developer_uid: dzhao1
submission_id: mistralai-mixtral-8x7b-_3473_v60
model_name: mistralai-mixtral-8x7b-_3473_v60
model_group: mistralai/Mixtral-8x7B-I
status: torndown
timestamp: 2024-07-03T16:41:26+00:00
num_battles: 13339
num_wins: 6422
celo_rating: 1163.77
family_friendly_score: 0.0
submission_type: basic
model_repo: mistralai/Mixtral-8x7B-Instruct-v0.1
model_architecture: MixtralForCausalLM
reward_repo: rirv938/reward_gpt2_medium_preference_24m_e2
model_num_parameters: 46702792704.0
best_of: 4
max_input_tokens: 512
max_output_tokens: 64
display_name: mistralai-mixtral-8x7b-_3473_v60
is_internal_developer: False
language_model: mistralai/Mixtral-8x7B-Instruct-v0.1
model_size: 47B
ranking_group: single
us_pacific_date: 2024-07-03
win_ratio: 0.4814453857110728
generation_params: {'temperature': 0.9, 'top_p': 1.0, 'min_p': 0.0, 'top_k': 50, 'presence_penalty': 0.5, 'frequency_penalty': 0.5, 'stopping_words': ['\n', '</s>', '<|user|>', '###'], 'max_input_tokens': 512, 'best_of': 4, 'max_output_tokens': 64}
formatter: {'memory_template': '<s>[INST] This is an entertaining conversation. You are {bot_name} who has the persona: {memory}.\nEngage in a chat with {user_name} while staying in character. Try to flirt with {user_name}. Engage in *roleplay* actions. Describe the scene dramatically. \n', 'prompt_template': '{prompt}\n', 'bot_template': '{bot_name}: {message}</s>', 'user_template': '[INST] {user_name}: {message} [/INST]', 'response_template': '{bot_name}:', 'truncate_by_message': False}
reward_formatter: {'bot_template': 'Bot: {message}\n', 'memory_template': 'Memory: {memory}\n', 'prompt_template': '{prompt}\n', 'response_template': 'Bot:', 'truncate_by_message': False, 'user_template': 'User: {message}\n'}
Resubmit model
Running pipeline stage MKMLizer
Starting job with name mistralai-mixtral-8x7b-3473-v60-mkmlizer
Waiting for job on mistralai-mixtral-8x7b-3473-v60-mkmlizer to finish
mistralai-mixtral-8x7b-3473-v60-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
mistralai-mixtral-8x7b-3473-v60-mkmlizer: ║ _____ __ __ ║
mistralai-mixtral-8x7b-3473-v60-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
mistralai-mixtral-8x7b-3473-v60-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
mistralai-mixtral-8x7b-3473-v60-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
mistralai-mixtral-8x7b-3473-v60-mkmlizer: ║ /___/ ║
mistralai-mixtral-8x7b-3473-v60-mkmlizer: ║ ║
mistralai-mixtral-8x7b-3473-v60-mkmlizer: ║ Version: 0.8.14 ║
mistralai-mixtral-8x7b-3473-v60-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
mistralai-mixtral-8x7b-3473-v60-mkmlizer: ║ https://mk1.ai ║
mistralai-mixtral-8x7b-3473-v60-mkmlizer: ║ ║
mistralai-mixtral-8x7b-3473-v60-mkmlizer: ║ The license key for the current software has been verified as ║
mistralai-mixtral-8x7b-3473-v60-mkmlizer: ║ belonging to: ║
mistralai-mixtral-8x7b-3473-v60-mkmlizer: ║ ║
