developer_uid: kay5555
submission_id: jellywibble-lora-120k-pr_2827_v3
model_name: nitral-ai-hathor-l3-8b-v-01_v1
model_group: Jellywibble/lora_120k_pr
status: torndown
timestamp: 2024-07-05T04:00:30+00:00
num_battles: 40661
num_wins: 23704
celo_rating: 1260.75
family_friendly_score: 0.0
submission_type: basic
model_repo: Jellywibble/lora_120k_pref_data_ep2
model_architecture: LlamaForCausalLM
reward_repo: ChaiML/gpt2_xl_pairwise_89m_step_347634
model_num_parameters: 8030261248.0
best_of: 16
max_input_tokens: 512
max_output_tokens: 64
display_name: nitral-ai-hathor-l3-8b-v-01_v1
is_internal_developer: False
language_model: Jellywibble/lora_120k_pref_data_ep2
model_size: 8B
ranking_group: single
us_pacific_date: 2024-07-04
win_ratio: 0.5829664789355894
generation_params: {'temperature': 0.95, 'top_p': 1.0, 'min_p': 0.08, 'top_k': 40, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n', '<|eot_id|>'], 'max_input_tokens': 512, 'best_of': 16, 'max_output_tokens': 64}
formatter: {'memory_template': "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{bot_name}'s Persona: {memory}\n\n", 'prompt_template': '{prompt}<|eot_id|>', 'bot_template': '<|start_header_id|>assistant<|end_header_id|>\n\n{bot_name}: {message}<|eot_id|>', 'user_template': '<|start_header_id|>user<|end_header_id|>\n\n{user_name}: {message}<|eot_id|>', 'response_template': '<|start_header_id|>assistant<|end_header_id|>\n\n{bot_name}:', 'truncate_by_message': False}
reward_formatter: {'bot_template': '{bot_name}: {message}\n', 'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'response_template': '{bot_name}:', 'truncate_by_message': False, 'user_template': '{user_name}: {message}\n'}
Resubmit model
Running pipeline stage MKMLizer
Running pipeline stage MKMLizer
Starting job with name jellywibble-lora-120k-pr-2827-v3-mkmlizer
Stopping job with name jellywibble-lora-120k-pr-2827-v3-mkmlizer
%s, retrying in %s seconds...
Starting job with name jellywibble-lora-120k-pr-2827-v3-mkmlizer
Waiting for job on jellywibble-lora-120k-pr-2827-v3-mkmlizer to finish
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ║ _____ __ __ ║
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ║ /___/ ║
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ║ ║
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ║ Version: 0.8.14 ║
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ║ https://mk1.ai ║
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ║ ║
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ║ The license key for the current software has been verified as ║
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ║ belonging to: ║
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ║ ║
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ║ Chai Research Corp. ║
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ║ Expiration: 2024-07-15 23:59:59 ║
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ║ ║
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
jellywibble-lora-120k-pr-2827-v3-mkmlizer: Downloaded to shared memory in 29.993s
jellywibble-lora-120k-pr-2827-v3-mkmlizer: quantizing model to /dev/shm/model_cache
jellywibble-lora-120k-pr-2827-v3-mkmlizer: Saving flywheel model at /dev/shm/model_cache
