submission_id: megumi21-megumi-chat-7b-v0-9_v2
developer_uid: megumi_10073
status: torndown
model_repo: megumi21/Megumi-Chat-7B-v0.9
reward_repo: ChaiML/reward_gpt2_medium_preference_24m_e2
generation_params: {'temperature': 1.0, 'top_p': 1.0, 'min_p': 0.0, 'top_k': 40, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n'], 'max_input_tokens': 512, 'best_of': 16, 'max_output_tokens': 64}
formatter: {'memory_template': "### Instruction:\nYou are a creative agent roleplaying as a character called {bot_name}. Stay true to the persona given, reply with short and descriptive sentences. Do not be repetitive.\n{bot_name}'s Persona: {memory}\n", 'prompt_template': '### Input:\n# Actual conversation:\n{prompt}\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '### Response: {bot_name}:', 'truncate_by_message': False}
reward_formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': False}
timestamp: 2024-04-10T03:24:21+00:00
model_name: megumi-chat-7b-v9
model_eval_status: success
model_group: megumi21/Megumi-Chat-7B-
num_battles: 41243
num_wins: 20357
celo_rating: 1158.82
propriety_score: 0.0
propriety_total_count: 0.0
submission_type: basic
model_architecture: MistralForCausalLM
model_num_parameters: 7241732096.0
best_of: 16
max_input_tokens: 512
max_output_tokens: 64
display_name: megumi-chat-7b-v9
ineligible_reason: propriety_total_count < 800
language_model: megumi21/Megumi-Chat-7B-v0.9
model_size: 7B
reward_model: ChaiML/reward_gpt2_medium_preference_24m_e2
us_pacific_date: 2024-04-09
win_ratio: 0.4935867904856582
preference_data_url: None
Resubmit model
Running pipeline stage MKMLizer
Starting job with name megumi21-megumi-chat-7b-v0-9-v2-mkmlizer
Waiting for job on megumi21-megumi-chat-7b-v0-9-v2-mkmlizer to finish
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: ║ _____ __ __ ║
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: ║ /___/ ║
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: ║ ║
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: ║ Version: 0.6.11 ║
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: ║ ║
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: ║ The license key for the current software has been verified as ║
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: ║ belonging to: ║
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: ║ ║
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: ║ Chai Research Corp. ║
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: ║ Expiration: 2024-07-15 23:59:59 ║
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: ║ ║
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: .gitattributes: 0%| | 0.00/1.52k [00:00<?, ?B/s] .gitattributes: 100%|██████████| 1.52k/1.52k [00:00<00:00, 14.3MB/s]
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: config.json: 0%| | 0.00/654 [00:00<?, ?B/s] config.json: 100%|██████████| 654/654 [00:00<00:00, 7.22MB/s]
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: generation_config.json: 0%| | 0.00/132 [00:00<?, ?B/s] generation_config.json: 100%|██████████| 132/132 [00:00<00:00, 1.53MB/s]