mistralai-mixtral-8x7b-3473-v60-mkmlizer: ║ Chai Research Corp. ║
mistralai-mixtral-8x7b-3473-v60-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
mistralai-mixtral-8x7b-3473-v60-mkmlizer: ║ Expiration: 2024-07-15 23:59:59 ║
mistralai-mixtral-8x7b-3473-v60-mkmlizer: ║ ║
mistralai-mixtral-8x7b-3473-v60-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
mistralai-mixtral-8x7b-3473-v60-mkmlizer: Downloaded to shared memory in 242.446s
mistralai-mixtral-8x7b-3473-v60-mkmlizer: quantizing model to /dev/shm/model_cache
mistralai-mixtral-8x7b-3473-v60-mkmlizer: Saving flywheel model at /dev/shm/model_cache
mistralai-mixtral-8x7b-3473-v60-mkmlizer: quantized model in 93.867s
mistralai-mixtral-8x7b-3473-v60-mkmlizer: Processed model mistralai/Mixtral-8x7B-Instruct-v0.1 in 336.313s
mistralai-mixtral-8x7b-3473-v60-mkmlizer: creating bucket guanaco-mkml-models
mistralai-mixtral-8x7b-3473-v60-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
mistralai-mixtral-8x7b-3473-v60-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/mistralai-mixtral-8x7b-3473-v60
mistralai-mixtral-8x7b-3473-v60-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/mistralai-mixtral-8x7b-3473-v60/special_tokens_map.json
mistralai-mixtral-8x7b-3473-v60-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/mistralai-mixtral-8x7b-3473-v60/config.json
mistralai-mixtral-8x7b-3473-v60-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/mistralai-mixtral-8x7b-3473-v60/tokenizer.json
mistralai-mixtral-8x7b-3473-v60-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/mistralai-mixtral-8x7b-3473-v60/tokenizer_config.json
mistralai-mixtral-8x7b-3473-v60-mkmlizer: cp /dev/shm/model_cache/tokenizer.model s3://guanaco-mkml-models/mistralai-mixtral-8x7b-3473-v60/tokenizer.model
mistralai-mixtral-8x7b-3473-v60-mkmlizer: cp /dev/shm/model_cache/flywheel_model.3.safetensors s3://guanaco-mkml-models/mistralai-mixtral-8x7b-3473-v60/flywheel_model.3.safetensors
mistralai-mixtral-8x7b-3473-v60-mkmlizer: cp /dev/shm/model_cache/flywheel_model.2.safetensors s3://guanaco-mkml-models/mistralai-mixtral-8x7b-3473-v60/flywheel_model.2.safetensors
mistralai-mixtral-8x7b-3473-v60-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/mistralai-mixtral-8x7b-3473-v60/flywheel_model.0.safetensors
mistralai-mixtral-8x7b-3473-v60-mkmlizer: cp /dev/shm/model_cache/flywheel_model.1.safetensors s3://guanaco-mkml-models/mistralai-mixtral-8x7b-3473-v60/flywheel_model.1.safetensors
mistralai-mixtral-8x7b-3473-v60-mkmlizer: loading reward model from rirv938/reward_gpt2_medium_preference_24m_e2