jellywibble-lora-120k-pr-2827-v3-mkmlizer: Loading 0: 0%| | 0/291 [00:00<?, ?it/s] Loading 0: 2%|▏ | 5/291 [00:00<00:05, 48.62it/s] Loading 0: 5%|▍ | 14/291 [00:00<00:04, 63.85it/s] Loading 0: 8%|▊ | 23/291 [00:00<00:03, 68.03it/s] Loading 0: 11%|█▏ | 33/291 [00:00<00:04, 55.46it/s] Loading 0: 13%|█▎ | 39/291 [00:00<00:04, 52.08it/s] Loading 0: 16%|█▋ | 48/291 [00:00<00:04, 57.83it/s] Loading 0: 20%|█▉ | 57/291 [00:00<00:03, 62.40it/s] Loading 0: 23%|██▎ | 66/291 [00:01<00:03, 65.57it/s] Loading 0: 25%|██▌ | 74/291 [00:01<00:03, 65.87it/s] Loading 0: 28%|██▊ | 81/291 [00:01<00:04, 47.17it/s] Loading 0: 31%|███ | 90/291 [00:01<00:03, 53.13it/s] Loading 0: 34%|███▍ | 99/291 [00:01<00:03, 57.87it/s] Loading 0: 37%|███▋ | 108/291 [00:01<00:02, 62.20it/s] Loading 0: 40%|███▉ | 115/291 [00:01<00:02, 63.72it/s] Loading 0: 43%|████▎ | 125/291 [00:02<00:02, 68.67it/s] Loading 0: 46%|████▌ | 133/291 [00:02<00:03, 51.70it/s] Loading 0: 48%|████▊ | 139/291 [00:02<00:03, 49.92it/s] Loading 0: 51%|█████ | 148/291 [00:02<00:02, 55.76it/s] Loading 0: 54%|█████▍ | 157/291 [00:02<00:02, 60.37it/s] Loading 0: 57%|█████▋ | 166/291 [00:02<00:01, 63.27it/s] Loading 0: 60%|██████ | 175/291 [00:02<00:01, 65.27it/s] Loading 0: 64%|██████▍ | 186/291 [00:03<00:01, 55.89it/s] Loading 0: 66%|██████▋ | 193/291 [00:03<00:01, 51.37it/s] Loading 0: 69%|██████▉ | 202/291 [00:03<00:01, 56.22it/s] Loading 0: 73%|███████▎ | 211/291 [00:03<00:01, 60.24it/s] Loading 0: 76%|███████▌ | 220/291 [00:03<00:01, 63.67it/s] Loading 0: 78%|███████▊ | 228/291 [00:03<00:00, 63.75it/s] Loading 0: 81%|████████ | 235/291 [00:04<00:01, 51.42it/s] Loading 0: 83%|████████▎ | 241/291 [00:04<00:00, 52.90it/s] Loading 0: 85%|████████▌ | 248/291 [00:04<00:00, 55.37it/s] Loading 0: 88%|████████▊ | 257/291 [00:04<00:00, 60.97it/s] Loading 0: 91%|█████████▏| 266/291 [00:04<00:00, 64.67it/s] Loading 0: 95%|█████████▍| 275/291 [00:04<00:00, 69.08it/s] Loading 0: 98%|█████████▊| 286/291 [00:09<00:00, 5.64it/s] Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
jellywibble-lora-120k-pr-2827-v3-mkmlizer: quantized model in 20.948s
jellywibble-lora-120k-pr-2827-v3-mkmlizer: Processed model Jellywibble/lora_120k_pref_data_ep2 in 50.941s
jellywibble-lora-120k-pr-2827-v3-mkmlizer: creating bucket guanaco-mkml-models
jellywibble-lora-120k-pr-2827-v3-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
jellywibble-lora-120k-pr-2827-v3-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/jellywibble-lora-120k-pr-2827-v3
jellywibble-lora-120k-pr-2827-v3-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/jellywibble-lora-120k-pr-2827-v3/config.json
jellywibble-lora-120k-pr-2827-v3-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/jellywibble-lora-120k-pr-2827-v3/tokenizer_config.json
jellywibble-lora-120k-pr-2827-v3-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/jellywibble-lora-120k-pr-2827-v3/special_tokens_map.json
jellywibble-lora-120k-pr-2827-v3-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/jellywibble-lora-120k-pr-2827-v3/tokenizer.json
jellywibble-lora-120k-pr-2827-v3-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/jellywibble-lora-120k-pr-2827-v3/flywheel_model.0.safetensors
jellywibble-lora-120k-pr-2827-v3-mkmlizer: loading reward model from ChaiML/gpt2_xl_pairwise_89m_step_347634
jellywibble-lora-120k-pr-2827-v3-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:919: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
jellywibble-lora-120k-pr-2827-v3-mkmlizer: warnings.warn(
jellywibble-lora-120k-pr-2827-v3-mkmlizer: /opt/conda/lib/python3.10/site-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.