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: pytorch_model-00002-of-00003.bin: 0%| | 0.00/5.00G [00:00<?, ?B/s] pytorch_model-00002-of-00003.bin: 0%| | 10.5M/5.00G [00:00<01:08, 73.2MB/s] pytorch_model-00002-of-00003.bin: 2%|▏ | 94.4M/5.00G [00:00<00:11, 427MB/s] pytorch_model-00002-of-00003.bin: 4%|▍ | 220M/5.00G [00:00<00:06, 754MB/s] pytorch_model-00002-of-00003.bin: 6%|▌ | 304M/5.00G [00:00<00:06, 775MB/s] pytorch_model-00002-of-00003.bin: 11%|█ | 535M/5.00G [00:00<00:03, 1.29GB/s] pytorch_model-00002-of-00003.bin: 20%|██ | 1.02G/5.00G [00:00<00:01, 2.29GB/s] pytorch_model-00002-of-00003.bin: 25%|██▍ | 1.25G/5.00G [00:00<00:02, 1.79GB/s] pytorch_model-00002-of-00003.bin: 31%|███ | 1.56G/5.00G [00:01<00:01, 1.91GB/s] pytorch_model-00002-of-00003.bin: 35%|███▌ | 1.76G/5.00G [00:01<00:02, 1.50GB/s] pytorch_model-00002-of-00003.bin: 39%|███▉ | 1.94G/5.00G [00:01<00:02, 1.27GB/s] pytorch_model-00002-of-00003.bin: 42%|████▏ | 2.09G/5.00G [00:01<00:03, 844MB/s] pytorch_model-00002-of-00003.bin: 44%|████▍ | 2.20G/5.00G [00:02<00:04, 652MB/s] pytorch_model-00002-of-00003.bin: 46%|████▌ | 2.30G/5.00G [00:02<00:04, 667MB/s] pytorch_model-00002-of-00003.bin: 48%|████▊ | 2.40G/5.00G [00:02<00:03, 697MB/s] pytorch_model-00002-of-00003.bin: 50%|█████ | 2.51G/5.00G [00:02<00:03, 760MB/s] pytorch_model-00002-of-00003.bin: 53%|█████▎ | 2.66G/5.00G [00:02<00:02, 924MB/s] pytorch_model-00002-of-00003.bin: 56%|█████▌ | 2.79G/5.00G [00:02<00:02, 990MB/s] pytorch_model-00002-of-00003.bin: 59%|█████▊ | 2.94G/5.00G [00:02<00:01, 1.04GB/s] pytorch_model-00002-of-00003.bin: 62%|██████▏ | 3.10G/5.00G [00:02<00:01, 1.17GB/s] pytorch_model-00002-of-00003.bin: 65%|██████▌ | 3.25G/5.00G [00:03<00:01, 1.24GB/s] pytorch_model-00002-of-00003.bin: 68%|██████▊ | 3.42G/5.00G [00:03<00:01, 1.31GB/s] pytorch_model-00002-of-00003.bin: 72%|███████▏ | 3.60G/5.00G [00:03<00:01, 1.40GB/s] pytorch_model-00002-of-00003.bin: 76%|███████▋ | 3.82G/5.00G [00:03<00:00, 1.60GB/s] pytorch_model-00002-of-00003.bin: 82%|████████▏ | 4.08G/5.00G [00:03<00:00, 1.83GB/s] pytorch_model-00002-of-00003.bin: 86%|████████▌ | 4.31G/5.00G [00:03<00:00, 1.95GB/s] pytorch_model-00002-of-00003.bin: 90%|█████████ | 4.51G/5.00G [00:03<00:00, 1.73GB/s] pytorch_model-00002-of-00003.bin: 94%|█████████▍| 4.70G/5.00G [00:04<00:00, 906MB/s] pytorch_model-00002-of-00003.bin: 97%|█████████▋| 4.84G/5.00G [00:04<00:00, 893MB/s] pytorch_model-00002-of-00003.bin: 100%|█████████▉| 5.00G/5.00G [00:04<00:00, 1.12GB/s]
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: pytorch_model-00003-of-00003.bin: 0%| | 0.00/4.54G [00:00<?, ?B/s] pytorch_model-00003-of-00003.bin: 0%| | 10.5M/4.54G [00:00<01:30, 49.8MB/s] pytorch_model-00003-of-00003.bin: 3%|▎ | 157M/4.54G [00:00<00:08, 530MB/s] pytorch_model-00003-of-00003.bin: 5%|▌ | 231M/4.54G [00:00<00:07, 584MB/s] pytorch_model-00003-of-00003.bin: 11%|█ | 482M/4.54G [00:00<00:03, 1.17GB/s] pytorch_model-00003-of-00003.bin: 22%|██▏ | 1.01G/4.54G [00:00<00:01, 2.39GB/s] pytorch_model-00003-of-00003.bin: 28%|██▊ | 1.28G/4.54G [00:00<00:01, 1.66GB/s] pytorch_model-00003-of-00003.bin: 34%|███▎ | 1.53G/4.54G [00:01<00:01, 1.81GB/s] pytorch_model-00003-of-00003.bin: 39%|███▊ | 1.75G/4.54G [00:01<00:01, 1.50GB/s] pytorch_model-00003-of-00003.bin: 43%|████▎ | 1.94G/4.54G [00:01<00:01, 1.49GB/s] pytorch_model-00003-of-00003.bin: 47%|████▋ | 2.15G/4.54G [00:01<00:01, 1.61GB/s] pytorch_model-00003-of-00003.bin: 51%|█████▏ | 2.34G/4.54G [00:01<00:02, 1.09GB/s] pytorch_model-00003-of-00003.bin: 55%|█████▍ | 2.49G/4.54G [00:01<00:01, 1.07GB/s] pytorch_model-00003-of-00003.bin: 58%|█████▊ | 2.62G/4.54G [00:02<00:01, 1.11GB/s] pytorch_model-00003-of-00003.bin: 61%|██████ | 2.76G/4.54G [00:02<00:01, 1.09GB/s] pytorch_model-00003-of-00003.bin: 64%|██████▎ | 2.88G/4.54G [00:02<00:01, 1.02GB/s] pytorch_model-00003-of-00003.bin: 66%|██████▋ | 3.01G/4.54G [00:02<00:01, 1.04GB/s] pytorch_model-00003-of-00003.bin: 71%|███████ | 