developer_uid: kaltcit
submission_id: turboderp-cat-llama-3-7_8684_v16
model_name: turboderp-cat-llama-3-70
model_group: turboderp/Cat-Llama-3-70
status: torndown
timestamp: 2024-06-28T20:44:34+00:00
num_battles: 19357
num_wins: 9756
celo_rating: 1185.66
family_friendly_score: 0.0
submission_type: basic
model_repo: turboderp/Cat-Llama-3-70B-instruct
model_architecture: LlamaForCausalLM
reward_repo: ChaiML/reward_gpt2_medium_preference_24m_e2
model_num_parameters: 70553739264.0
best_of: 4
max_input_tokens: 512
max_output_tokens: 64
display_name: turboderp-cat-llama-3-70
is_internal_developer: False
language_model: turboderp/Cat-Llama-3-70B-instruct
model_size: 71B
ranking_group: single
us_pacific_date: 2024-06-28
win_ratio: 0.5040037195846464
generation_params: {'temperature': 0.9, 'top_p': 0.8, 'min_p': 0.0, 'top_k': 40, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n'], 'max_input_tokens': 512, 'best_of': 4, 'max_output_tokens': 64}
formatter: {'memory_template': '<|begin_of_text|><|im_start|>system\n{memory}<|im_end|>\n', 'prompt_template': '<|im_start|>system\nThe following message provides the necessary information about the following conversation and the characters in the conversation.\n{prompt}<|im_end|>\n', 'bot_template': '<|im_start|>assistant\n{bot_name}: {message}<|im_end|>\n', 'user_template': '<|im_start|>user\n{user_name}: {message}<|im_end|>\n', 'response_template': '<|im_start|>assistant\n{bot_name}:', 'truncate_by_message': False}
reward_formatter: {'bot_template': '{bot_name}: {message}\n', 'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'response_template': '{bot_name}:', 'truncate_by_message': False, 'user_template': '{user_name}: {message}\n'}
Resubmit model
Running pipeline stage MKMLizer
Starting job with name turboderp-cat-llama-3-7-8684-v16-mkmlizer
Waiting for job on turboderp-cat-llama-3-7-8684-v16-mkmlizer to finish
turboderp-cat-llama-3-7-8684-v16-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
turboderp-cat-llama-3-7-8684-v16-mkmlizer: ║ _____ __ __ ║
turboderp-cat-llama-3-7-8684-v16-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
turboderp-cat-llama-3-7-8684-v16-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
turboderp-cat-llama-3-7-8684-v16-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
turboderp-cat-llama-3-7-8684-v16-mkmlizer: ║ /___/ ║
turboderp-cat-llama-3-7-8684-v16-mkmlizer: ║ ║
turboderp-cat-llama-3-7-8684-v16-mkmlizer: ║ Version: 0.8.14 ║
turboderp-cat-llama-3-7-8684-v16-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
turboderp-cat-llama-3-7-8684-v16-mkmlizer: ║ https://mk1.ai ║
turboderp-cat-llama-3-7-8684-v16-mkmlizer: ║ ║
turboderp-cat-llama-3-7-8684-v16-mkmlizer: ║ The license key for the current software has been verified as ║
turboderp-cat-llama-3-7-8684-v16-mkmlizer: ║ belonging to: ║
turboderp-cat-llama-3-7-8684-v16-mkmlizer: ║ ║
turboderp-cat-llama-3-7-8684-v16-mkmlizer: ║ Chai Research Corp. ║
turboderp-cat-llama-3-7-8684-v16-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
turboderp-cat-llama-3-7-8684-v16-mkmlizer: ║ Expiration: 2024-07-15 23:59:59 ║
turboderp-cat-llama-3-7-8684-v16-mkmlizer: ║ ║
turboderp-cat-llama-3-7-8684-v16-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
turboderp-cat-llama-3-7-8684-v16-mkmlizer: /opt/conda/lib/python3.10/site-packages/huggingface_hub/utils/_deprecation.py:131: FutureWarning: 'list_files_info' (from 'huggingface_hub.hf_api') is deprecated and will be removed from version '0.23'. Use `list_repo_tree` and `get_paths_info` instead.
