Running pipeline stage MKMLizer
Starting job with name jellywibble-hathor-stabl-8901-v1-mkmlizer
Waiting for job on jellywibble-hathor-stabl-8901-v1-mkmlizer to finish
jellywibble-hathor-stabl-8901-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
jellywibble-hathor-stabl-8901-v1-mkmlizer: ║ _____ __ __ ║
jellywibble-hathor-stabl-8901-v1-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
jellywibble-hathor-stabl-8901-v1-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
jellywibble-hathor-stabl-8901-v1-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
jellywibble-hathor-stabl-8901-v1-mkmlizer: ║ /___/ ║
jellywibble-hathor-stabl-8901-v1-mkmlizer: ║ ║
jellywibble-hathor-stabl-8901-v1-mkmlizer: ║ Version: 0.8.14 ║
jellywibble-hathor-stabl-8901-v1-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
jellywibble-hathor-stabl-8901-v1-mkmlizer: ║ https://mk1.ai ║
jellywibble-hathor-stabl-8901-v1-mkmlizer: ║ ║
jellywibble-hathor-stabl-8901-v1-mkmlizer: ║ The license key for the current software has been verified as ║
jellywibble-hathor-stabl-8901-v1-mkmlizer: ║ belonging to: ║
jellywibble-hathor-stabl-8901-v1-mkmlizer: ║ ║
jellywibble-hathor-stabl-8901-v1-mkmlizer: ║ Chai Research Corp. ║
jellywibble-hathor-stabl-8901-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
jellywibble-hathor-stabl-8901-v1-mkmlizer: ║ Expiration: 2024-07-15 23:59:59 ║
jellywibble-hathor-stabl-8901-v1-mkmlizer: ║ ║
jellywibble-hathor-stabl-8901-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
jellywibble-hathor-stabl-8901-v1-mkmlizer: Downloaded to shared memory in 71.827s
jellywibble-hathor-stabl-8901-v1-mkmlizer: quantizing model to /dev/shm/model_cache
jellywibble-hathor-stabl-8901-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
jellywibble-hathor-stabl-8901-v1-mkmlizer:
Loading 0: 0%| | 0/291 [00:00<?, ?it/s]
Loading 0: 1%| | 3/291 [00:03<05:38, 1.17s/it]
Loading 0: 1%|▏ | 4/291 [00:03<04:15, 1.12it/s]
Loading 0: 3%|▎ | 9/291 [00:03<01:20, 3.52it/s]
Loading 0: 4%|▍ | 13/291 [00:04<00:47, 5.90it/s]
Loading 0: 7%|▋ | 21/291 [00:04<00:22, 11.89it/s]
Loading 0: 9%|▉ | 26/291 [00:04<00:17, 15.34it/s]
Loading 0: 11%|█▏ | 33/291 [00:04<00:15, 16.53it/s]
Loading 0: 13%|█▎ | 37/291 [00:04<00:14, 18.13it/s]
Loading 0: 14%|█▍ | 41/291 [00:04<00:12, 20.26it/s]
Loading 0: 17%|█▋ | 49/291 [00:05<00:08, 27.45it/s]
Loading 0: 20%|█▉ | 57/291 [00:05<00:06, 34.40it/s]
Loading 0: 22%|██▏ | 63/291 [00:05<00:05, 38.60it/s]
Loading 0: 23%|██▎ | 68/291 [00:05<00:05, 39.08it/s]
Loading 0: 26%|██▌ | 75/291 [00:05<00:04, 44.97it/s]
Loading 0: 28%|██▊ | 81/291 [00:05<00:06, 30.76it/s]
Loading 0: 30%|██▉ | 86/291 [00:06<00:06, 32.66it/s]
Loading 0: 31%|███▏ | 91/291 [00:06<00:05, 34.52it/s]
Loading 0: 34%|███▍ | 99/291 [00:06<00:04, 40.83it/s]
Loading 0: 36%|███▌ | 104/291 [00:06<00:04, 41.84it/s]
Loading 0: 38%|███▊ | 110/291 [00:06<00:04, 42.69it/s]
Loading 0: 41%|████ | 120/291 [00:06<00:03, 55.97it/s]
Loading 0: 44%|████▎ | 127/291 [00:06<00:03, 48.39it/s]
Loading 0: 46%|████▌ | 133/291 [00:07<00:04, 35.30it/s]
Loading 0: 47%|████▋ | 138/291 [00:07<00:04, 33.64it/s]
