developer_uid: szzi-ye
submission_id: jellywibble-lora-120k-p_2801_v15
model_name: nitral-ai-hathor-l3-8b-v-01_v1
model_group: Jellywibble/lora_120k_pr
status: torndown
timestamp: 2024-07-14T19:27:41+00:00
num_battles: 64660
num_wins: 35185
celo_rating: 1230.5
family_friendly_score: 0.0
submission_type: basic
model_repo: Jellywibble/lora_120k_pref_data_ep3_stacked_elo_alignment
model_architecture: LlamaForCausalLM
reward_repo: ChaiML/gpt2_xl_pairwise_89m_step_347634
model_num_parameters: 8030261248.0
best_of: 4
max_input_tokens: 512
max_output_tokens: 64
display_name: nitral-ai-hathor-l3-8b-v-01_v1
is_internal_developer: False
language_model: Jellywibble/lora_120k_pref_data_ep3_stacked_elo_alignment
model_size: 8B
ranking_group: single
us_pacific_date: 2024-07-14
win_ratio: 0.544154036498608
generation_params: {'temperature': 0.95, 'top_p': 1.0, 'min_p': 0.08, 'top_k': 40, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n', '<|eot_id|>'], 'max_input_tokens': 512, 'best_of': 4, 'max_output_tokens': 64}
formatter: {'memory_template': "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{bot_name}'s Persona: {memory}\n\n", 'prompt_template': '{prompt}<|eot_id|>', 'bot_template': '<|start_header_id|>assistant<|end_header_id|>\n\n{bot_name}: {message}<|eot_id|>', 'user_template': '<|start_header_id|>user<|end_header_id|>\n\n{user_name}: {message}<|eot_id|>', 'response_template': '<|start_header_id|>assistant<|end_header_id|>\n\n{bot_name}:', 'truncate_by_message': False}
reward_formatter: {'bot_template': '{bot_name}: {message}\n', 'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'response_template': '{bot_name}:', 'truncate_by_message': False, 'user_template': '{user_name}: {message}\n'}
Resubmit model
Running pipeline stage MKMLizer
Starting job with name jellywibble-lora-120k-p-2801-v15-mkmlizer
Waiting for job on jellywibble-lora-120k-p-2801-v15-mkmlizer to finish
jellywibble-lora-120k-p-2801-v15-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
jellywibble-lora-120k-p-2801-v15-mkmlizer: ║ _____ __ __ ║
jellywibble-lora-120k-p-2801-v15-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
jellywibble-lora-120k-p-2801-v15-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
jellywibble-lora-120k-p-2801-v15-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
jellywibble-lora-120k-p-2801-v15-mkmlizer: ║ /___/ ║
jellywibble-lora-120k-p-2801-v15-mkmlizer: ║ ║
jellywibble-lora-120k-p-2801-v15-mkmlizer: ║ Version: 0.9.5.post2 ║
jellywibble-lora-120k-p-2801-v15-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
jellywibble-lora-120k-p-2801-v15-mkmlizer: ║ https://mk1.ai ║
jellywibble-lora-120k-p-2801-v15-mkmlizer: ║ ║
jellywibble-lora-120k-p-2801-v15-mkmlizer: ║ The license key for the current software has been verified as ║
jellywibble-lora-120k-p-2801-v15-mkmlizer: ║ belonging to: ║
jellywibble-lora-120k-p-2801-v15-mkmlizer: ║ ║
jellywibble-lora-120k-p-2801-v15-mkmlizer: ║ Chai Research Corp. ║
jellywibble-lora-120k-p-2801-v15-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
jellywibble-lora-120k-p-2801-v15-mkmlizer: ║ Expiration: 2024-10-15 23:59:59 ║
jellywibble-lora-120k-p-2801-v15-mkmlizer: ║ ║
jellywibble-lora-120k-p-2801-v15-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
Job jellywibble-lora-120k-p-2801-v15-mkmlizer completed after 92.95s with status: failed
Stopping job with name jellywibble-lora-120k-p-2801-v15-mkmlizer
%s, retrying in %s seconds...
