___/ ║
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: ║ ║
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: ║ Version: 0.6.11 ║
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: ║ ║
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: ║ The license key for the current software has been verified as ║
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: ║ belonging to: ║
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: ║ ║
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: ║ Chai Research Corp. ║
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: ║ Expiration: 2024-07-15 23:59:59 ║
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: ║ ║
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: .gitattributes: 0%| | 0.00/1.52k [00:00<?, ?B/s] .gitattributes: 100%|██████████| 1.52k/1.52k [00:00<00:00, 18.8MB/s]
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: README.md: 0%| | 0.00/30.0 [00:00<?, ?B/s] README.md: 100%|██████████| 30.0/30.0 [00:00<00:00, 287kB/s]
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: config.json: 0%| | 0.00/653 [00:00<?, ?B/s] config.json: 100%|██████████| 653/653 [00:00<00:00, 9.85MB/s]
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: generation_config.json: 0%| | 0.00/137 [00:00<?, ?B/s] generation_config.json: 100%|██████████| 137/137 [00:00<00:00, 1.87MB/s]
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: model-00001-of-00003.safetensors: 0%| | 0.00/4.94G [00:00<?, ?B/s] model-00001-of-00003.safetensors: 0%| | 10.5M/4.94G [00:01<10:17, 7.99MB/s] model-00001-of-00003.safetensors: 1%|▏ | 62.9M/4.94G [00:01<01:23, 58.1MB/s] model-00001-of-00003.safetensors: 2%|▏ | 94.4M/4.94G [00:01<01:00, 80.4MB/s] model-00001-of-00003.safetensors: 3%|▎ | 126M/4.94G [00:01<00:46, 104MB/s] model-00001-of-00003.safetensors: 3%|▎ | 168M/4.94G [00:01<00:31, 151MB/s] model-00001-of-00003.safetensors: 4%|▍ | 199M/4.94G [00:01<00:26, 178MB/s] model-00001-of-00003.safetensors: 5%|▍ | 241M/4.94G [00:02<00:22, 212MB/s] model-00001-of-00003.safetensors: 6%|▌ | 283M/4.94G [00:02<00:19, 243MB/s] model-00001-of-00003.safetensors: 6%|▋ | 315M/4.94G [00:02<00:19, 236MB/s] model-00001-of-00003.safetensors: 7%|▋ | 357M/4.94G [00:02<00:17, 270MB/s] model-00001-of-00003.safetensors: 8%|▊ | 419M/4.94G [00:02<00:12, 353MB/s] model-00001-of-00003.safetensors: 9%|▉ | 461M/4.94G [00:02<00:12, 358MB/s] model-00001-of-00003.safetensors: 12%|█▏ | 608M/4.94G [00:02<00:06, 625MB/s] model-00001-of-00003.safetensors: 14%|█▍ | 682M/4.94G [00:02<00:06, 626MB/s] model-00001-of-00003.safetensors: 15%|█▌ | 755M/4.94G [00:03<00:06, 621MB/s] model-00001-of-00003.safetensors: 18%|█▊ | 891M/4.94G [00:03<00:04, 815MB/s] model-00001-of-00003.safetensors: 29%|██▉ | 1.46G/4.94G [00:03<00:01, 2.03GB/s] model-00001-of-00003.safetensors: 34%|███▎ | 1.67G/4.94G [00:03<00:03, 827MB/s] model-00001-of-00003.safetensors: 37%|███▋ | 1.82G/4.94G [00:04<00:03, 807MB/s] model-00001-of-00003.safetensors: 41%|████ | 2.03G/4.94G [00:04<00:02, 981MB/s] model-00001-of-00003.safetensors: 44%|████▍ | 2.19G/4.94G [00:04<00:02, 940MB/s] model-00001-of-00003.safetensors: 47%|████▋ | 2.33G/4.94G [00:04<00:03, 831MB/s] model-00001-of-00003.safetensors: 