Loading 0: 49%|████▉ | 142/291 [00:07<00:04, 33.83it/s]
Loading 0: 51%|█████ | 148/291 [00:07<00:03, 36.32it/s]
Loading 0: 54%|█████▎ | 156/291 [00:07<00:03, 41.52it/s]
Loading 0: 55%|█████▌ | 161/291 [00:07<00:03, 42.02it/s]
Loading 0: 57%|█████▋ | 167/291 [00:07<00:02, 42.76it/s]
Loading 0: 60%|██████ | 175/291 [00:08<00:02, 49.43it/s]
Loading 0: 63%|██████▎ | 184/291 [00:08<00:01, 58.56it/s]
Loading 0: 66%|██████▌ | 191/291 [00:08<00:02, 36.21it/s]
Loading 0: 67%|██████▋ | 196/291 [00:08<00:02, 35.02it/s]
Loading 0: 69%|██████▉ | 202/291 [00:08<00:02, 36.79it/s]
Loading 0: 72%|███████▏ | 210/291 [00:08<00:01, 42.88it/s]
Loading 0: 74%|███████▍ | 215/291 [00:09<00:01, 42.15it/s]
Loading 0: 76%|███████▌ | 220/291 [00:09<00:01, 40.56it/s]
Loading 0: 78%|███████▊ | 227/291 [00:09<00:01, 42.88it/s]
Loading 0: 80%|████████ | 233/291 [00:09<00:01, 30.48it/s]
Loading 0: 81%|████████▏ | 237/291 [00:09<00:01, 31.50it/s]
Loading 0: 84%|████████▎ | 243/291 [00:09<00:01, 36.32it/s]
Loading 0: 85%|████████▌ | 248/291 [00:10<00:01, 37.18it/s]
Loading 0: 88%|████████▊ | 256/291 [00:10<00:00, 45.63it/s]
Loading 0: 91%|█████████ | 264/291 [00:10<00:00, 51.86it/s]
Loading 0: 93%|█████████▎| 270/291 [00:10<00:00, 52.72it/s]
Loading 0: 95%|█████████▍| 276/291 [00:10<00:00, 51.90it/s]
Loading 0: 98%|█████████▊| 284/291 [00:10<00:00, 58.15it/s]
Loading 0: 100%|██████████| 291/291 [00:17<00:00, 3.45it/s]
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
jellywibble-hathor-stabl-8901-v1-mkmlizer: quantized model in 59.111s
jellywibble-hathor-stabl-8901-v1-mkmlizer: Processed model Jellywibble/Hathor_Stable-v0.2-L3-8B in 130.939s
jellywibble-hathor-stabl-8901-v1-mkmlizer: creating bucket guanaco-mkml-models
jellywibble-hathor-stabl-8901-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
jellywibble-hathor-stabl-8901-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/jellywibble-hathor-stabl-8901-v1
jellywibble-hathor-stabl-8901-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/jellywibble-hathor-stabl-8901-v1/special_tokens_map.json
jellywibble-hathor-stabl-8901-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/jellywibble-hathor-stabl-8901-v1/config.json
jellywibble-hathor-stabl-8901-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/jellywibble-hathor-stabl-8901-v1/tokenizer_config.json
jellywibble-hathor-stabl-8901-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/jellywibble-hathor-stabl-8901-v1/tokenizer.json
jellywibble-hathor-stabl-8901-v1-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/jellywibble-hathor-stabl-8901-v1/flywheel_model.0.safetensors
jellywibble-hathor-stabl-8901-v1-mkmlizer: loading reward model from ChaiML/reward_gpt2_medium_preference_24m_e2
jellywibble-hathor-stabl-8901-v1-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:919: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
jellywibble-hathor-stabl-8901-v1-mkmlizer: warnings.warn(
jellywibble-hathor-stabl-8901-v1-mkmlizer: /opt/conda/lib/python3.10/site-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.