turboderp-cat-llama-3-7-8684-v16-mkmlizer: warnings.warn(warning_message, FutureWarning)
turboderp-cat-llama-3-7-8684-v16-mkmlizer: Downloaded to shared memory in 108.948s
turboderp-cat-llama-3-7-8684-v16-mkmlizer: quantizing model to /dev/shm/model_cache
turboderp-cat-llama-3-7-8684-v16-mkmlizer: Saving flywheel model at /dev/shm/model_cache
turboderp-cat-llama-3-7-8684-v16-mkmlizer: Loading 0: 0%| | 0/723 [00:00<?, ?it/s] Loading 0: 1%| | 5/723 [00:00<00:20, 34.75it/s] Loading 0: 2%|▏ | 14/723 [00:00<00:11, 60.24it/s] Loading 0: 3%|▎ | 21/723 [00:00<00:25, 27.29it/s] Loading 0: 4%|▎ | 26/723 [00:00<00:22, 31.32it/s] Loading 0: 4%|▍ | 31/723 [00:00<00:19, 35.35it/s] Loading 0: 6%|▌ | 40/723 [00:00<00:14, 47.95it/s] Loading 0: 6%|▋ | 46/723 [00:01<00:23, 29.01it/s] Loading 0: 7%|▋ | 51/723 [00:01<00:21, 30.64it/s] Loading 0: 8%|▊ | 58/723 [00:01<00:17, 37.10it/s] Loading 0: 9%|▉ | 68/723 [00:01<00:19, 32.85it/s] Loading 0: 10%|█ | 73/723 [00:02<00:19, 33.01it/s] Loading 0: 11%|█ | 77/723 [00:02<00:19, 32.43it/s] Loading 0: 12%|█▏ | 85/723 [00:02<00:15, 40.22it/s] Loading 0: 13%|█▎ | 92/723 [00:02<00:20, 30.87it/s] Loading 0: 13%|█▎ | 96/723 [00:02<00:20, 30.68it/s] Loading 0: 14%|█▍ | 103/723 [00:02<00:16, 36.92it/s] Loading 0: 15%|█▌ | 110/723 [00:03<00:14, 42.44it/s] Loading 0: 16%|█▌ | 116/723 [00:03<00:19, 31.45it/s] Loading 0: 17%|█▋ | 121/723 [00:03<00:18, 32.69it/s] Loading 0: 17%|█▋ | 125/723 [00:12<05:20, 1.87it/s] Loading 0: 18%|█▊ | 130/723 [00:12<03:50, 2.58it/s] Loading 0: 19%|█▉ | 137/723 [00:12<02:28, 3.96it/s] Loading 0: 20%|█▉ | 142/723 [00:13<01:56, 4.97it/s] Loading 0: 20%|██ | 146/723 [00:13<01:33, 6.20it/s] Loading 0: 21%|██ | 150/723 [00:13<01:13, 7.75it/s] Loading 0: 22%|██▏ | 157/723 [00:13<00:48, 11.70it/s] Loading 0: 23%|██▎ | 166/723 [00:13<00:30, 18.30it/s] Loading 0: 24%|██▍ | 172/723 [00:14<00:31, 17.51it/s] Loading 0: 24%|██▍ | 177/723 [00:14<00:26, 20.23it/s] Loading 0: 25%|██▌ | 184/723 [00:14<00:20, 26.12it/s] Loading 0: 27%|██▋ | 194/723 [00:14<00:19, 27.02it/s] Loading 0: 28%|██▊ | 199/723 [00:14<00:18, 28.17it/s] Loading 0: 28%|██▊ | 203/723 [00:14<00:18, 28.64it/s] Loading 0: 29%|██▉ | 211/723 [00:15<00:14, 36.46it/s] Loading 0: 30%|███ | 218/723 [00:15<00:17, 29.51it/s] Loading 0: 31%|███ | 222/723 [00:15<00:16, 29.57it/s] Loading 0: 32%|███▏ | 229/723 [00:15<00:13, 35.97it/s] Loading 0: 33%|███▎ | 236/723 [00:15<00:11, 41.43it/s] Loading 0: 33%|███▎ | 242/723 [00:16<00:15, 30.40it/s] Loading 0: 34%|███▍ | 247/723 [00:16<00:14, 31.94it/s] Loading 0: 35%|███▌ | 255/723 [00:16<00:11, 39.67it/s] Loading 0: 36%|███▌ | 260/723 [00:16<00:11, 41.11it/s] Loading 0: 37%|███▋ | 265/723 [00:25<03:54, 1.96it/s] Loading 0: 37%|███▋ | 269/723 [00:26<03:08, 2.40it/s] Loading 0: 38%|███▊ | 274/723 [00:26<02:16, 3.30it/s] Loading 0: 39%|███▉ | 282/723 [00:26<01:22, 5.32it/s] Loading 0: 40%|███▉ | 287/723 [00:26<01:02, 6.94it/s] Loading 0: 41%|████ | 294/723 [00:26<00:46, 9.25it/s] Loading 0: 41%|████ | 298/723 [00:27<00:39, 10.89it/s] Loading 0: 42%|████▏ | 302/723 [00:27<00:32, 12.89it/s] Loading 0: 43%|████▎ | 310/723 [00:27<00:21, 19.22it/s] Loading 