mistralai-mixtral-8x7b-3473-v60-mkmlizer: Loading 0: 0%| | 0/995 [00:00<?, ?it/s] Loading 0: 1%| | 7/995 [00:00<00:16, 60.06it/s] Loading 0: 1%|▏ | 14/995 [00:00<00:18, 52.63it/s] Loading 0: 2%|▏ | 20/995 [00:00<00:18, 51.42it/s] Loading 0: 3%|▎ | 26/995 [00:00<00:18, 53.38it/s] Loading 0: 4%|▎ | 37/995 [00:00<00:13, 68.94it/s] Loading 0: 4%|▍ | 44/995 [00:00<00:15, 61.10it/s] Loading 0: 5%|▌ | 52/995 [00:01<00:24, 38.64it/s] Loading 0: 6%|▌ | 57/995 [00:01<00:23, 39.90it/s] Loading 0: 6%|▌ | 62/995 [00:01<00:22, 41.74it/s] Loading 0: 7%|▋ | 68/995 [00:01<00:20, 45.90it/s] Loading 0: 7%|▋ | 74/995 [00:01<00:19, 47.29it/s] Loading 0: 8%|▊ | 80/995 [00:01<00:19, 48.01it/s] Loading 0: 9%|▊ | 86/995 [00:01<00:18, 48.98it/s] Loading 0: 10%|▉ | 98/995 [00:01<00:13, 65.28it/s] Loading 0: 11%|█ | 107/995 [00:02<00:21, 41.53it/s] Loading 0: 11%|█▏ | 113/995 [00:02<00:20, 43.81it/s] Loading 0: 12%|█▏ | 119/995 [00:02<00:19, 45.17it/s] Loading 0: 13%|█▎ | 126/995 [00:02<00:17, 50.36it/s] Loading 0: 13%|█▎ | 132/995 [00:02<00:17, 50.27it/s] Loading 0: 14%|█▍ | 138/995 [00:02<00:17, 50.00it/s] Loading 0: 14%|█▍ | 144/995 [00:02<00:17, 49.20it/s] Loading 0: 15%|█▌ | 150/995 [00:03<00:16, 51.23it/s] Loading 0: 16%|█▋ | 162/995 [00:03<00:18, 45.18it/s] Loading 0: 17%|█▋ | 168/995 [00:03<00:17, 46.67it/s] Loading 0: 17%|█▋ | 174/995 [00:03<00:17, 47.32it/s] Loading 0: 18%|█▊ | 179/995 [00:03<00:17, 47.55it/s] Loading 0: 18%|█▊ | 184/995 [00:03<00:17, 46.90it/s] Loading 0: 19%|█▉ | 192/995 [00:03<00:15, 52.91it/s] Loading 0: 20%|█▉ | 198/995 [00:04<00:15, 51.49it/s] Loading 0: 21%|██ | 204/995 [00:04<00:15, 50.95it/s] Loading 0: 21%|██ | 210/995 [00:04<00:21, 36.30it/s] Loading 0: 22%|██▏ | 216/995 [00:04<00:19, 39.85it/s] Loading 0: 22%|██▏ | 223/995 [00:04<00:16, 46.26it/s] Loading 0: 23%|██▎ | 229/995 [00:04<00:16, 46.39it/s] Loading 0: 24%|██▎ | 235/995 [00:04<00:16, 44.97it/s] Loading 0: 24%|██▍ | 240/995 [00:05<00:16, 46.03it/s] Loading 0: 25%|██▌ | 251/995 [00:05<00:12, 61.42it/s] Loading 0: 26%|██▌ | 258/995 [00:05<00:12, 57.47it/s] Loading 0: 27%|██▋ | 265/995 [00:05<00:18, 39.57it/s] Loading 0: 28%|██▊ | 275/995 [00:05<00:14, 49.92it/s] Loading 0: 28%|██▊ | 281/995 [00:25<00:14, 49.92it/s] Loading 0: 28%|██▊ | 282/995 [00:25<09:06, 1.30it/s] Loading 0: 29%|██▉ | 289/995 [00:25<06:32, 1.80it/s] Loading 0: 30%|██▉ | 296/995 [00:25<04:41, 2.48it/s] Loading 0: 30%|███ | 302/995 [00:25<03:30, 3.29it/s] Loading 0: 31%|███ | 308/995 [00:25<02:36, 4.40it/s] Loading 0: 32%|███▏ | 319/995 [00:25<01:32, 7.30it/s] Loading 0: 33%|███▎ | 327/995 [00:26<01:19, 8.36it/s] Loading 0: 33%|███▎ | 333/995 [00:26<01:03, 10.48it/s] Loading 0: 34%|███▍ | 339/995 [00:26<00:49, 13.14it/s] Loading 0: 35%|███▍ | 347/995 [00:26<00:36, 17.90it/s] Loading 0: 35%|███▌ | 353/995 [00:26<00:29, 21.46it/s] Loading 0: 36%|███▌ | 359/995 [00:26<00:25, 25.28it/s] Loading 0: 37%|███▋ | 368/995 [00:27<00:24, 25.76it/s] Loading 0: 38%|███▊ | 375/995 [00:27<00:19, 31.44it/s] Loading 0: 38%|███▊ | 381/995 [00:27<00:17, 34.61it/s] Loading 0: 39%|███▉ | 387/995 [00:27<00:16, 37.77it/s] Loading 0: 39%|███▉ | 393/995 [00:27<00:14, 40.43it/s] Loading 0: 41%|████ | 404/995 [00:27<00:10, 55.17it/s] Loading 0: 41%|████▏ | 411/995 [00:27<00:10, 53.33it/s] Loading 0: 42%|████▏ | 418/995 [00:28<00:11, 