3.22G/4.54G [00:02<00:01, 1.28GB/s] pytorch_model-00003-of-00003.bin: 74%|███████▍ | 3.37G/4.54G [00:02<00:00, 1.28GB/s] pytorch_model-00003-of-00003.bin: 80%|███████▉ | 3.63G/4.54G [00:02<00:00, 1.59GB/s] pytorch_model-00003-of-00003.bin: 85%|████████▍ | 3.86G/4.54G [00:02<00:00, 1.71GB/s] pytorch_model-00003-of-00003.bin: 89%|████████▉ | 4.04G/4.54G [00:03<00:00, 1.39GB/s] pytorch_model-00003-of-00003.bin: 92%|█████████▏| 4.19G/4.54G [00:03<00:00, 1.33GB/s] pytorch_model-00003-of-00003.bin: 96%|█████████▌| 4.34G/4.54G [00:03<00:00, 1.34GB/s] pytorch_model-00003-of-00003.bin: 99%|█████████▉| 4.49G/4.54G [00:03<00:00, 1.25GB/s] pytorch_model-00003-of-00003.bin: 100%|█████████▉| 4.54G/4.54G [00:03<00:00, 1.29GB/s]
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: pytorch_model.bin.index.json: 0%| | 0.00/23.9k [00:00<?, ?B/s] pytorch_model.bin.index.json: 100%|██████████| 23.9k/23.9k [00:00<00:00, 161MB/s]
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: special_tokens_map.json: 0%| | 0.00/437 [00:00<?, ?B/s] special_tokens_map.json: 100%|██████████| 437/437 [00:00<00:00, 4.74MB/s]
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: tokenizer.model: 0%| | 0.00/493k [00:00<?, ?B/s] tokenizer.model: 100%|██████████| 493k/493k [00:00<00:00, 54.5MB/s]
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: tokenizer_config.json: 0%| | 0.00/1.51k [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 1.51k/1.51k [00:00<00:00, 12.8MB/s]
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: Downloaded to shared memory in 13.202s
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: quantizing model to /dev/shm/model_cache
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: Saving mkml model at /dev/shm/model_cache
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: Reading /tmp/tmpt_n4oou1/pytorch_model.bin.index.json
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: Profiling: 0%| | 0/291 [00:00<?, ?it/s] Profiling: 0%| | 1/291 [00:02<10:01, 2.07s/it] Profiling: 34%|███▎ | 98/291 [00:03<00:04, 40.67it/s] Profiling: 70%|███████ | 204/291 [00:03<00:01, 71.60it/s] Profiling: 100%|██████████| 291/291 [00:05<00:00, 71.12it/s] Profiling: 100%|██████████| 291/291 [00:05<00:00, 58.05it/s]
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: quantized model in 15.614s
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: Processed model megumi21/Megumi-Chat-7B-v0.9 in 29.797s
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: creating bucket guanaco-mkml-models
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/megumi21-megumi-chat-7b-v0-9-v2
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/megumi21-megumi-chat-7b-v0-9-v2/tokenizer_config.json
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/megumi21-megumi-chat-7b-v0-9-v2/config.json
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: cp /dev/shm/model_cache/tokenizer.model s3://guanaco-mkml-models/megumi21-megumi-chat-7b-v0-9-v2/tokenizer.model
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/megumi21-megumi-chat-7b-v0-9-v2/special_tokens_map.json
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/megumi21-megumi-chat-7b-v0-9-v2/tokenizer.json
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: cp /dev/shm/model_cache/mkml_model.tensors s3://guanaco-mkml-models/megumi21-megumi-chat-7b-v0-9-v2/mkml_model.tensors
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: loading reward model from ChaiML/reward_gpt2_medium_preference_24m_e2