Starting job with name jellywibble-lora-120k-p-2801-v15-mkmlizer
Waiting for job on jellywibble-lora-120k-p-2801-v15-mkmlizer to finish
Connection pool is full, discarding connection: %s. Connection pool size: %s
jellywibble-lora-120k-p-2801-v15-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
jellywibble-lora-120k-p-2801-v15-mkmlizer: ║ _____ __ __ ║
jellywibble-lora-120k-p-2801-v15-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
jellywibble-lora-120k-p-2801-v15-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
jellywibble-lora-120k-p-2801-v15-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
jellywibble-lora-120k-p-2801-v15-mkmlizer: ║ /___/ ║
jellywibble-lora-120k-p-2801-v15-mkmlizer: ║ ║
jellywibble-lora-120k-p-2801-v15-mkmlizer: ║ Version: 0.9.5.post2 ║
jellywibble-lora-120k-p-2801-v15-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
jellywibble-lora-120k-p-2801-v15-mkmlizer: ║ https://mk1.ai ║
jellywibble-lora-120k-p-2801-v15-mkmlizer: ║ ║
jellywibble-lora-120k-p-2801-v15-mkmlizer: ║ The license key for the current software has been verified as ║
jellywibble-lora-120k-p-2801-v15-mkmlizer: ║ belonging to: ║
jellywibble-lora-120k-p-2801-v15-mkmlizer: ║ ║
jellywibble-lora-120k-p-2801-v15-mkmlizer: ║ Chai Research Corp. ║
jellywibble-lora-120k-p-2801-v15-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
jellywibble-lora-120k-p-2801-v15-mkmlizer: ║ Expiration: 2024-10-15 23:59:59 ║
jellywibble-lora-120k-p-2801-v15-mkmlizer: ║ ║
jellywibble-lora-120k-p-2801-v15-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
jellywibble-lora-120k-p-2801-v15-mkmlizer: Downloaded to shared memory in 43.969s
jellywibble-lora-120k-p-2801-v15-mkmlizer: quantizing model to /dev/shm/model_cache
jellywibble-lora-120k-p-2801-v15-mkmlizer: Saving flywheel model at /dev/shm/model_cache
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.embed_tokens.weight torch.Size([139542528])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.0.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.0.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.0.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.0.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.0.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.0.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.1.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.1.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.1.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.1.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.1.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.1.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.2.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.2.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.2.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.2.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.2.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.2.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.3.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.3.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.3.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.3.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.3.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.3.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.4.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.4.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.4.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.4.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.4.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.4.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.5.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.5.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.5.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.5.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.5.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.5.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.6.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.6.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.6.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.6.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.6.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.6.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.7.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.7.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.7.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.7.