developer_uid: WesPro
submission_id: wespro-miss-kunodolph_v2
model_name: wespro-miss-kunodolph_v2
model_group: WesPro/Miss_KunoDolph
status: torndown
timestamp: 2024-04-13T19:31:49+00:00
num_battles: 48855
num_wins: 18976
celo_rating: 1070.45
family_friendly_score: 0.0
submission_type: basic
model_repo: WesPro/Miss_KunoDolph
model_architecture: MistralForCausalLM
model_num_parameters: 7241732096.0
best_of: 4
max_input_tokens: 512
max_output_tokens: 64
reward_model: default
display_name: wespro-miss-kunodolph_v2
is_internal_developer: False
language_model: WesPro/Miss_KunoDolph
model_size: 7B
ranking_group: single
us_pacific_date: 2024-04-13
win_ratio: 0.38841469655101835
generation_params: {'temperature': 1.0, 'top_p': 1.0, 'min_p': 0.0, 'top_k': 40, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n'], 'max_input_tokens': 512, 'best_of': 4, 'max_output_tokens': 64}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': False}
model_eval_status: success
reward_formatter: {'bot_template': '{bot_name}: {message}\n', 'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'response_template': '{bot_name}:', 'truncate_by_message': False, 'user_template': '{user_name}: {message}\n'}
reward_repo: ChaiML/reward_gpt2_medium_preference_24m_e2
Resubmit model
Running pipeline stage MKMLizer
Starting job with name wespro-miss-kunodolph-v2-mkmlizer
Waiting for job on wespro-miss-kunodolph-v2-mkmlizer to finish
wespro-miss-kunodolph-v2-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
wespro-miss-kunodolph-v2-mkmlizer: ║ _____ __ __ ║
wespro-miss-kunodolph-v2-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
wespro-miss-kunodolph-v2-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
wespro-miss-kunodolph-v2-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
wespro-miss-kunodolph-v2-mkmlizer: ║ /___/ ║
wespro-miss-kunodolph-v2-mkmlizer: ║ ║
wespro-miss-kunodolph-v2-mkmlizer: ║ Version: 0.6.11 ║
wespro-miss-kunodolph-v2-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
wespro-miss-kunodolph-v2-mkmlizer: ║ ║
wespro-miss-kunodolph-v2-mkmlizer: ║ The license key for the current software has been verified as ║
wespro-miss-kunodolph-v2-mkmlizer: ║ belonging to: ║
wespro-miss-kunodolph-v2-mkmlizer: ║ ║
wespro-miss-kunodolph-v2-mkmlizer: ║ Chai Research Corp. ║
wespro-miss-kunodolph-v2-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
wespro-miss-kunodolph-v2-mkmlizer: ║ Expiration: 2024-07-15 23:59:59 ║
wespro-miss-kunodolph-v2-mkmlizer: ║ ║
wespro-miss-kunodolph-v2-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
wespro-miss-kunodolph-v2-mkmlizer: .gitattributes: 0%| | 0.00/1.52k [00:00<?, ?B/s] .gitattributes: 100%|██████████| 1.52k/1.52k [00:00<00:00, 20.2MB/s]
wespro-miss-kunodolph-v2-mkmlizer: README.md: 0%| | 0.00/1.09k [00:00<?, ?B/s] README.md: 100%|██████████| 1.09k/1.09k [00:00<00:00, 8.83MB/s]
wespro-miss-kunodolph-v2-mkmlizer: config.json: 0%| | 0.00/653 [00:00<?, ?B/s] config.json: 100%|██████████| 653/653 [00:00<00:00, 11.0MB/s]
wespro-miss-kunodolph-v2-mkmlizer: mergekit_config.yml: 0%| | 0.00/438 [00:00<?, ?B/s] mergekit_config.yml: 100%|██████████| 438/438 [00:00<00:00, 4.72MB/s]