0: 44%|████▍ | 320/723 [00:27<00:17, 22.47it/s] Loading 0: 45%|████▍ | 324/723 [00:27<00:16, 23.61it/s] Loading 0: 46%|████▌ | 329/723 [00:27<00:15, 25.83it/s] Loading 0: 47%|████▋ | 337/723 [00:28<00:11, 33.56it/s] Loading 0: 48%|████▊ | 344/723 [00:28<00:13, 28.06it/s] Loading 0: 48%|████▊ | 348/723 [00:28<00:13, 28.49it/s] Loading 0: 49%|████▉ | 355/723 [00:28<00:10, 34.78it/s] Loading 0: 50%|█████ | 362/723 [00:28<00:08, 40.28it/s] Loading 0: 51%|█████ | 368/723 [00:29<00:11, 30.26it/s] Loading 0: 52%|█████▏ | 373/723 [00:29<00:10, 31.94it/s] Loading 0: 53%|█████▎ | 381/723 [00:29<00:08, 39.80it/s] Loading 0: 53%|█████▎ | 386/723 [00:29<00:08, 41.56it/s] Loading 0: 54%|█████▍ | 394/723 [00:29<00:10, 32.74it/s] Loading 0: 55%|█████▌ | 399/723 [00:29<00:09, 33.91it/s] Loading 0: 56%|█████▌ | 404/723 [00:39<02:41, 1.97it/s] Loading 0: 57%|█████▋ | 410/723 [00:39<01:52, 2.78it/s] Loading 0: 58%|█████▊ | 420/723 [00:39<01:07, 4.50it/s] Loading 0: 59%|█████▊ | 424/723 [00:39<00:56, 5.33it/s] Loading 0: 59%|█████▉ | 428/723 [00:40<00:45, 6.50it/s] Loading 0: 60%|██████ | 436/723 [00:40<00:28, 9.95it/s] Loading 0: 62%|██████▏ | 446/723 [00:40<00:20, 13.49it/s] Loading 0: 62%|██████▏ | 450/723 [00:40<00:18, 15.05it/s] Loading 0: 63%|██████▎ | 455/723 [00:40<00:15, 17.62it/s] Loading 0: 64%|██████▍ | 463/723 [00:40<00:10, 24.22it/s] Loading 0: 65%|██████▌ | 470/723 [00:41<00:11, 22.38it/s] Loading 0: 66%|██████▌ | 474/723 [00:41<00:10, 23.57it/s] Loading 0: 67%|██████▋ | 481/723 [00:41<00:08, 29.86it/s] Loading 0: 67%|██████▋ | 488/723 [00:41<00:06, 35.84it/s] Loading 0: 68%|██████▊ | 494/723 [00:41<00:08, 28.61it/s] Loading 0: 69%|██████▉ | 499/723 [00:42<00:07, 30.54it/s] Loading 0: 70%|███████ | 507/723 [00:42<00:05, 38.43it/s] Loading 0: 71%|███████ | 512/723 [00:42<00:05, 40.43it/s] Loading 0: 72%|███████▏ | 520/723 [00:42<00:06, 33.02it/s] Loading 0: 73%|███████▎ | 525/723 [00:42<00:05, 34.23it/s] Loading 0: 73%|███████▎ | 530/723 [00:42<00:05, 36.95it/s] Loading 0: 74%|███████▍ | 536/723 [00:43<00:04, 38.48it/s] Loading 0: 75%|███████▍ | 541/723 [00:52<01:35, 1.92it/s] Loading 0: 76%|███████▌ | 546/723 [00:52<01:09, 2.53it/s] Loading 0: 76%|███████▌ | 549/723 [00:52<00:57, 3.02it/s] Loading 0: 77%|███████▋ | 554/723 [00:53<00:39, 4.25it/s] Loading 0: 78%|███████▊ | 562/723 [00:53<00:23, 6.97it/s] Loading 0: 79%|███████▉ | 572/723 [00:53<00:14, 10.34it/s] Loading 0: 80%|███████▉ | 576/723 [00:53<00:12, 11.87it/s] Loading 0: 80%|████████ | 581/723 [00:53<00:09, 14.34it/s] Loading 0: 81%|████████▏ | 589/723 [00:53<00:06, 20.31it/s] Loading 0: 82%|████████▏ | 596/723 [00:54<00:06, 20.51it/s] Loading 0: 83%|████████▎ | 600/723 [00:54<00:05, 21.98it/s] Loading 0: 84%|████████▍ | 607/723 [00:54<00:04, 28.24it/s] Loading 0: 85%|████████▍ | 614/723 [00:54<00:03, 34.22it/s] Loading 0: 86%|████████▌ | 620/723 [00:54<00:03, 27.94it/s] Loading 0: 86%|████████▋ | 625/723 [00:55<00:03, 30.12it/s] Loading 0: 88%|████████▊ | 633/723 [00:55<00:02, 38.05it/s] Loading 0: 88%|████████▊ | 638/723 [00:55<00:02, 40.24it/s] Loading 0: 89%|████████▉ | 646/723 [00:55<00:02, 33.01it/s] Loading 