49%|████▉ | 2.44G/4.94G [00:04<00:02, 884MB/s] model-00001-of-00003.safetensors: 54%|█████▍ | 2.68G/4.94G [00:04<00:01, 1.18GB/s] model-00001-of-00003.safetensors: 58%|█████▊ | 2.86G/4.94G [00:04<00:01, 1.31GB/s] model-00001-of-00003.safetensors: 61%|██████ | 3.02G/4.94G [00:05<00:01, 962MB/s] model-00001-of-00003.safetensors: 64%|██████▍ | 3.16G/4.94G [00:05<00:01, 909MB/s] model-00001-of-00003.safetensors: 66%|██████▋ | 3.28G/4.94G [00:05<00:01, 942MB/s] model-00001-of-00003.safetensors: 69%|██████▉ | 3.41G/4.94G [00:05<00:01, 951MB/s] model-00001-of-00003.safetensors: 71%|███████▏ | 3.52G/4.94G [00:05<00:01, 858MB/s] model-00001-of-00003.safetensors: 75%|███████▍ | 3.69G/4.94G [00:05<00:01, 1.03GB/s] model-00001-of-00003.safetensors: 77%|███████▋ | 3.81G/4.94G [00:06<00:01, 1.03GB/s] model-00001-of-00003.safetensors: 79%|███████▉ | 3.92G/4.94G [00:06<00:00, 1.04GB/s] model-00001-of-00003.safetensors: 82%|████████▏ | 4.04G/4.94G [00:06<00:00, 910MB/s] model-00001-of-00003.safetensors: 84%|████████▍ | 4.14G/4.94G [00:06<00:01, 715MB/s] model-00001-of-00003.safetensors: 87%|████████▋ | 4.28G/4.94G [00:06<00:00, 845MB/s] model-00001-of-00003.safetensors: 90%|████████▉ | 4.43G/4.94G [00:06<00:00, 985MB/s] model-00001-of-00003.safetensors: 93%|█████████▎| 4.62G/4.94G [00:06<00:00, 1.13GB/s] model-00001-of-00003.safetensors: 100%|█████████▉| 4.94G/4.94G [00:07<00:00, 704MB/s]
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: model-00002-of-00003.safetensors: 0%| | 0.00/5.00G [00:00<?, ?B/s] model-00002-of-00003.safetensors: 0%| | 10.5M/5.00G [00:02<17:06, 4.86MB/s] model-00002-of-00003.safetensors: 0%| | 21.0M/5.00G [00:02<09:48, 8.46MB/s] model-00002-of-00003.safetensors: 1%| | 52.4M/5.00G [00:02<02:58, 27.8MB/s] model-00002-of-00003.safetensors: 1%|▏ | 73.4M/5.00G [00:02<01:55, 42.6MB/s] model-00002-of-00003.safetensors: 3%|▎ | 157M/5.00G [00:03<00:38, 126MB/s] model-00002-of-00003.safetensors: 6%|▌ | 283M/5.00G [00:03<00:17, 272MB/s] model-00002-of-00003.safetensors: 8%|▊ | 409M/5.00G [00:03<00:12, 361MB/s] model-00002-of-00003.safetensors: 10%|▉ | 482M/5.00G [00:03<00:11, 390MB/s] model-00002-of-00003.safetensors: 18%|█▊ | 912M/5.00G [00:03<00:03, 1.07GB/s] model-00002-of-00003.safetensors: 22%|██▏ | 1.10G/5.00G [00:03<00:04, 948MB/s] model-00002-of-00003.safetensors: 25%|██▍ | 1.25G/5.00G [00:04<00:08, 462MB/s] model-00002-of-00003.safetensors: 28%|██▊ | 1.39G/5.00G [00:04<00:06, 558MB/s] model-00002-of-00003.safetensors: 32%|███▏ | 1.60G/5.00G [00:04<00:04, 750MB/s] model-00002-of-00003.safetensors: 35%|███▌ | 1.75G/5.00G [00:05<00:04, 710MB/s] model-00002-of-00003.safetensors: 38%|███▊ | 1.88G/5.00G [00:05<00:04, 685MB/s] model-00002-of-00003.safetensors: 40%|███▉ | 1.98G/5.00G [00:05<00:04, 717MB/s] model-00002-of-00003.safetensors: 46%|████▌ | 2.30G/5.00G [00:05<00:02, 1.10GB/s] model-00002-of-00003.safetensors: 49%|████▉ | 2.44G/5.00G [00:05<00:03, 765MB/s] model-00002-of-00003.safetensors: 51%|█████ | 2.56G/5.00G [00:06<00:03, 689MB/s] model-00002-of-00003.safetensors: 55%|█████▍ | 2.74G/5.00G [00:06<00:02, 777MB/s] model-00002-of-00003.safetensors: 57%|█████▋ | 2.84G/5.00G [00:06<00:03, 567MB/s] model-00002-of-00003.safetensors: 59%|█████▊ | 