52.23it/s] Loading 0: 43%|████▎ | 424/995 [00:28<00:16, 34.81it/s] Loading 0: 43%|████▎ | 429/995 [00:28<00:15, 37.16it/s] Loading 0: 44%|████▍ | 436/995 [00:28<00:13, 42.72it/s] Loading 0: 44%|████▍ | 442/995 [00:28<00:12, 44.88it/s] Loading 0: 45%|████▌ | 448/995 [00:28<00:12, 44.10it/s] Loading 0: 46%|████▌ | 453/995 [00:29<00:12, 44.78it/s] Loading 0: 46%|████▌ | 458/995 [00:29<00:11, 45.26it/s] Loading 0: 47%|████▋ | 469/995 [00:29<00:08, 61.83it/s] Loading 0: 48%|████▊ | 478/995 [00:29<00:12, 40.29it/s] Loading 0: 49%|████▊ | 484/995 [00:29<00:12, 41.55it/s] Loading 0: 49%|████▉ | 490/995 [00:29<00:11, 43.10it/s] Loading 0: 50%|████▉ | 496/995 [00:29<00:10, 45.65it/s] Loading 0: 50%|█████ | 502/995 [00:30<00:10, 48.32it/s] Loading 0: 51%|█████ | 508/995 [00:30<00:10, 47.58it/s] Loading 0: 52%|█████▏ | 514/995 [00:30<00:10, 46.61it/s] Loading 0: 52%|█████▏ | 519/995 [00:30<00:10, 46.73it/s] Loading 0: 53%|█████▎ | 526/995 [00:30<00:13, 33.51it/s] Loading 0: 54%|█████▎ | 534/995 [00:30<00:11, 40.54it/s] Loading 0: 54%|█████▍ | 539/995 [00:31<00:10, 41.58it/s] Loading 0: 55%|█████▍ | 544/995 [00:31<00:10, 42.75it/s] Loading 0: 55%|█████▌ | 549/995 [00:31<00:10, 44.13it/s] Loading 0: 56%|█████▋ | 560/995 [00:31<00:07, 60.07it/s] Loading 0: 56%|█████▋ | 560/995 [00:50<00:07, 60.07it/s] Loading 0: 56%|█████▋ | 561/995 [00:50<08:02, 1.11s/it] Loading 0: 57%|█████▋ | 566/995 [00:50<05:43, 1.25it/s] Loading 0: 57%|█████▋ | 572/995 [00:51<03:50, 1.84it/s] Loading 0: 58%|█████▊ | 581/995 [00:51<02:24, 2.87it/s] Loading 0: 59%|█████▉ | 586/995 [00:51<01:49, 3.74it/s] Loading 0: 60%|█████▉ | 593/995 [00:51<01:13, 5.43it/s] Loading 0: 60%|██████ | 599/995 [00:52<00:54, 7.32it/s] Loading 0: 61%|██████ | 605/995 [00:52<00:40, 9.68it/s] Loading 0: 61%|██████▏ | 610/995 [00:52<00:31, 12.14it/s] Loading 0: 62%|██████▏ | 620/995 [00:52<00:19, 19.29it/s] Loading 0: 63%|██████▎ | 627/995 [00:52<00:15, 23.89it/s] Loading 0: 64%|██████▍ | 636/995 [00:52<00:14, 24.05it/s] Loading 0: 64%|██████▍ | 641/995 [00:53<00:13, 27.12it/s] Loading 0: 65%|██████▍ | 646/995 [00:53<00:11, 29.98it/s] Loading 0: 66%|██████▌ | 653/995 [00:53<00:09, 36.50it/s] Loading 0: 66%|██████▌ | 659/995 [00:53<00:08, 38.76it/s] Loading 0: 67%|██████▋ | 665/995 [00:53<00:08, 40.94it/s] Loading 0: 67%|██████▋ | 671/995 [00:53<00:07, 42.53it/s] Loading 0: 68%|██████▊ | 676/995 [00:53<00:07, 43.55it/s] Loading 0: 69%|██████▉ | 691/995 [00:54<00:07, 42.99it/s] Loading 0: 70%|██████▉ | 696/995 [00:54<00:06, 43.90it/s] Loading 0: 70%|███████ | 701/995 [00:54<00:06, 43.99it/s] Loading 0: 71%|███████ | 706/995 [00:54<00:06, 44.38it/s] Loading 0: 71%|███████▏ | 711/995 [00:54<00:06, 45.19it/s] Loading 0: 72%|███████▏ | 718/995 [00:54<00:05, 50.28it/s] Loading 0: 73%|███████▎ | 724/995 [00:54<00:05, 49.36it/s] Loading 0: 73%|███████▎ | 730/995 [00:54<00:05, 48.56it/s] Loading 0: 74%|███████▍ | 739/995 [00:55<00:07, 34.76it/s] Loading 