0: 90%|█████████ | 651/723 [00:55<00:02, 34.27it/s] Loading 0: 91%|█████████ | 656/723 [00:55<00:01, 36.87it/s] Loading 0: 91%|█████████▏| 661/723 [00:55<00:01, 39.47it/s] Loading 0: 93%|█████████▎| 670/723 [00:56<00:01, 50.87it/s] Loading 0: 93%|█████████▎| 676/723 [00:56<00:01, 31.83it/s] Loading 0: 94%|█████████▍| 681/723 [01:05<00:20, 2.06it/s] Loading 0: 95%|█████████▌| 688/723 [01:05<00:11, 3.04it/s] Loading 0: 97%|█████████▋| 698/723 [01:06<00:05, 4.74it/s] Loading 0: 97%|█████████▋| 702/723 [01:06<00:03, 5.58it/s] Loading 0: 98%|█████████▊| 707/723 [01:06<00:02, 7.07it/s] Loading 0: 99%|█████████▉| 715/723 [01:06<00:00, 10.53it/s] Loading 0: 100%|██████████| 723/723 [01:15<00:00, 2.17it/s] Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
turboderp-cat-llama-3-7-8684-v16-mkmlizer: quantized model in 88.014s
turboderp-cat-llama-3-7-8684-v16-mkmlizer: Processed model turboderp/Cat-Llama-3-70B-instruct in 205.121s
turboderp-cat-llama-3-7-8684-v16-mkmlizer: creating bucket guanaco-mkml-models
turboderp-cat-llama-3-7-8684-v16-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
turboderp-cat-llama-3-7-8684-v16-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/turboderp-cat-llama-3-7-8684-v16
turboderp-cat-llama-3-7-8684-v16-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/turboderp-cat-llama-3-7-8684-v16/config.json
turboderp-cat-llama-3-7-8684-v16-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/turboderp-cat-llama-3-7-8684-v16/special_tokens_map.json
turboderp-cat-llama-3-7-8684-v16-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/turboderp-cat-llama-3-7-8684-v16/tokenizer_config.json
turboderp-cat-llama-3-7-8684-v16-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/turboderp-cat-llama-3-7-8684-v16/tokenizer.json
turboderp-cat-llama-3-7-8684-v16-mkmlizer: cp /dev/shm/model_cache/flywheel_model.5.safetensors s3://guanaco-mkml-models/turboderp-cat-llama-3-7-8684-v16/flywheel_model.5.safetensors
turboderp-cat-llama-3-7-8684-v16-mkmlizer: cp /dev/shm/model_cache/flywheel_model.2.safetensors s3://guanaco-mkml-models/turboderp-cat-llama-3-7-8684-v16/flywheel_model.2.safetensors
turboderp-cat-llama-3-7-8684-v16-mkmlizer: cp /dev/shm/model_cache/flywheel_model.3.safetensors s3://guanaco-mkml-models/turboderp-cat-llama-3-7-8684-v16/flywheel_model.3.safetensors
turboderp-cat-llama-3-7-8684-v16-mkmlizer: cp /dev/shm/model_cache/flywheel_model.1.safetensors s3://guanaco-mkml-models/turboderp-cat-llama-3-7-8684-v16/flywheel_model.1.safetensors
turboderp-cat-llama-3-7-8684-v16-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/turboderp-cat-llama-3-7-8684-v16/flywheel_model.0.safetensors
turboderp-cat-llama-3-7-8684-v16-mkmlizer: cp /dev/shm/model_cache/flywheel_model.4.safetensors s3://guanaco-mkml-models/turboderp-cat-llama-3-7-8684-v16/flywheel_model.4.safetensors
turboderp-cat-llama-3-7-8684-v16-mkmlizer: loading reward model from ChaiML/reward_gpt2_medium_preference_24m_e2
turboderp-cat-llama-3-7-8684-v16-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:913: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