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:1067: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: warnings.warn(
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: config.json: 0%| | 0.00/1.05k [00:00<?, ?B/s] config.json: 100%|██████████| 1.05k/1.05k [00:00<00:00, 11.5MB/s]
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:690: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: warnings.warn(
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: tokenizer_config.json: 0%| | 0.00/234 [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 234/234 [00:00<00:00, 1.76MB/s]
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: vocab.json: 0%| | 0.00/1.04M [00:00<?, ?B/s] vocab.json: 100%|██████████| 1.04M/1.04M [00:00<00:00, 35.6MB/s]
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: tokenizer.json: 0%| | 0.00/2.11M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 2.11M/2.11M [00:00<00:00, 19.7MB/s] tokenizer.json: 100%|██████████| 2.11M/2.11M [00:00<00:00, 19.6MB/s]
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:472: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: warnings.warn(
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: pytorch_model.bin: 0%| | 0.00/1.44G [00:00<?, ?B/s] pytorch_model.bin: 1%| | 10.5M/1.44G [00:00<00:18, 77.8MB/s] pytorch_model.bin: 2%|▏ | 31.5M/1.44G [00:00<00:09, 143MB/s] pytorch_model.bin: 7%|▋ | 94.4M/1.44G [00:00<00:04, 325MB/s] pytorch_model.bin: 9%|▉ | 136M/1.44G [00:00<00:06, 200MB/s] pytorch_model.bin: 12%|█▏ | 168M/1.44G [00:00<00:07, 170MB/s] pytorch_model.bin: 14%|█▍ | 199M/1.44G [00:01<00:07, 162MB/s] pytorch_model.bin: 15%|█▌ | 220M/1.44G [00:01<00:07, 167MB/s] pytorch_model.bin: 41%|████▏ | 598M/1.44G [00:01<00:00, 899MB/s] pytorch_model.bin: 83%|████████▎ | 1.21G/1.44G [00:01<00:00, 2.06GB/s] pytorch_model.bin: 100%|█████████▉| 1.44G/1.44G [00:01<00:00, 928MB/s]
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: Saving duration: 0.239s
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: Processed model ChaiML/reward_gpt2_medium_preference_24m_e2 in 5.114s
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: creating bucket guanaco-reward-models
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: Bucket 's3://guanaco-reward-models/' created
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/megumi21-megumi-chat-7b-v0-9-v2_reward
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/megumi21-megumi-chat-7b-v0-9-v2_reward/config.json
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/megumi21-megumi-chat-7b-v0-9-v2_reward/tokenizer_config.json
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/megumi21-megumi-chat-7b-v0-9-v2_reward/vocab.json
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/megumi21-megumi-chat-7b-v0-9-v2_reward/merges.txt
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/megumi21-megumi-chat-7b-v0-9-v2_reward/special_tokens_map.json
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/megumi21-megumi-chat-7b-v0-9-v2_reward/tokenizer.json
megumi21-megumi-chat-7b-v0-9-v2-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/megumi21-megumi-chat-7b-v0-9-v2_reward/reward.tensors
Job megumi21-megumi-chat-7b-v0-9-v2-mkmlizer completed after 58.25s with status: succeeded
Stopping job with name megumi21-megumi-chat-7b-v0-9-v2-mkmlizer
Pipeline stage MKMLizer completed in 63.67s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.10s
Running pipeline stage ISVCDeployer
Creating inference service megumi21-megumi-chat-7b-v0-9-v2