0: 75%|███████▍ | 746/995 [00:55<00:06, 40.45it/s] Loading 0: 75%|███████▌ | 751/995 [00:55<00:05, 41.96it/s] Loading 0: 76%|███████▌ | 756/995 [00:55<00:05, 43.62it/s] Loading 0: 76%|███████▋ | 761/995 [00:55<00:05, 44.87it/s] Loading 0: 77%|███████▋ | 766/995 [00:55<00:05, 44.97it/s] Loading 0: 78%|███████▊ | 777/995 [00:55<00:03, 61.24it/s] Loading 0: 79%|███████▉ | 784/995 [00:56<00:03, 55.46it/s] Loading 0: 80%|███████▉ | 794/995 [00:56<00:05, 38.54it/s] Loading 0: 80%|████████ | 799/995 [00:56<00:04, 40.13it/s] Loading 0: 81%|████████ | 804/995 [00:56<00:04, 41.38it/s] Loading 0: 82%|████████▏ | 811/995 [00:56<00:03, 46.16it/s] Loading 0: 82%|████████▏ | 817/995 [00:56<00:03, 46.07it/s] Loading 0: 83%|████████▎ | 823/995 [00:57<00:03, 45.95it/s] Loading 0: 83%|████████▎ | 828/995 [00:57<00:03, 45.73it/s] Loading 0: 84%|████████▍ | 839/995 [00:57<00:02, 60.72it/s] Loading 0: 85%|████████▍ | 841/995 [01:17<00:02, 60.72it/s] Loading 0: 85%|████████▍ | 842/995 [01:17<02:30, 1.01it/s] Loading 0: 85%|████████▌ | 849/995 [01:17<01:40, 1.45it/s] Loading 0: 86%|████████▌ | 854/995 [01:17<01:13, 1.92it/s] Loading 0: 86%|████████▋ | 859/995 [01:17<00:52, 2.57it/s] Loading 0: 87%|████████▋ | 864/995 [01:17<00:37, 3.46it/s] Loading 0: 88%|████████▊ | 871/995 [01:18<00:23, 5.21it/s] Loading 0: 88%|████████▊ | 877/995 [01:18<00:16, 7.12it/s] Loading 0: 89%|████████▊ | 883/995 [01:18<00:11, 9.54it/s] Loading 0: 89%|████████▉ | 888/995 [01:18<00:08, 12.10it/s] Loading 0: 90%|█████████ | 897/995 [01:18<00:06, 15.38it/s] Loading 0: 91%|█████████ | 904/995 [01:18<00:04, 20.06it/s] Loading 0: 91%|█████████▏| 909/995 [01:19<00:03, 23.26it/s] Loading 0: 92%|█████████▏| 914/995 [01:19<00:03, 26.75it/s] Loading 0: 92%|█████████▏| 919/995 [01:19<00:02, 30.08it/s] Loading 0: 93%|█████████▎| 924/995 [01:19<00:02, 33.34it/s] Loading 0: 94%|█████████▍| 935/995 [01:19<00:01, 49.06it/s] Loading 0: 95%|█████████▍| 942/995 [01:19<00:01, 48.38it/s] Loading 0: 95%|█████████▌| 950/995 [01:19<00:00, 55.16it/s] Loading 0: 96%|█████████▌| 957/995 [01:21<00:03, 11.49it/s] Loading 0: 97%|█████████▋| 964/995 [01:21<00:02, 15.18it/s] Loading 0: 97%|█████████▋| 970/995 [01:21<00:01, 18.61it/s] Loading 0: 98%|█████████▊| 976/995 [01:21<00:00, 22.15it/s] Loading 0: 99%|█████████▊| 981/995 [01:21<00:00, 25.31it/s] Loading 0: 99%|█████████▉| 986/995 [01:22<00:00, 28.96it/s] /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:919: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
mistralai-mixtral-8x7b-3473-v60-mkmlizer: warnings.warn(
mistralai-mixtral-8x7b-3473-v60-mkmlizer: /opt/conda/lib/python3.10/site-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.
mistralai-mixtral-8x7b-3473-v60-mkmlizer: warnings.warn(
mistralai-mixtral-8x7b-3473-v60-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:769: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
mistralai-mixtral-8x7b-3473-v60-mkmlizer: warnings.warn(