2.93G/5.00G [00:06<00:04, 509MB/s] model-00002-of-00003.safetensors: 60%|█████▉ | 3.00G/5.00G [00:07<00:03, 506MB/s] model-00002-of-00003.safetensors: 63%|██████▎ | 3.14G/5.00G [00:07<00:02, 629MB/s] model-00002-of-00003.safetensors: 67%|██████▋ | 3.33G/5.00G [00:07<00:01, 863MB/s] model-00002-of-00003.safetensors: 69%|██████▉ | 3.45G/5.00G [00:07<00:02, 647MB/s] model-00002-of-00003.safetensors: 71%|███████ | 3.54G/5.00G [00:07<00:02, 663MB/s] model-00002-of-00003.safetensors: 73%|███████▎ | 3.63G/5.00G [00:07<00:02, 610MB/s] model-00002-of-00003.safetensors: 76%|███████▌ | 3.80G/5.00G [00:08<00:01, 757MB/s] model-00002-of-00003.safetensors: 78%|███████▊ | 3.89G/5.00G [00:08<00:01, 613MB/s] model-00002-of-00003.safetensors: 79%|███████▉ | 3.96G/5.00G [00:08<00:01, 568MB/s] model-00002-of-00003.safetensors: 81%|████████ | 4.04G/5.00G [00:08<00:01, 578MB/s] model-00002-of-00003.safetensors: 83%|████████▎ | 4.17G/5.00G [00:08<00:01, 738MB/s] model-00002-of-00003.safetensors: 88%|████████▊ | 4.39G/5.00G [00:08<00:00, 1.05GB/s] model-00002-of-00003.safetensors: 90%|█████████ | 4.52G/5.00G [00:08<00:00, 1.05GB/s] model-00002-of-00003.safetensors: 93%|█████████▎| 4.66G/5.00G [00:09<00:00, 1.12GB/s] model-00002-of-00003.safetensors: 98%|█████████▊| 4.88G/5.00G [00:09<00:00, 1.38GB/s] model-00002-of-00003.safetensors: 100%|█████████▉| 5.00G/5.00G [00:09<00:00, 542MB/s]
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: model-00003-of-00003.safetensors: 0%| | 0.00/4.54G [00:00<?, ?B/s] model-00003-of-00003.safetensors: 0%| | 10.5M/4.54G [00:01<13:40, 5.52MB/s] model-00003-of-00003.safetensors: 1%| | 31.5M/4.54G [00:02<04:21, 17.2MB/s] model-00003-of-00003.safetensors: 1%| | 41.9M/4.54G [00:02<03:28, 21.6MB/s] model-00003-of-00003.safetensors: 1%| | 52.4M/4.54G [00:02<02:46, 27.0MB/s] model-00003-of-00003.safetensors: 2%|▏ | 73.4M/4.54G [00:02<01:38, 45.3MB/s] model-00003-of-00003.safetensors: 3%|▎ | 136M/4.54G [00:02<00:36, 121MB/s] model-00003-of-00003.safetensors: 6%|▌ | 262M/4.54G [00:02<00:14, 298MB/s] model-00003-of-00003.safetensors: 9%|▉ | 398M/4.54G [00:03<00:08, 480MB/s] model-00003-of-00003.safetensors: 11%|█ | 482M/4.54G [00:03<00:08, 498MB/s] model-00003-of-00003.safetensors: 15%|█▌ | 682M/4.54G [00:03<00:04, 803MB/s] model-00003-of-00003.safetensors: 24%|██▍ | 1.11G/4.54G [00:03<00:02, 1.35GB/s] model-00003-of-00003.safetensors: 28%|██▊ | 1.27G/4.54G [00:04<00:06, 516MB/s] model-00003-of-00003.safetensors: 30%|███ | 1.38G/4.54G [00:04<00:05, 562MB/s] model-00003-of-00003.safetensors: 34%|███▎ | 1.53G/4.54G [00:04<00:04, 662MB/s] model-00003-of-00003.safetensors: 36%|███▋ | 1.66G/4.54G [00:04<00:03, 750MB/s] model-00003-of-00003.safetensors: 41%|████ | 1.85G/4.54G [00:04<00:02, 927MB/s] model-00003-of-00003.safetensors: 44%|████▎ | 1.98G/4.54G [00:05<00:02, 905MB/s] model-00003-of-00003.safetensors: 50%|████▉ | 2.25G/4.54G [00:05<00:01, 1.25GB/s] model-00003-of-00003.safetensors: 53%|█████▎ | 2.41G/4.54G [00:05<00:02, 810MB/s] model-00003-of-00003.safetensors: 56%|█████▌ | 2.54G/4.54G [00:05<00:03, 659MB/s] model-00003-of-00003.safetensors: 58%|█████▊ | 2.64G/4.54G [00:06<00:03, 615MB/s] model-00003-of-00003.safetensors: 60%|██████ | 2.73G/4.54G [00:06<00:02, 647MB/s] model-00003-of-00003.safetensors: 63%|██████▎ | 2.84G/4.54G [00:06<00:02, 732MB/s] model-00003-of-00003.safetensors: 65%|██████▍ | 2.94G/4.54G [00:06<00:02, 745MB/s] model-00003-of-00003.safetensors: 67%|██████▋ | 3.04G/4.54G [00:06<00:01, 789MB/s] model-00003-of-00003.safetensors: 72%|███████▏ | 3.25G/4.54G [00:06<00:01, 1.09GB/s] model-00003-of-00003.safetensors: 74%|███████▍ | 3.38G/4.54G [00:06<00:01, 853MB/s] model-00003-of-00003.safetensors: 77%|███████▋ | 3.48G/4.54G [00:06<00:01, 817MB/s] model-00003-of-00003.safetensors: 79%|███████▉ | 3.58G/4.54G [00:07<00:01, 591MB/s] model-00003-of-00003.safetensors: 81%|████████ | 3.66G/4.54G [00:07<00:01, 576MB/s] model-00003-of-00003.safetensors: 84%|████████▍ | 3.82G/4.54G [00:07<00:00, 762MB/s] model-00003-of-00003.safetensors: 87%|████████▋ | 3.94G/4.54G [00:07<00:00, 849MB/s] model-00003-of-00003.safetensors: 91%|█████████ | 4.13G/4.54G [00:07<00:00, 1.08GB/s] model-00003-of-00003.safetensors: 94%|█████████▍| 4.27G/4.54G [00:07<00:00, 1.09GB/s] model-00003-of-00003.safetensors: 100%|█████████▉| 4.54G/4.54G [00:07<00:00, 568MB/s]
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: model.safetensors.index.json: 0%| | 0.00/23.9k [00:00<?, ?B/s] model.safetensors.index.json: 100%|██████████| 23.9k/23.9k [00:00<00:00, 128MB/s]
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: special_tokens_map.json: 0%| | 0.00/437 [00:00<?, ?B/s] special_tokens_map.json: 100%|██████████| 437/437 [00:00<00:00, 6.81MB/s]
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: tokenizer.model: 0%| | 0.00/493k [00:00<?, ?B/s] tokenizer.model: 100%|██████████| 493k/493k [00:00<00:00, 25.6MB/s]
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: tokenizer_config.json: 0%| | 0.00/982 [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 982/982 [00:00<00:00, 16.0MB/s]
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: Downloaded to shared memory in 26.715s
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: quantizing model to /dev/shm/model_cache
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: Saving mkml model at /dev/shm/model_cache
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: Reading /tmp/tmpk9fm1dz9/model.safetensors.index.json
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: Profiling: 0%| | 0/291 [00:00<?, ?it/s] Profiling: 0%| | 1/291 [00:01<06:22, 1.32s/it] Profiling: 7%|▋ | 20/291 [00:01<00:14, 19.17it/s] Profiling: 14%|█▍ | 41/291 [00:01<00:05, 42.33it/s] Profiling: 22%|██▏ | 63/291 [00:01<00:03, 67.99it/s] Profiling: 28%|██▊ | 82/291 [00:01<00:02, 89.08it/s] Profiling: 34%|███▍ | 100/291 [00:02<00:02, 77.36it/s] Profiling: 41%|████ | 120/291 [00:02<00:01, 97.85it/s] Profiling: 48%|████▊ | 139/291 [00:02<00:01, 114.72it/s] Profiling: 55%|█████▍ | 159/291 [00:02<00:00, 133.13it/s] Profiling: 63%|██████▎ | 183/291 [00:02<00:00, 155.95it/s] Profiling: 70%|███████ | 204/291 [00:03<00:02, 37.38it/s] Profiling: 76%|███████▌ | 221/291 [00:04<00:01, 46.76it/s] Profiling: 82%|████████▏ | 240/291 [00:04<00:00, 60.17it/s] Profiling: 90%|█████████ | 262/291 [00:04<00:00, 78.85it/s] Profiling: 97%|█████████▋| 283/291 [00:04<00:00, 96.51it/s] Profiling: 100%|██████████| 291/291 [00:04<00:00, 63.17it/s]