Waiting for inference service megumi21-megumi-chat-7b-v0-9-v2 to be ready
Inference service megumi21-megumi-chat-7b-v0-9-v2 ready after 40.48399877548218s
Pipeline stage ISVCDeployer completed in 48.70s
Running pipeline stage StressChecker
Received healthy response to inference request in 1.7297427654266357s
Received healthy response to inference request in 1.6158435344696045s
Received healthy response to inference request in 1.1842823028564453s
Received healthy response to inference request in 1.1991240978240967s
Received healthy response to inference request in 1.7648706436157227s
5 requests
0 failed requests
5th percentile: 1.1872506618499756
10th percentile: 1.190219020843506
20th percentile: 1.1961557388305664
30th percentile: 1.2824679851531982
40th percentile: 1.4491557598114013
50th percentile: 1.6158435344696045
60th percentile: 1.661403226852417
70th percentile: 1.7069629192352296
80th percentile: 1.7367683410644532
90th percentile: 1.750819492340088
95th percentile: 1.7578450679779052
99th percentile: 1.763465528488159
mean time: 1.498772668838501
Pipeline stage StressChecker completed in 8.32s
Running pipeline stage DaemonicModelEvalScorer
Pipeline stage DaemonicModelEvalScorer completed in 0.04s
Running pipeline stage DaemonicSafetyScorer
Pipeline stage DaemonicSafetyScorer completed in 0.04s
Running M-Eval for topic stay_in_character
megumi21-megumi-chat-7b-v0-9_v2 status is now deployed due to DeploymentManager action
M-Eval Dataset for topic stay_in_character is loaded
megumi21-megumi-chat-7b-v0-9_v2 status is now inactive due to auto deactivation removed underperforming models
admin requested tearing down of megumi21-megumi-chat-7b-v0-9_v2
Running pipeline stage ISVCDeleter
Checking if service megumi21-megumi-chat-7b-v0-9-v2 is running
Tearing down inference service megumi21-megumi-chat-7b-v0-9-v2
Toredown service megumi21-megumi-chat-7b-v0-9-v2
Pipeline stage ISVCDeleter completed in 4.65s
Running pipeline stage MKMLModelDeleter
Cleaning model data from S3
Cleaning model data from model cache
Deleting key megumi21-megumi-chat-7b-v0-9-v2/config.json from bucket guanaco-mkml-models
Deleting key megumi21-megumi-chat-7b-v0-9-v2/mkml_model.tensors from bucket guanaco-mkml-models
Deleting key megumi21-megumi-chat-7b-v0-9-v2/special_tokens_map.json from bucket guanaco-mkml-models
Deleting key megumi21-megumi-chat-7b-v0-9-v2/tokenizer.json from bucket guanaco-mkml-models
Deleting key megumi21-megumi-chat-7b-v0-9-v2/tokenizer.model from bucket guanaco-mkml-models
Deleting key megumi21-megumi-chat-7b-v0-9-v2/tokenizer_config.json from bucket guanaco-mkml-models
Cleaning model data from model cache
Deleting key megumi21-megumi-chat-7b-v0-9-v2_reward/config.json from bucket guanaco-reward-models
Deleting key megumi21-megumi-chat-7b-v0-9-v2_reward/merges.txt from bucket guanaco-reward-models
Deleting key megumi21-megumi-chat-7b-v0-9-v2_reward/reward.tensors from bucket guanaco-reward-models
Deleting key megumi21-megumi-chat-7b-v0-9-v2_reward/special_tokens_map.json from bucket guanaco-reward-models
Deleting key megumi21-megumi-chat-7b-v0-9-v2_reward/tokenizer.json from bucket guanaco-reward-models
Deleting key megumi21-megumi-chat-7b-v0-9-v2_reward/tokenizer_config.json from bucket guanaco-reward-models
Deleting key megumi21-megumi-chat-7b-v0-9-v2_reward/vocab.json from bucket guanaco-reward-models
Pipeline stage MKMLModelDeleter completed in 1.89s
megumi21-megumi-chat-7b-v0-9_v2 status is now torndown due to DeploymentManager action

Usage Metrics

Latency Metrics