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.7.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.7.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.8.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.8.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.8.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.10.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.10.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.10.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.10.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.10.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.10.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.11.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.11.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.11.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.11.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.11.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.11.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.12.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.12.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.12.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.12.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.12.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.12.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.13.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.23.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.23.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.24.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.24.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.24.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.24.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.24.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.24.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.25.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.25.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.25.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.25.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.25.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.25.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.26.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.26.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.26.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.26.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.26.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.26.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.27.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.27.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.27.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.27.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.27.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.27.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.28.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.28.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.28.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.28.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.28.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.28.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.29.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.29.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.29.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.29.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.29.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.29.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.30.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.30.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.30.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.30.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.30.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.30.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.31.self_attn.o_proj.weight torch.Size([3407872])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.31.self_attn.qkv_proj.weight torch.Size([5111808])
jellywibble-lora-120k-p-2801-v15-mkmlizer: lm_head.weight torch.Size([139542528])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.31.input_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.31.mlp.down_proj.weight torch.Size([11927552])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.31.mlp.up_gate_proj.weight torch.Size([23855104])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.layers.31.post_attention_layernorm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: model.norm.weight torch.Size([4096])
jellywibble-lora-120k-p-2801-v15-mkmlizer: Loading 0: 59%|█████▉ | 173/291 [00:03<00:02, 52.91it/s] Loading 0: 60%|█████▉ | 174/291 [00:03<00:02, 56.82it/s] Loading 0: 60%|██████ | 175/291 [00:03<00:02, 56.82it/s] Loading 0: 60%|██████ | 176/291 [00:03<00:02, 56.82it/s] Loading 0: 61%|██████ | 178/291 [00:03<00:01, 56.82it/s] Loading 0: 62%|██████▏ | 180/291 [00:03<00:01, 56.82it/s] Loading 0: 62%|██████▏ | 181/291 [00:03<00:01, 59.70it/s] Loading 0: 63%|██████▎ | 182/291 [00:03<00:01, 59.70it/s] Loading 0: 63%|██████▎ | 184/291 [00:03<00:01, 59.70it/s] Loading 0: 64%|██████▎ | 185/291 [00:04<00:01, 59.70it/s] Loading 0: 64%|██████▍ | 186/291 [00:04<00:01, 59.70it/s] Loading 0: 65%|██████▍ | 188/291 [00:04<00:03, 32.38it/s] Loading 0: 65%|██████▍ | 188/291 [00:04<00:03, 32.38it/s] Loading 0: 65%|██████▍ | 189/291 [00:04<00:03, 32.38it/s] Loading 0: 65%|██████▌ | 190/291 [00:04<00:03, 32.38it/s] Loading 0: 66%|██████▌ | 191/291 [00:04<00:03, 32.38it/s] Loading 0: 66%|██████▋ | 193/291 [00:04<00:03, 32.38it/s] Loading 0: 67%|██████▋ | 194/291 [00:04<00:02, 34.11it/s] Loading 0: 67%|██████▋ | 194/291 [00:04<00:02, 34.11it/s] Loading 0: 67%|██████▋ | 196/291 [00:04<00:02, 34.11it/s] Loading 0: 68%|██████▊ | 198/291 [00:04<00:02, 34.11it/s] Loading 0: 68%|██████▊ | 199/291 [00:04<00:02, 34.11it/s] Loading 0: 69%|██████▊ | 200/291 [00:04<00:02, 34.11it/s] Loading 0: 69%|██████▉ | 202/291 [00:04<00:02, 34.11it/s] Loading 0: 70%|██████▉ | 203/291 [00:04<00:02, 41.13it/s] Loading 0: 70%|██████▉ | 203/291 [00:04<00:02, 41.13it/s] Loading 0: 70%|███████ | 205/291 [00:04<00:02, 41.13it/s] Loading 0: 71%|███████ | 207/291 [00:04<00:02, 41.13it/s] Loading 0: 71%|███████▏ | 208/291 [00:04<00:02, 41.13it/s] Loading 0: 72%|███████▏ | 209/291 [00:04<00:01, 41.13it/s] Loading 0: 73%|███████▎ | 211/291 [00:04<00:01, 48.41it/s] Loading 0: 73%|███████▎ | 211/291 [00:04<00:01, 48.41it/s] Loading 0: 73%|███████▎ | 212/291 [00:04<00:01, 48.41it/s] Loading 0: 74%|███████▎ | 214/291 [00:04<00:01, 48.41it/s] Loading 0: 74%|███████▍ | 216/291 [00:04<00:01, 48.41it/s] Loading 0: 75%|███████▍ | 217/291 [00:04<00:01, 48.41it/s] Loading 0: 75%|███████▍ | 218/291 [00:04<00:01, 48.41it/s] Loading 0: 75%|███████▌ | 219/291 [00:04<00:01, 54.91it/s] Loading 0: 76%|███████▌ | 220/291 [00:04<00:01, 54.91it/s] Loading 0: 76%|███████▌ | 221/291 [00:04<00:01, 54.91it/s] Loading 0: 77%|███████▋ | 223/291 [00:05<00:01, 54.91it/s] Loading 0: 77%|███████▋ | 225/291 [00:05<00:01, 54.91it/s] Loading 0: 78%|███████▊ | 226/291 [00:05<00:01, 58.23it/s] Loading 0: 78%|███████▊ | 227/291 [00:05<00:01, 58.23it/s] Loading 0: 79%|███████▊ | 229/291 [00:05<00:01, 58.23it/s] Loading 0: 79%|███████▉ | 231/291 [00:05<00:01, 58.23it/s] Loading 0: 80%|███████▉ | 232/291 [00:05<00:01, 58.23it/s] Loading 0: 80%|████████ | 233/291 [00:05<00:01, 32.60it/s] Loading 0: 80%|████████ | 233/291 [00:05<00:01, 32.60it/s] Loading 0: 80%|████████ | 234/291 [00:05<00:01, 32.60it/s] Loading 0: 81%|████████ | 235/291 [00:05<00:01, 32.60it/s] Loading 0: 81%|████████ | 236/291 [00:05<00:01, 32.60it/s] Loading 0: 82%|████████▏ | 238/291 [00:05<00:01, 32.60it/s] Loading 0: 82%|████████▏ | 239/291 [00:05<00:01, 34.53it/s] Loading 0: 82%|████████▏ | 239/291 [00:05<00:01, 34.53it/s] Loading 0: 83%|████████▎ | 241/291 [00:05<00:01, 34.53it/s] Loading 0: 84%|████████▎ | 243/291 [00:05<00:01, 34.53it/s] Loading 0: 84%|████████▍ | 244/291 [00:05<00:01, 34.53it/s] Loading 0: 84%|████████▍ | 245/291 [00:05<00:01, 34.53it/s] Loading 0: 85%|████████▍ | 247/291 [00:05<00:01, 34.53it/s] Loading 0: 85%|████████▌ | 248/291 [00:05<00:01, 41.66it/s] Loading 0: 85%|████████▌ | 248/291 [00:05<00:01, 41.66it/s] Loading 0: 86%|████████▌ | 250/291 [00:05<00:00, 41.66it/s] Loading 0: 87%|████████▋ | 252/291 [00:05<00:00, 41.66it/s] Loading 0: 87%|████████▋ | 253/291 [00:05<00:00, 41.66it/s] Loading 0: 87%|████████▋ | 254/291 [00:05<00:00, 41.66it/s] Loading 0: 88%|████████▊ | 256/291 [00:05<00:00, 48.28it/s] Loading 0: 88%|████████▊ | 256/291 [00:05<00:00, 48.28it/s] Loading 0: 88%|████████▊ | 257/291 [00:05<00:00, 48.28it/s] Loading 0: 89%|████████▉ | 259/291 [00:05<00:00, 48.28it/s] Loading 0: 90%|████████▉ | 261/291 [00:05<00:00, 48.28it/s] Loading 0: 90%|█████████ | 262/291 [00:05<00:00, 48.28it/s] Loading 0: 90%|█████████ | 263/291 [00:05<00:00, 48.28it/s] Loading 0: 91%|█████████ | 