mistralai-mixtral-8x7b-3473-v60-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:468: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
mistralai-mixtral-8x7b-3473-v60-mkmlizer: warnings.warn(
mistralai-mixtral-8x7b-3473-v60-mkmlizer: /opt/conda/lib/python3.10/site-packages/torch/_utils.py:831: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
mistralai-mixtral-8x7b-3473-v60-mkmlizer: return self.fget.__get__(instance, owner)()
mistralai-mixtral-8x7b-3473-v60-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
mistralai-mixtral-8x7b-3473-v60-mkmlizer: Saving duration: 0.426s
mistralai-mixtral-8x7b-3473-v60-mkmlizer: Processed model rirv938/reward_gpt2_medium_preference_24m_e2 in 4.648s
mistralai-mixtral-8x7b-3473-v60-mkmlizer: creating bucket guanaco-reward-models
mistralai-mixtral-8x7b-3473-v60-mkmlizer: Bucket 's3://guanaco-reward-models/' created
mistralai-mixtral-8x7b-3473-v60-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/mistralai-mixtral-8x7b-3473-v60_reward
mistralai-mixtral-8x7b-3473-v60-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/mistralai-mixtral-8x7b-3473-v60_reward/config.json
mistralai-mixtral-8x7b-3473-v60-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/mistralai-mixtral-8x7b-3473-v60_reward/tokenizer_config.json
mistralai-mixtral-8x7b-3473-v60-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/mistralai-mixtral-8x7b-3473-v60_reward/special_tokens_map.json
mistralai-mixtral-8x7b-3473-v60-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/mistralai-mixtral-8x7b-3473-v60_reward/merges.txt
mistralai-mixtral-8x7b-3473-v60-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/mistralai-mixtral-8x7b-3473-v60_reward/vocab.json
mistralai-mixtral-8x7b-3473-v60-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/mistralai-mixtral-8x7b-3473-v60_reward/tokenizer.json
Connection pool is full, discarding connection: %s
Connection pool is full, discarding connection: %s
Job mistralai-mixtral-8x7b-3473-v60-mkmlizer completed after 405.22s with status: succeeded
Stopping job with name mistralai-mixtral-8x7b-3473-v60-mkmlizer
Pipeline stage MKMLizer completed in 406.12s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.14s
Running pipeline stage ISVCDeployer
Creating inference service mistralai-mixtral-8x7b-3473-v60
Waiting for inference service mistralai-mixtral-8x7b-3473-v60 to be ready
Inference service mistralai-mixtral-8x7b-3473-v60 ready after 80.41019368171692s
Pipeline stage ISVCDeployer completed in 87.17s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.376129150390625s
Received healthy response to inference request in 1.2773613929748535s
Received healthy response to inference request in 1.1976029872894287s
Connection pool is full, discarding connection: %s
Connection pool is full, discarding connection: %s
Received healthy response to inference request in 1.5224566459655762s