turboderp-cat-llama-3-7-8684-v16-mkmlizer: warnings.warn(
turboderp-cat-llama-3-7-8684-v16-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:757: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
turboderp-cat-llama-3-7-8684-v16-mkmlizer: warnings.warn(
turboderp-cat-llama-3-7-8684-v16-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:468: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
turboderp-cat-llama-3-7-8684-v16-mkmlizer: warnings.warn(
turboderp-cat-llama-3-7-8684-v16-mkmlizer: /opt/conda/lib/python3.10/site-packages/torch/_utils.py:831: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
turboderp-cat-llama-3-7-8684-v16-mkmlizer: return self.fget.__get__(instance, owner)()
turboderp-cat-llama-3-7-8684-v16-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
turboderp-cat-llama-3-7-8684-v16-mkmlizer: Saving duration: 0.238s
turboderp-cat-llama-3-7-8684-v16-mkmlizer: Processed model ChaiML/reward_gpt2_medium_preference_24m_e2 in 4.229s
turboderp-cat-llama-3-7-8684-v16-mkmlizer: creating bucket guanaco-reward-models
turboderp-cat-llama-3-7-8684-v16-mkmlizer: Bucket 's3://guanaco-reward-models/' created
turboderp-cat-llama-3-7-8684-v16-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/turboderp-cat-llama-3-7-8684-v16_reward
turboderp-cat-llama-3-7-8684-v16-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/turboderp-cat-llama-3-7-8684-v16_reward/config.json
turboderp-cat-llama-3-7-8684-v16-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/turboderp-cat-llama-3-7-8684-v16_reward/special_tokens_map.json
turboderp-cat-llama-3-7-8684-v16-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/turboderp-cat-llama-3-7-8684-v16_reward/tokenizer_config.json
turboderp-cat-llama-3-7-8684-v16-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/turboderp-cat-llama-3-7-8684-v16_reward/merges.txt
turboderp-cat-llama-3-7-8684-v16-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/turboderp-cat-llama-3-7-8684-v16_reward/vocab.json
turboderp-cat-llama-3-7-8684-v16-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/turboderp-cat-llama-3-7-8684-v16_reward/tokenizer.json
turboderp-cat-llama-3-7-8684-v16-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/turboderp-cat-llama-3-7-8684-v16_reward/reward.tensors
Job turboderp-cat-llama-3-7-8684-v16-mkmlizer completed after 249.64s with status: succeeded
Stopping job with name turboderp-cat-llama-3-7-8684-v16-mkmlizer
Pipeline stage MKMLizer completed in 250.58s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.18s
Running pipeline stage ISVCDeployer
Creating inference service turboderp-cat-llama-3-7-8684-v16
Waiting for inference service turboderp-cat-llama-3-7-8684-v16 to be ready
Inference service turboderp-cat-llama-3-7-8684-v16 ready after 90.52146482467651s
Pipeline stage ISVCDeployer completed in 97.57s
Running pipeline stage StressChecker
Received healthy response to inference request in 5.162578105926514s
Connection pool is full, discarding connection: %s
Received healthy response to inference request in 3.8175981044769287s
Received healthy response to inference request in 3.429797887802124s