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: quantized model in 14.640s
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: Processed model cgato/TheSpice-7b-FT-DC1-OT-2Epoch in 42.195s
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: creating bucket guanaco-mkml-models
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/cgato-thespice-7b-ft-dc1-2900-v1
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/cgato-thespice-7b-ft-dc1-2900-v1/config.json
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/cgato-thespice-7b-ft-dc1-2900-v1/tokenizer_config.json
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/cgato-thespice-7b-ft-dc1-2900-v1/tokenizer.json
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.model s3://guanaco-mkml-models/cgato-thespice-7b-ft-dc1-2900-v1/tokenizer.model
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/cgato-thespice-7b-ft-dc1-2900-v1/special_tokens_map.json
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: cp /dev/shm/model_cache/mkml_model.tensors s3://guanaco-mkml-models/cgato-thespice-7b-ft-dc1-2900-v1/mkml_model.tensors
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: loading reward model from ChaiML/reward_gpt2_medium_preference_24m_e2
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:1067: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: warnings.warn(
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: config.json: 0%| | 0.00/1.05k [00:00<?, ?B/s] config.json: 100%|██████████| 1.05k/1.05k [00:00<00:00, 14.0MB/s]
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:690: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: warnings.warn(
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: tokenizer_config.json: 0%| | 0.00/234 [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 234/234 [00:00<00:00, 1.81MB/s]
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: vocab.json: 0%| | 0.00/1.04M [00:00<?, ?B/s] vocab.json: 100%|██████████| 1.04M/1.04M [00:00<00:00, 9.13MB/s] vocab.json: 100%|██████████| 1.04M/1.04M [00:00<00:00, 9.10MB/s]
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: tokenizer.json: 0%| | 0.00/2.11M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 2.11M/2.11M [00:00<00:00, 30.5MB/s]
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:472: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: warnings.warn(
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: pytorch_model.bin: 0%| | 0.00/1.44G [00:00<?, ?B/s] pytorch_model.bin: 2%|▏ | 31.5M/1.44G [00:00<00:05, 269MB/s] pytorch_model.bin: 4%|▍ | 62.9M/1.44G [00:00<00:12, 108MB/s] pytorch_model.bin: 7%|▋ | 94.4M/1.44G [00:00<00:11, 120MB/s] pytorch_model.bin: 9%|▉ | 136M/1.44G [00:00<00:08, 163MB/s] pytorch_model.bin: 11%|█ | 157M/1.44G [00:01<00:07, 166MB/s] pytorch_model.bin: 15%|█▍ | 210M/1.44G [00:01<00:05, 244MB/s] pytorch_model.bin: 20%|█▉ | 283M/1.44G [00:01<00:03, 360MB/s] pytorch_model.bin: 40%|███▉ | 577M/1.44G [00:01<00:00, 985MB/s] pytorch_model.bin: 83%|████████▎ | 1.21G/1.44G [00:01<00:00, 2.32GB/s] pytorch_model.bin: 100%|█████████▉| 1.44G/1.44G [00:01<00:00, 944MB/s]
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: Saving duration: 0.235s