jellywibble-lora-120k-pr-2827-v3-mkmlizer: warnings.warn(
jellywibble-lora-120k-pr-2827-v3-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:769: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
jellywibble-lora-120k-pr-2827-v3-mkmlizer: warnings.warn(
jellywibble-lora-120k-pr-2827-v3-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:468: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
jellywibble-lora-120k-pr-2827-v3-mkmlizer: warnings.warn(
jellywibble-lora-120k-pr-2827-v3-mkmlizer: Downloading shards: 0%| | 0/2 [00:00<?, ?it/s] Downloading shards: 50%|█████ | 1/2 [00:03<00:03, 3.92s/it] Downloading shards: 100%|██████████| 2/2 [00:05<00:00, 2.51s/it] Downloading shards: 100%|██████████| 2/2 [00:05<00:00, 2.72s/it]
jellywibble-lora-120k-pr-2827-v3-mkmlizer: Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s] Loading checkpoint shards: 50%|█████ | 1/2 [00:00<00:00, 1.81it/s] Loading checkpoint shards: 100%|██████████| 2/2 [00:00<00:00, 3.16it/s] Loading checkpoint shards: 100%|██████████| 2/2 [00:00<00:00, 2.84it/s]
jellywibble-lora-120k-pr-2827-v3-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
jellywibble-lora-120k-pr-2827-v3-mkmlizer: Saving duration: 0.914s
jellywibble-lora-120k-pr-2827-v3-mkmlizer: Processed model ChaiML/gpt2_xl_pairwise_89m_step_347634 in 9.394s
jellywibble-lora-120k-pr-2827-v3-mkmlizer: creating bucket guanaco-reward-models
jellywibble-lora-120k-pr-2827-v3-mkmlizer: Bucket 's3://guanaco-reward-models/' created
jellywibble-lora-120k-pr-2827-v3-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/jellywibble-lora-120k-pr-2827-v3_reward
jellywibble-lora-120k-pr-2827-v3-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/jellywibble-lora-120k-pr-2827-v3_reward/config.json
jellywibble-lora-120k-pr-2827-v3-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/jellywibble-lora-120k-pr-2827-v3_reward/tokenizer_config.json
jellywibble-lora-120k-pr-2827-v3-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/jellywibble-lora-120k-pr-2827-v3_reward/special_tokens_map.json
jellywibble-lora-120k-pr-2827-v3-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/jellywibble-lora-120k-pr-2827-v3_reward/merges.txt
jellywibble-lora-120k-pr-2827-v3-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/jellywibble-lora-120k-pr-2827-v3_reward/tokenizer.json
jellywibble-lora-120k-pr-2827-v3-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/jellywibble-lora-120k-pr-2827-v3_reward/vocab.json
jellywibble-lora-120k-pr-2827-v3-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/jellywibble-lora-120k-pr-2827-v3_reward/reward.tensors
Job jellywibble-lora-120k-pr-2827-v3-mkmlizer completed after 121.58s with status: succeeded
Stopping job with name jellywibble-lora-120k-pr-2827-v3-mkmlizer
%s, retrying in %s seconds...
Stopping job with name jellywibble-lora-120k-pr-2827-v3-mkmlizer
%s, retrying in %s seconds...
Stopping job with name jellywibble-lora-120k-pr-2827-v3-mkmlizer
%s, retrying in %s seconds...