Received healthy response to inference request in 1.3459627628326416s
5 requests
0 failed requests
5th percentile: 1.2135546684265137
10th percentile: 1.2295063495635987
20th percentile: 1.2614097118377685
30th percentile: 1.2910816669464111
40th percentile: 1.3185222148895264
50th percentile: 1.3459627628326416
60th percentile: 1.4165603160858153
70th percentile: 1.4871578693389893
80th percentile: 1.693191146850586
90th percentile: 2.0346601486206057
95th percentile: 2.205394649505615
99th percentile: 2.341982250213623
mean time: 1.543902587890625
Pipeline stage StressChecker completed in 8.53s
mistralai-mixtral-8x7b-_3473_v60 status is now deployed due to DeploymentManager action
mistralai-mixtral-8x7b-_3473_v60 status is now inactive due to auto deactivation removed underperforming models
admin requested tearing down of mistralai-mixtral-8x7b-_3473_v60
Running pipeline stage ISVCDeleter
Checking if service mistralai-mixtral-8x7b-3473-v60 is running
Skipping teardown as no inference service was found
Pipeline stage ISVCDeleter completed in 4.38s
Running pipeline stage MKMLModelDeleter
Cleaning model data from S3
Cleaning model data from model cache
Deleting key mistralai-mixtral-8x7b-3473-v60/config.json from bucket guanaco-mkml-models
Deleting key mistralai-mixtral-8x7b-3473-v60/flywheel_model.0.safetensors from bucket guanaco-mkml-models
Deleting key mistralai-mixtral-8x7b-3473-v60/flywheel_model.1.safetensors from bucket guanaco-mkml-models
Deleting key mistralai-mixtral-8x7b-3473-v60/flywheel_model.2.safetensors from bucket guanaco-mkml-models
Deleting key mistralai-mixtral-8x7b-3473-v60/flywheel_model.3.safetensors from bucket guanaco-mkml-models
Deleting key mistralai-mixtral-8x7b-3473-v60/special_tokens_map.json from bucket guanaco-mkml-models
Deleting key mistralai-mixtral-8x7b-3473-v60/tokenizer.json from bucket guanaco-mkml-models
Deleting key mistralai-mixtral-8x7b-3473-v60/tokenizer.model from bucket guanaco-mkml-models
Deleting key mistralai-mixtral-8x7b-3473-v60/tokenizer_config.json from bucket guanaco-mkml-models
Cleaning model data from model cache
Deleting key mistralai-mixtral-8x7b-3473-v60_reward/config.json from bucket guanaco-reward-models
Deleting key mistralai-mixtral-8x7b-3473-v60_reward/merges.txt from bucket guanaco-reward-models
Deleting key mistralai-mixtral-8x7b-3473-v60_reward/reward.tensors from bucket guanaco-reward-models
Deleting key mistralai-mixtral-8x7b-3473-v60_reward/special_tokens_map.json from bucket guanaco-reward-models
Deleting key mistralai-mixtral-8x7b-3473-v60_reward/tokenizer.json from bucket guanaco-reward-models
Deleting key mistralai-mixtral-8x7b-3473-v60_reward/tokenizer_config.json from bucket guanaco-reward-models
Deleting key mistralai-mixtral-8x7b-3473-v60_reward/vocab.json from bucket guanaco-reward-models
Pipeline stage MKMLModelDeleter completed in 10.30s
mistralai-mixtral-8x7b-_3473_v60 status is now torndown due to DeploymentManager action