264/291 [00:05<00:00, 51.87it/s] Loading 0: 91%|█████████ | 265/291 [00:06<00:00, 51.87it/s] Loading 0: 91%|█████████▏| 266/291 [00:06<00:00, 51.87it/s] Loading 0: 92%|█████████▏| 268/291 [00:06<00:00, 51.87it/s] Loading 0: 93%|█████████▎| 270/291 [00:06<00:00, 51.87it/s] Loading 0: 93%|█████████▎| 271/291 [00:06<00:00, 55.39it/s] Loading 0: 93%|█████████▎| 271/291 [00:06<00:00, 55.39it/s] Loading 0: 93%|█████████▎| 272/291 [00:06<00:00, 55.39it/s] Loading 0: 94%|█████████▍| 274/291 [00:06<00:00, 55.39it/s] Loading 0: 95%|█████████▍| 275/291 [00:06<00:00, 55.39it/s] Loading 0: 95%|█████████▌| 277/291 [00:06<00:00, 55.39it/s] Loading 0: 96%|█████████▌| 278/291 [00:06<00:00, 55.96it/s] Loading 0: 96%|█████████▌| 279/291 [00:06<00:00, 55.96it/s] Loading 0: 97%|█████████▋| 282/291 [00:06<00:00, 55.96it/s] Loading 0: 98%|█████████▊| 284/291 [00:06<00:00, 55.96it/s] Loading 0: 98%|█████████▊| 285/291 [00:13<00:00, 55.96it/s] Loading 0: 98%|█████████▊| 286/291 [00:13<00:01, 3.42it/s] Loading 0: 98%|█████████▊| 286/291 [00:13<00:01, 3.42it/s] Loading 0: 99%|█████████▊| 287/291 [00:13<00:01, 3.42it/s] Loading 0: 99%|█████████▉| 288/291 [00:13<00:00, 3.42it/s] Loading 0: 99%|█████████▉| 289/291 [00:13<00:00, 3.42it/s] Loading 0: 100%|█████████▉| 290/291 [00:13<00:00, 3.42it/s] Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
jellywibble-lora-120k-p-2801-v15-mkmlizer: quantized model in 32.025s
jellywibble-lora-120k-p-2801-v15-mkmlizer: Processed model Jellywibble/lora_120k_pref_data_ep3_stacked_elo_alignment in 75.995s
jellywibble-lora-120k-p-2801-v15-mkmlizer: creating bucket guanaco-mkml-models
jellywibble-lora-120k-p-2801-v15-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
jellywibble-lora-120k-p-2801-v15-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/jellywibble-lora-120k-p-2801-v15
jellywibble-lora-120k-p-2801-v15-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/jellywibble-lora-120k-p-2801-v15/config.json
jellywibble-lora-120k-p-2801-v15-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/jellywibble-lora-120k-p-2801-v15/tokenizer_config.json
jellywibble-lora-120k-p-2801-v15-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/jellywibble-lora-120k-p-2801-v15/special_tokens_map.json
jellywibble-lora-120k-p-2801-v15-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/jellywibble-lora-120k-p-2801-v15/tokenizer.json
jellywibble-lora-120k-p-2801-v15-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/jellywibble-lora-120k-p-2801-v15/flywheel_model.0.safetensors
jellywibble-lora-120k-p-2801-v15-mkmlizer: loading reward model from ChaiML/gpt2_xl_pairwise_89m_step_347634
jellywibble-lora-120k-p-2801-v15-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:950: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
jellywibble-lora-120k-p-2801-v15-mkmlizer: warnings.warn(
jellywibble-lora-120k-p-2801-v15-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:778: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
jellywibble-lora-120k-p-2801-v15-mkmlizer: warnings.warn(
jellywibble-lora-120k-p-2801-v15-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:469: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
jellywibble-lora-120k-p-2801-v15-mkmlizer: warnings.warn(
jellywibble-lora-120k-p-2801-v15-mkmlizer: Downloading shards: 0%| | 0/2 [00:00<?, ?it/s] Downloading shards: 50%|█████ | 1/2 [00:06<00:06, 6.60s/it] Downloading shards: 100%|██████████| 2/2 [00:11<00:00, 5.76s/it] Downloading shards: 100%|██████████| 2/2 [00:11<00:00, 5.89s/it]
jellywibble-lora-120k-p-2801-v15-mkmlizer: Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s] Loading checkpoint shards: 50%|█████ | 1/2 [00:00<00:00, 1.62it/s] Loading checkpoint shards: 100%|██████████| 2/2 [00:00<00:00, 2.60it/s] Loading checkpoint shards: 100%|██████████| 2/2 [00:00<00:00, 2.39it/s]
jellywibble-lora-120k-p-2801-v15-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
jellywibble-lora-120k-p-2801-v15-mkmlizer: Saving duration: 2.211s
jellywibble-lora-120k-p-2801-v15-mkmlizer: Processed model ChaiML/gpt2_xl_pairwise_89m_step_347634 in 16.258s
jellywibble-lora-120k-p-2801-v15-mkmlizer: creating bucket guanaco-reward-models
jellywibble-lora-120k-p-2801-v15-mkmlizer: Bucket 's3://guanaco-reward-models/' created
jellywibble-lora-120k-p-2801-v15-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/jellywibble-lora-120k-p-2801-v15_reward
jellywibble-lora-120k-p-2801-v15-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/jellywibble-lora-120k-p-2801-v15_reward/config.json