Starting job with name jellywibble-lora-120k-pr-2827-v3-mkmlizer
Waiting for job on jellywibble-lora-120k-pr-2827-v3-mkmlizer to finish
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ║ _____ __ __ ║
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ║ /___/ ║
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ║ ║
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ║ Version: 0.8.14 ║
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ║ https://mk1.ai ║
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ║ ║
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ║ The license key for the current software has been verified as ║
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ║ belonging to: ║
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ║ ║
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ║ Chai Research Corp. ║
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ║ Expiration: 2024-07-15 23:59:59 ║
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ║ ║
jellywibble-lora-120k-pr-2827-v3-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
jellywibble-lora-120k-pr-2827-v3-mkmlizer: Downloaded to shared memory in 72.754s
jellywibble-lora-120k-pr-2827-v3-mkmlizer: quantizing model to /dev/shm/model_cache
jellywibble-lora-120k-pr-2827-v3-mkmlizer: Saving flywheel model at /dev/shm/model_cache
jellywibble-lora-120k-pr-2827-v3-mkmlizer: Loading 0: 0%| | 0/291 [00:00<?, ?it/s] Loading 0: 3%|▎ | 9/291 [00:00<00:03, 84.52it/s] Loading 0: 6%|▌ | 18/291 [00:00<00:03, 85.51it/s] Loading 0: 9%|▉ | 27/291 [00:00<00:03, 85.82it/s] Loading 0: 12%|█▏ | 36/291 [00:00<00:05, 43.82it/s] Loading 0: 15%|█▌ | 45/291 [00:00<00:04, 53.39it/s] Loading 0: 19%|█▊ | 54/291 [00:00<00:03, 61.41it/s] Loading 0: 22%|██▏ | 63/291 [00:00<00:03, 67.99it/s] Loading 0: 25%|██▍ | 72/291 [00:01<00:02, 73.06it/s] Loading 0: 28%|██▊ | 81/291 [00:01<00:04, 48.00it/s] Loading 0: 31%|███ | 90/291 [00:01<00:03, 55.20it/s] Loading 0: 34%|███▍ | 99/291 [00:01<00:03, 62.03it/s] Loading 0: 37%|███▋ | 108/291 [00:01<00:02, 67.92it/s] Loading 0: 40%|███▉ | 116/291 [00:01<00:02, 70.33it/s] Loading 0: 43%|████▎ | 126/291 [00:01<00:02, 77.38it/s] Loading 0: 46%|████▋ | 135/291 [00:02<00:03, 49.53it/s] Loading 0: 49%|████▉ | 144/291 [00:02<00:02, 56.87it/s] Loading 0: 53%|█████▎ | 153/291 [00:02<00:02, 63.19it/s] Loading 0: 56%|█████▌ | 162/291 [00:02<00:01, 68.90it/s] Loading 0: 59%|█████▉ | 171/291 [00:02<00:01, 73.22it/s] Loading 0: 62%|██████▏ | 180/291 [00:02<00:01, 76.75it/s] Loading 0: 65%|██████▍ | 189/291 [00:03<00:02, 49.12it/s] Loading 0: 68%|██████▊ | 198/291 [00:03<00:01, 56.59it/s] Loading 0: 71%|███████ | 207/291 [00:03<00:01, 62.83it/s] Loading 0: 74%|███████▍ | 216/291 [00:03<00:01, 68.61it/s] Loading 0: 77%|███████▋ | 225/291 [00:03<00:00, 72.98it/s] Loading 0: 80%|████████ | 234/291 [00:03<00:01, 47.66it/s] Loading 0: 84%|████████▎ | 243/291 [00:03<00:00, 55.29it/s] Loading 0: 87%|████████▋ | 252/291 [00:04<00:00, 62.37it/s] Loading 0: 90%|████████▉ | 261/291 [00:04<00:00, 68.35it/s] Loading 0: 93%|█████████▎| 270/291 [00:04<00:00, 72.75it/s] Loading 0: 96%|█████████▌| 279/291 [00:04<00:00, 76.50it/s] Loading 0: 99%|█████████▉| 288/291 [00:09<00:00, 5.17it/s] Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
jellywibble-lora-120k-pr-2827-v3-mkmlizer: quantized model in 24.368s
jellywibble-lora-120k-pr-2827-v3-mkmlizer: Processed model Jellywibble/lora_120k_pref_data_ep2 in 97.122s
jellywibble-lora-120k-pr-2827-v3-mkmlizer: creating bucket guanaco-mkml-models
jellywibble-lora-120k-pr-2827-v3-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
