Running pipeline stage MKMLizer
Starting job with name chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer
Waiting for job on chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer to finish
Connection pool is full, discarding connection: %s
Connection pool is full, discarding connection: %s
Connection pool is full, discarding connection: %s
Connection pool is full, discarding connection: %s
Connection pool is full, discarding connection: %s
Connection pool is full, discarding connection: %s
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: ║ _____ __ __ ║
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: ║ /___/ ║
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: ║ ║
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: ║ Version: 0.8.14 ║
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: ║ https://mk1.ai ║
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: ║ ║
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: ║ The license key for the current software has been verified as ║
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: ║ belonging to: ║
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: ║ ║
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: ║ Chai Research Corp. ║
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: ║ Expiration: 2024-07-15 23:59:59 ║
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: ║ ║
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: Downloaded to shared memory in 31.271s
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: quantizing model to /dev/shm/model_cache
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: Saving flywheel model at /dev/shm/model_cache
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer:
Loading 0: 0%| | 0/291 [00:00<?, ?it/s]
Loading 0: 1%| | 2/291 [00:04<11:33, 2.40s/it]
Loading 0: 2%|▏ | 6/291 [00:04<03:04, 1.55it/s]
Loading 0: 5%|▍ | 14/291 [00:05<01:00, 4.61it/s]
Loading 0: 11%|█ | 31/291 [00:05<00:19, 13.26it/s]
Loading 0: 15%|█▍ | 43/291 [00:05<00:11, 20.69it/s]
Loading 0: 20%|██ | 59/291 [00:05<00:07, 32.92it/s]
Loading 0: 24%|██▍ | 71/291 [00:05<00:06, 33.61it/s]
Loading 0: 30%|██▉ | 86/291 [00:05<00:04, 46.05it/s]
Loading 0: 35%|███▌ | 103/291 [00:05<00:03, 61.76it/s]
Loading 0: 40%|███▉ | 115/291 [00:06<00:02, 70.86it/s]
Loading 0: 45%|████▌ | 131/291 [00:06<00:01, 85.02it/s]
Loading 0: 50%|█████ | 146/291 [00:06<00:01, 98.34it/s]
Loading 0: 55%|█████▍ | 160/291 [00:06<00:01, 101.70it/s]
Loading 0: 59%|█████▉ | 173/291 [00:06<00:01, 67.33it/s]
Loading 0: 64%|██████▎ | 185/291 [00:06<00:01, 75.63it/s]
Loading 0: 68%|██████▊ | 199/291 [00:06<00:01, 88.16it/s]
Loading 0: 73%|███████▎ | 212/291 [00:07<00:00, 96.09it/s]
Loading 0: 78%|███████▊ | 226/291 [00:07<00:00, 106.29it/s]
Loading 0: 82%|████████▏ | 239/291 [00:07<00:00, 110.07it/s]
Loading 0: 87%|████████▋ | 253/291 [00:07<00:00, 117.31it/s]
Loading 0: 91%|█████████▏| 266/291 [00:07<00:00, 68.40it/s]
Loading 0: 96%|█████████▌| 279/291 [00:07<00:00, 79.14it/s]
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: quantized model in 25.097s
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: Processed model ChaiML/sao10k-l3-rp-v3-3 in 56.368s
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/chaiml-sao10k-l3-rp-v3-3-v3
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/chaiml-sao10k-l3-rp-v3-3-v3/config.json
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/chaiml-sao10k-l3-rp-v3-3-v3/special_tokens_map.json
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/chaiml-sao10k-l3-rp-v3-3-v3/tokenizer_config.json
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/chaiml-sao10k-l3-rp-v3-3-v3/tokenizer.json
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/chaiml-sao10k-l3-rp-v3-3-v3/flywheel_model.0.safetensors
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: loading reward model from ChaiML/reward_gpt2_medium_preference_24m_e2
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:919: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: warnings.warn(
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: /opt/conda/lib/python3.10/site-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: warnings.warn(
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:769: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: warnings.warn(
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:468: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: warnings.warn(
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: /opt/conda/lib/python3.10/site-packages/torch/_utils.py:831: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: return self.fget.__get__(instance, owner)()
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: Saving duration: 0.448s
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: Processed model ChaiML/reward_gpt2_medium_preference_24m_e2 in 7.347s
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: creating bucket guanaco-reward-models
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: Bucket 's3://guanaco-reward-models/' created
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/chaiml-sao10k-l3-rp-v3-3-v3_reward
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/chaiml-sao10k-l3-rp-v3-3-v3_reward/special_tokens_map.json
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/chaiml-sao10k-l3-rp-v3-3-v3_reward/config.json
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/chaiml-sao10k-l3-rp-v3-3-v3_reward/tokenizer_config.json
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/chaiml-sao10k-l3-rp-v3-3-v3_reward/merges.txt
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/chaiml-sao10k-l3-rp-v3-3-v3_reward/vocab.json
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/chaiml-sao10k-l3-rp-v3-3-v3_reward/tokenizer.json
chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/chaiml-sao10k-l3-rp-v3-3-v3_reward/reward.tensors
Job chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer completed after 96.38s with status: succeeded
Stopping job with name chaiml-sao10k-l3-rp-v3-3-v3-mkmlizer
Pipeline stage MKMLizer completed in 97.31s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.12s
Running pipeline stage ISVCDeployer
Creating inference service chaiml-sao10k-l3-rp-v3-3-v3
Waiting for inference service chaiml-sao10k-l3-rp-v3-3-v3 to be ready
Inference service chaiml-sao10k-l3-rp-v3-3-v3 ready after 50.378910303115845s
Pipeline stage ISVCDeployer completed in 57.35s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.009477138519287s
Received healthy response to inference request in 1.2191729545593262s
Received healthy response to inference request in 1.2620298862457275s
Received healthy response to inference request in 1.2311663627624512s
Received healthy response to inference request in 1.2215960025787354s
5 requests
0 failed requests
5th percentile: 1.219657564163208
10th percentile: 1.2201421737670899
20th percentile: 1.2211113929748536
30th percentile: 1.2235100746154786
40th percentile: 1.2273382186889648
50th percentile: 1.2311663627624512
60th percentile: 1.2435117721557618
70th percentile: 1.2558571815490722
80th percentile: 1.4115193367004395
90th percentile: 1.7104982376098634
95th percentile: 1.8599876880645752
99th percentile: 1.9795792484283448
mean time: 1.3886884689331054
Pipeline stage StressChecker completed in 7.67s
chaiml-sao10k-l3-rp-v3-3_v3 status is now deployed due to DeploymentManager action
chaiml-sao10k-l3-rp-v3-3_v3 status is now inactive due to auto deactivation removed underperforming models
chaiml-sao10k-l3-rp-v3-3_v3 status is now torndown due to DeploymentManager action