jellywibble-lora-120k-p-2801-v15-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/jellywibble-lora-120k-p-2801-v15_reward/special_tokens_map.json
jellywibble-lora-120k-p-2801-v15-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/jellywibble-lora-120k-p-2801-v15_reward/tokenizer_config.json
jellywibble-lora-120k-p-2801-v15-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/jellywibble-lora-120k-p-2801-v15_reward/merges.txt
jellywibble-lora-120k-p-2801-v15-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/jellywibble-lora-120k-p-2801-v15_reward/vocab.json
jellywibble-lora-120k-p-2801-v15-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/jellywibble-lora-120k-p-2801-v15_reward/tokenizer.json
jellywibble-lora-120k-p-2801-v15-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/jellywibble-lora-120k-p-2801-v15_reward/reward.tensors
Job jellywibble-lora-120k-p-2801-v15-mkmlizer completed after 130.27s with status: succeeded
Stopping job with name jellywibble-lora-120k-p-2801-v15-mkmlizer
Pipeline stage MKMLizer completed in 224.44s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.10s
Running pipeline stage ISVCDeployer
Creating inference service jellywibble-lora-120k-p-2801-v15
Waiting for inference service jellywibble-lora-120k-p-2801-v15 to be ready
Inference service jellywibble-lora-120k-p-2801-v15 ready after 311.4562430381775s
Pipeline stage ISVCDeployer completed in 318.21s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.1367368698120117s
Received healthy response to inference request in 1.683480978012085s
Received healthy response to inference request in 1.1547060012817383s
Received healthy response to inference request in 1.1532988548278809s
Received healthy response to inference request in 1.1510975360870361s
5 requests
0 failed requests
5th percentile: 1.151537799835205
10th percentile: 1.151978063583374
20th percentile: 1.152858591079712
30th percentile: 1.1535802841186524
40th percentile: 1.1541431427001954
50th percentile: 1.1547060012817383
60th percentile: 1.366215991973877
70th percentile: 1.5777259826660155
80th percentile: 1.7741321563720704
90th percentile: 1.955434513092041
95th percentile: 2.0460856914520265
99th percentile: 2.1186066341400145
mean time: 1.4558640480041505
Pipeline stage StressChecker completed in 8.34s
jellywibble-lora-120k-p_2801_v15 status is now deployed due to DeploymentManager action
jellywibble-lora-120k-p_2801_v15 status is now inactive due to auto deactivation removed underperforming models
jellywibble-lora-120k-p_2801_v15 status is now deployed due to admin request
jellywibble-lora-120k-p_2801_v15 status is now inactive due to auto deactivation removed underperforming models
admin requested tearing down of jellywibble-lora-120k-p_2801_v15
Running pipeline stage ISVCDeleter
Checking if service jellywibble-lora-120k-p-2801-v15 is running
Skipping teardown as no inference service was found
Pipeline stage ISVCDeleter completed in 4.15s
Running pipeline stage MKMLModelDeleter
Cleaning model data from S3
Cleaning model data from model cache
Deleting key jellywibble-lora-120k-p-2801-v15/config.json from bucket guanaco-mkml-models
Deleting key jellywibble-lora-120k-p-2801-v15/flywheel_model.0.safetensors from bucket guanaco-mkml-models
Deleting key jellywibble-lora-120k-p-2801-v15/special_tokens_map.json from bucket guanaco-mkml-models
Deleting key jellywibble-lora-120k-p-2801-v15/tokenizer.json from bucket guanaco-mkml-models
Deleting key jellywibble-lora-120k-p-2801-v15/tokenizer_config.json from bucket guanaco-mkml-models
Cleaning model data from model cache
Deleting key jellywibble-lora-120k-p-2801-v15_reward/config.json from bucket guanaco-reward-models
Deleting key jellywibble-lora-120k-p-2801-v15_reward/merges.txt from bucket guanaco-reward-models
Deleting key jellywibble-lora-120k-p-2801-v15_reward/reward.tensors from bucket guanaco-reward-models
Deleting key jellywibble-lora-120k-p-2801-v15_reward/special_tokens_map.json from bucket guanaco-reward-models
Deleting key jellywibble-lora-120k-p-2801-v15_reward/tokenizer.json from bucket guanaco-reward-models
Deleting key jellywibble-lora-120k-p-2801-v15_reward/tokenizer_config.json from bucket guanaco-reward-models
Deleting key jellywibble-lora-120k-p-2801-v15_reward/vocab.json from bucket guanaco-reward-models
Pipeline stage MKMLModelDeleter completed in 6.51s
jellywibble-lora-120k-p_2801_v15 status is now torndown due to DeploymentManager action