jellywibble-lora-120k-pr-2827-v3-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/jellywibble-lora-120k-pr-2827-v3
jellywibble-lora-120k-pr-2827-v3-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/jellywibble-lora-120k-pr-2827-v3/config.json
jellywibble-lora-120k-pr-2827-v3-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/jellywibble-lora-120k-pr-2827-v3/special_tokens_map.json
jellywibble-lora-120k-pr-2827-v3-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/jellywibble-lora-120k-pr-2827-v3/tokenizer_config.json
jellywibble-lora-120k-pr-2827-v3-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/jellywibble-lora-120k-pr-2827-v3/tokenizer.json
jellywibble-lora-120k-pr-2827-v3-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/jellywibble-lora-120k-pr-2827-v3/flywheel_model.0.safetensors
jellywibble-lora-120k-pr-2827-v3-mkmlizer: loading reward model from ChaiML/gpt2_xl_pairwise_89m_step_347634
jellywibble-lora-120k-pr-2827-v3-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:919: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
jellywibble-lora-120k-pr-2827-v3-mkmlizer: warnings.warn(
jellywibble-lora-120k-pr-2827-v3-mkmlizer: /opt/conda/lib/python3.10/site-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.
jellywibble-lora-120k-pr-2827-v3-mkmlizer: warnings.warn(
jellywibble-lora-120k-pr-2827-v3-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:769: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
jellywibble-lora-120k-pr-2827-v3-mkmlizer: warnings.warn(
jellywibble-lora-120k-pr-2827-v3-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:468: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
jellywibble-lora-120k-pr-2827-v3-mkmlizer: warnings.warn(
jellywibble-lora-120k-pr-2827-v3-mkmlizer: Downloading shards: 0%| | 0/2 [00:00<?, ?it/s] Downloading shards: 50%|█████ | 1/2 [00:15<00:15, 15.28s/it] Downloading shards: 100%|██████████| 2/2 [00:25<00:00, 12.32s/it] Downloading shards: 100%|██████████| 2/2 [00:25<00:00, 12.77s/it]
jellywibble-lora-120k-pr-2827-v3-mkmlizer: Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s] Loading checkpoint shards: 50%|█████ | 1/2 [00:00<00:00, 2.04it/s] Loading checkpoint shards: 100%|██████████| 2/2 [00:00<00:00, 3.39it/s] Loading checkpoint shards: 100%|██████████| 2/2 [00:00<00:00, 3.09it/s]
jellywibble-lora-120k-pr-2827-v3-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
jellywibble-lora-120k-pr-2827-v3-mkmlizer: Saving duration: 1.669s
jellywibble-lora-120k-pr-2827-v3-mkmlizer: Processed model ChaiML/gpt2_xl_pairwise_89m_step_347634 in 29.209s
jellywibble-lora-120k-pr-2827-v3-mkmlizer: creating bucket guanaco-reward-models
jellywibble-lora-120k-pr-2827-v3-mkmlizer: Bucket 's3://guanaco-reward-models/' created
jellywibble-lora-120k-pr-2827-v3-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/jellywibble-lora-120k-pr-2827-v3_reward
jellywibble-lora-120k-pr-2827-v3-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/jellywibble-lora-120k-pr-2827-v3_reward/config.json
jellywibble-lora-120k-pr-2827-v3-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/jellywibble-lora-120k-pr-2827-v3_reward/vocab.json
jellywibble-lora-120k-pr-2827-v3-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/jellywibble-lora-120k-pr-2827-v3_reward/merges.txt
jellywibble-lora-120k-pr-2827-v3-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/jellywibble-lora-120k-pr-2827-v3_reward/tokenizer_config.json
jellywibble-lora-120k-pr-2827-v3-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/jellywibble-lora-120k-pr-2827-v3_reward/tokenizer.json
jellywibble-lora-120k-pr-2827-v3-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/jellywibble-lora-120k-pr-2827-v3_reward/special_tokens_map.json