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: Processed model ChaiML/reward_gpt2_medium_preference_24m_e2 in 5.079s
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: creating bucket guanaco-reward-models
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: Bucket 's3://guanaco-reward-models/' created
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/cgato-thespice-7b-ft-dc1-2900-v1_reward
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/cgato-thespice-7b-ft-dc1-2900-v1_reward/config.json
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/cgato-thespice-7b-ft-dc1-2900-v1_reward/special_tokens_map.json
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/cgato-thespice-7b-ft-dc1-2900-v1_reward/tokenizer_config.json
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/cgato-thespice-7b-ft-dc1-2900-v1_reward/merges.txt
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/cgato-thespice-7b-ft-dc1-2900-v1_reward/vocab.json
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/cgato-thespice-7b-ft-dc1-2900-v1_reward/tokenizer.json
cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/cgato-thespice-7b-ft-dc1-2900-v1_reward/reward.tensors
Job cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer completed after 74.26s with status: succeeded
Stopping job with name cgato-thespice-7b-ft-dc1-2900-v1-mkmlizer
Pipeline stage MKMLizer completed in 79.27s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.09s
Running pipeline stage ISVCDeployer
Creating inference service cgato-thespice-7b-ft-dc1-2900-v1
Waiting for inference service cgato-thespice-7b-ft-dc1-2900-v1 to be ready
Inference service cgato-thespice-7b-ft-dc1-2900-v1 ready after 40.219388484954834s
Pipeline stage ISVCDeployer completed in 47.76s
Running pipeline stage StressChecker
Received healthy response to inference request in 1.7828023433685303s
Received healthy response to inference request in 1.1806879043579102s
Received healthy response to inference request in 1.1876616477966309s
Received healthy response to inference request in 1.2267327308654785s
Received healthy response to inference request in 1.1919758319854736s
5 requests
0 failed requests
5th percentile: 1.1820826530456543
10th percentile: 1.1834774017333984
20th percentile: 1.1862668991088867
30th percentile: 1.1885244846343994
40th percentile: 1.1902501583099365
50th percentile: 1.1919758319854736
60th percentile: 1.2058785915374757
70th percentile: 1.2197813510894775
80th percentile: 1.3379466533660889
90th percentile: 1.5603744983673096
95th percentile: 1.67158842086792
99th percentile: 1.7605595588684082
mean time: 1.3139720916748048
Pipeline stage StressChecker completed in 7.35s
Running pipeline stage DaemonicModelEvalScorer
Pipeline stage DaemonicModelEvalScorer completed in 0.07s
Running pipeline stage DaemonicSafetyScorer
Running M-Eval for topic stay_in_character
Pipeline stage DaemonicSafetyScorer completed in 0.11s
M-Eval Dataset for topic stay_in_character is loaded
cgato-thespice-7b-ft-dc1_2900_v1 status is now deployed due to DeploymentManager action
cgato-thespice-7b-ft-dc1_2900_v1 status is now inactive due to auto deactivation removed underperforming models

Usage Metrics

Latency Metrics