Received healthy response to inference request in 4.19620680809021s
Received healthy response to inference request in 4.202770471572876s
5 requests
0 failed requests
5th percentile: 3.507357931137085
10th percentile: 3.584917974472046
20th percentile: 3.7400380611419677
30th percentile: 3.893319845199585
40th percentile: 4.0447633266448975
50th percentile: 4.19620680809021
60th percentile: 4.198832273483276
70th percentile: 4.201457738876343
80th percentile: 4.3947319984436035
90th percentile: 4.778655052185059
95th percentile: 4.970616579055786
99th percentile: 5.124185800552368
mean time: 4.161790275573731
Pipeline stage StressChecker completed in 21.84s
turboderp-cat-llama-3-7_8684_v16 status is now deployed due to DeploymentManager action
turboderp-cat-llama-3-7_8684_v16 status is now inactive due to auto deactivation removed underperforming models
admin requested tearing down of turboderp-cat-llama-3-7_8684_v16
Running pipeline stage ISVCDeleter
Checking if service turboderp-cat-llama-3-7-8684-v16 is running
Skipping teardown as no inference service was found
Pipeline stage ISVCDeleter completed in 4.42s
Running pipeline stage MKMLModelDeleter
Cleaning model data from S3
Cleaning model data from model cache
Deleting key turboderp-cat-llama-3-7-8684-v16/config.json from bucket guanaco-mkml-models
Deleting key turboderp-cat-llama-3-7-8684-v16/flywheel_model.0.safetensors from bucket guanaco-mkml-models
Deleting key turboderp-cat-llama-3-7-8684-v16/flywheel_model.1.safetensors from bucket guanaco-mkml-models
Deleting key turboderp-cat-llama-3-7-8684-v16/flywheel_model.2.safetensors from bucket guanaco-mkml-models
Deleting key turboderp-cat-llama-3-7-8684-v16/flywheel_model.3.safetensors from bucket guanaco-mkml-models
Deleting key turboderp-cat-llama-3-7-8684-v16/flywheel_model.4.safetensors from bucket guanaco-mkml-models
Deleting key turboderp-cat-llama-3-7-8684-v16/flywheel_model.5.safetensors from bucket guanaco-mkml-models
Deleting key turboderp-cat-llama-3-7-8684-v16/special_tokens_map.json from bucket guanaco-mkml-models
Deleting key turboderp-cat-llama-3-7-8684-v16/tokenizer.json from bucket guanaco-mkml-models
Deleting key turboderp-cat-llama-3-7-8684-v16/tokenizer_config.json from bucket guanaco-mkml-models
Cleaning model data from model cache
Deleting key turboderp-cat-llama-3-7-8684-v16_reward/config.json from bucket guanaco-reward-models
Deleting key turboderp-cat-llama-3-7-8684-v16_reward/merges.txt from bucket guanaco-reward-models
Deleting key turboderp-cat-llama-3-7-8684-v16_reward/reward.tensors from bucket guanaco-reward-models
Deleting key turboderp-cat-llama-3-7-8684-v16_reward/special_tokens_map.json from bucket guanaco-reward-models
Deleting key turboderp-cat-llama-3-7-8684-v16_reward/tokenizer.json from bucket guanaco-reward-models
Deleting key turboderp-cat-llama-3-7-8684-v16_reward/tokenizer_config.json from bucket guanaco-reward-models
Deleting key turboderp-cat-llama-3-7-8684-v16_reward/vocab.json from bucket guanaco-reward-models
Pipeline stage MKMLModelDeleter completed in 12.11s
turboderp-cat-llama-3-7_8684_v16 status is now torndown due to DeploymentManager action