jellywibble-lora-120k-pr-2827-v3-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/jellywibble-lora-120k-pr-2827-v3_reward/reward.tensors
Job jellywibble-lora-120k-pr-2827-v3-mkmlizer completed after 168.76s with status: succeeded
Stopping job with name jellywibble-lora-120k-pr-2827-v3-mkmlizer
Pipeline stage MKMLizer completed in 292.27s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.14s
Running pipeline stage ISVCDeployer
Creating inference service jellywibble-lora-120k-pr-2827-v3
Ignoring service jellywibble-lora-120k-pr-2827-v3 already deployed
Waiting for inference service jellywibble-lora-120k-pr-2827-v3 to be ready
Inference service jellywibble-lora-120k-pr-2827-v3 ready after 10.123117208480835s
Pipeline stage ISVCDeployer completed in 16.91s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.3114516735076904s
Received healthy response to inference request in 2.4655544757843018s
Received healthy response to inference request in 1.8291058540344238s
Received healthy response to inference request in 1.7360460758209229s
Received healthy response to inference request in 1.5872108936309814s
5 requests
0 failed requests
5th percentile: 1.6169779300689697
10th percentile: 1.646744966506958
20th percentile: 1.7062790393829346
30th percentile: 1.754658031463623
40th percentile: 1.7918819427490233
50th percentile: 1.8291058540344238
60th percentile: 2.0220441818237305
70th percentile: 2.214982509613037
80th percentile: 2.342272233963013
90th percentile: 2.4039133548736573
95th percentile: 2.4347339153289793
99th percentile: 2.4593903636932373
mean time: 1.9858737945556642
Pipeline stage StressChecker completed in 11.09s
jellywibble-lora-120k-pr_2827_v3 status is now deployed due to DeploymentManager action
jellywibble-lora-120k-pr_2827_v3 status is now inactive due to auto deactivation removed underperforming models
admin requested tearing down of jellywibble-lora-120k-pr_2827_v3
Running pipeline stage ISVCDeleter
Checking if service jellywibble-lora-120k-pr-2827-v3 is running
Skipping teardown as no inference service was found
Pipeline stage ISVCDeleter completed in 4.65s
Running pipeline stage MKMLModelDeleter
Cleaning model data from S3
Cleaning model data from model cache
Deleting key jellywibble-lora-120k-pr-2827-v3/config.json from bucket guanaco-mkml-models
Deleting key jellywibble-lora-120k-pr-2827-v3/flywheel_model.0.safetensors from bucket guanaco-mkml-models
Deleting key jellywibble-lora-120k-pr-2827-v3/special_tokens_map.json from bucket guanaco-mkml-models
Deleting key jellywibble-lora-120k-pr-2827-v3/tokenizer.json from bucket guanaco-mkml-models
Deleting key jellywibble-lora-120k-pr-2827-v3/tokenizer_config.json from bucket guanaco-mkml-models
Cleaning model data from model cache
Deleting key jellywibble-lora-120k-pr-2827-v3_reward/config.json from bucket guanaco-reward-models
Deleting key jellywibble-lora-120k-pr-2827-v3_reward/merges.txt from bucket guanaco-reward-models
Deleting key jellywibble-lora-120k-pr-2827-v3_reward/reward.tensors from bucket guanaco-reward-models
Deleting key jellywibble-lora-120k-pr-2827-v3_reward/special_tokens_map.json from bucket guanaco-reward-models
Deleting key jellywibble-lora-120k-pr-2827-v3_reward/tokenizer.json from bucket guanaco-reward-models
Deleting key jellywibble-lora-120k-pr-2827-v3_reward/tokenizer_config.json from bucket guanaco-reward-models
Deleting key jellywibble-lora-120k-pr-2827-v3_reward/vocab.json from bucket guanaco-reward-models
Pipeline stage MKMLModelDeleter completed in 5.88s
jellywibble-lora-120k-pr_2827_v3 status is now torndown due to DeploymentManager action