jellywibble-hathor-stabl-8901-v1-mkmlizer: warnings.warn(
jellywibble-hathor-stabl-8901-v1-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:769: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
jellywibble-hathor-stabl-8901-v1-mkmlizer: warnings.warn(
jellywibble-hathor-stabl-8901-v1-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:468: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
jellywibble-hathor-stabl-8901-v1-mkmlizer: warnings.warn(
jellywibble-hathor-stabl-8901-v1-mkmlizer: /opt/conda/lib/python3.10/site-packages/torch/_utils.py:831: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
jellywibble-hathor-stabl-8901-v1-mkmlizer: return self.fget.__get__(instance, owner)()
jellywibble-hathor-stabl-8901-v1-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
jellywibble-hathor-stabl-8901-v1-mkmlizer: Saving duration: 0.442s
jellywibble-hathor-stabl-8901-v1-mkmlizer: Processed model ChaiML/reward_gpt2_medium_preference_24m_e2 in 6.329s
jellywibble-hathor-stabl-8901-v1-mkmlizer: creating bucket guanaco-reward-models
jellywibble-hathor-stabl-8901-v1-mkmlizer: Bucket 's3://guanaco-reward-models/' created
jellywibble-hathor-stabl-8901-v1-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/jellywibble-hathor-stabl-8901-v1_reward
jellywibble-hathor-stabl-8901-v1-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/jellywibble-hathor-stabl-8901-v1_reward/special_tokens_map.json
jellywibble-hathor-stabl-8901-v1-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/jellywibble-hathor-stabl-8901-v1_reward/tokenizer_config.json
jellywibble-hathor-stabl-8901-v1-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/jellywibble-hathor-stabl-8901-v1_reward/config.json
jellywibble-hathor-stabl-8901-v1-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/jellywibble-hathor-stabl-8901-v1_reward/merges.txt
jellywibble-hathor-stabl-8901-v1-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/jellywibble-hathor-stabl-8901-v1_reward/vocab.json
jellywibble-hathor-stabl-8901-v1-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/jellywibble-hathor-stabl-8901-v1_reward/tokenizer.json
jellywibble-hathor-stabl-8901-v1-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/jellywibble-hathor-stabl-8901-v1_reward/reward.tensors
Job jellywibble-hathor-stabl-8901-v1-mkmlizer completed after 155.42s with status: succeeded
Stopping job with name jellywibble-hathor-stabl-8901-v1-mkmlizer
Pipeline stage MKMLizer completed in 156.40s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.14s
Running pipeline stage ISVCDeployer
Creating inference service jellywibble-hathor-stabl-8901-v1
Waiting for inference service jellywibble-hathor-stabl-8901-v1 to be ready
Inference service jellywibble-hathor-stabl-8901-v1 ready after 40.21846675872803s
Pipeline stage ISVCDeployer completed in 47.20s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.0988433361053467s
Received healthy response to inference request in 1.3556737899780273s
Received healthy response to inference request in 1.3372626304626465s
Received healthy response to inference request in 1.2856144905090332s
Received healthy response to inference request in 1.3514575958251953s
5 requests
0 failed requests
5th percentile: 1.2959441184997558
10th percentile: 1.3062737464904786
20th percentile: 1.326933002471924
30th percentile: 1.3401016235351562
40th percentile: 1.3457796096801757
50th percentile: 1.3514575958251953
60th percentile: 1.353144073486328
70th percentile: 1.354830551147461
80th percentile: 1.5043076992034914
90th percentile: 1.801575517654419
95th percentile: 1.9502094268798826
99th percentile: 2.069116554260254
mean time: 1.4857703685760497
Pipeline stage StressChecker completed in 8.16s
jellywibble-hathor-stabl_8901_v1 status is now deployed due to DeploymentManager action
jellywibble-hathor-stabl_8901_v1 status is now inactive due to auto deactivation removed underperforming models
admin requested tearing down of jellywibble-hathor-stabl_8901_v1
Running pipeline stage ISVCDeleter
Checking if service jellywibble-hathor-stabl-8901-v1 is running
Skipping teardown as no inference service was found
Pipeline stage ISVCDeleter completed in 5.21s
Running pipeline stage MKMLModelDeleter
Cleaning model data from S3
Cleaning model data from model cache
Deleting key jellywibble-hathor-stabl-8901-v1/config.json from bucket guanaco-mkml-models
Deleting key jellywibble-hathor-stabl-8901-v1/flywheel_model.0.safetensors from bucket guanaco-mkml-models
Deleting key jellywibble-hathor-stabl-8901-v1/special_tokens_map.json from bucket guanaco-mkml-models
Deleting key jellywibble-hathor-stabl-8901-v1/tokenizer.json from bucket guanaco-mkml-models
Deleting key jellywibble-hathor-stabl-8901-v1/tokenizer_config.json from bucket guanaco-mkml-models
Cleaning model data from model cache
Deleting key jellywibble-hathor-stabl-8901-v1_reward/config.json from bucket guanaco-reward-models
Deleting key jellywibble-hathor-stabl-8901-v1_reward/merges.txt from bucket guanaco-reward-models
Deleting key jellywibble-hathor-stabl-8901-v1_reward/reward.tensors from bucket guanaco-reward-models
Deleting key jellywibble-hathor-stabl-8901-v1_reward/special_tokens_map.json from bucket guanaco-reward-models
Deleting key jellywibble-hathor-stabl-8901-v1_reward/tokenizer.json from bucket guanaco-reward-models
Deleting key jellywibble-hathor-stabl-8901-v1_reward/tokenizer_config.json from bucket guanaco-reward-models
Deleting key jellywibble-hathor-stabl-8901-v1_reward/vocab.json from bucket guanaco-reward-models
Pipeline stage MKMLModelDeleter completed in 6.00s
jellywibble-hathor-stabl_8901_v1 status is now torndown due to DeploymentManager action