wespro-miss-kunodolph-v2-mkmlizer: model-00001-of-00002.safetensors: 0%| | 0.00/9.94G [00:00<?, ?B/s] model-00001-of-00002.safetensors: 0%| | 10.5M/9.94G [00:00<06:46, 24.4MB/s] model-00001-of-00002.safetensors: 0%| | 21.0M/9.94G [00:00<04:37, 35.8MB/s] model-00001-of-00002.safetensors: 1%| | 62.9M/9.94G [00:00<01:28, 112MB/s] model-00001-of-00002.safetensors: 1%|▏ | 136M/9.94G [00:00<00:39, 247MB/s] model-00001-of-00002.safetensors: 3%|▎ | 294M/9.94G [00:00<00:17, 564MB/s] model-00001-of-00002.safetensors: 5%|▌ | 514M/9.94G [00:01<00:10, 937MB/s] model-00001-of-00002.safetensors: 8%|▊ | 807M/9.94G [00:01<00:06, 1.45GB/s] model-00001-of-00002.safetensors: 11%|█▏ | 1.13G/9.94G [00:01<00:04, 1.90GB/s] model-00001-of-00002.safetensors: 14%|█▎ | 1.35G/9.94G [00:01<00:04, 1.90GB/s] model-00001-of-00002.safetensors: 16%|█▌ | 1.56G/9.94G [00:01<00:04, 1.85GB/s] model-00001-of-00002.safetensors: 19%|█▉ | 1.90G/9.94G [00:01<00:03, 2.25GB/s] model-00001-of-00002.safetensors: 22%|██▏ | 2.14G/9.94G [00:01<00:03, 2.09GB/s] model-00001-of-00002.safetensors: 24%|██▎ | 2.36G/9.94G [00:01<00:03, 1.93GB/s] model-00001-of-00002.safetensors: 26%|██▌ | 2.57G/9.94G [00:02<00:03, 1.86GB/s] model-00001-of-00002.safetensors: 28%|██▊ | 2.77G/9.94G [00:02<00:04, 1.78GB/s] model-00001-of-00002.safetensors: 31%|███ | 3.05G/9.94G [00:02<00:03, 2.03GB/s] model-00001-of-00002.safetensors: 34%|███▎ | 3.36G/9.94G [00:02<00:02, 2.29GB/s] model-00001-of-00002.safetensors: 36%|███▌ | 3.60G/9.94G [00:02<00:02, 2.20GB/s] model-00001-of-00002.safetensors: 38%|███▊ | 3.83G/9.94G [00:02<00:02, 2.20GB/s] model-00001-of-00002.safetensors: 41%|████ | 4.06G/9.94G [00:02<00:02, 2.13GB/s] model-00001-of-00002.safetensors: 43%|████▎ | 4.28G/9.94G [00:02<00:02, 1.96GB/s] model-00001-of-00002.safetensors: 45%|████▌ | 4.50G/9.94G [00:02<00:02, 1.98GB/s] model-00001-of-00002.safetensors: 47%|████▋ | 4.72G/9.94G [00:03<00:02, 2.02GB/s] model-00001-of-00002.safetensors: 50%|████▉ | 4.96G/9.94G [00:03<00:02, 2.09GB/s] model-00001-of-00002.safetensors: 52%|█████▏ | 5.18G/9.94G [00:03<00:02, 2.03GB/s] model-00001-of-00002.safetensors: 54%|█████▍ | 5.39G/9.94G [00:03<00:02, 1.91GB/s] model-00001-of-00002.safetensors: 57%|█████▋ | 5.65G/9.94G [00:03<00:02, 2.09GB/s] model-00001-of-00002.safetensors: 59%|█████▉ | 5.87G/9.94G [00:03<00:02, 1.69GB/s] model-00001-of-00002.safetensors: 61%|██████ | 6.07G/9.94G [00:03<00:02, 1.71GB/s] model-00001-of-00002.safetensors: 63%|██████▎ | 6.26G/9.94G [00:03<00:02, 1.71GB/s] model-00001-of-00002.safetensors: 66%|██████▌ | 6.55G/9.94G [00:04<00:01, 2.02GB/s] model-00001-of-00002.safetensors: 69%|██████▉ | 6.90G/9.94G [00:04<00:01, 2.38GB/s] model-00001-of-00002.safetensors: 72%|███████▏ | 7.15G/9.94G [00:04<00:01, 2.31GB/s] model-00001-of-00002.safetensors: 74%|███████▍ | 7.39G/9.94G [00:04<00:01, 1.71GB/s] model-00001-of-00002.safetensors: 76%|███████▋ | 7.59G/9.94G [00:04<00:01, 1.76GB/s] model-00001-of-00002.safetensors: 80%|███████▉ | 7.92G/9.94G [00:04<00:00, 2.10GB/s] model-00001-of-00002.safetensors: 84%|████████▎ | 8.33G/9.94G [00:04<00:00, 2.54GB/s] model-00001-of-00002.safetensors: 87%|████████▋ | 8.61G/9.94G [00:04<00:00, 2.33GB/s] model-00001-of-00002.safetensors: 89%|████████▉ | 8.86G/9.94G [00:05<00:00, 1.87GB/s] model-00001-of-00002.safetensors: 91%|█████████▏| 9.08G/9.94G [00:05<00:00, 1.85GB/s] model-00001-of-00002.safetensors: 96%|█████████▌| 9.51G/9.94G [00:05<00:00, 2.40GB/s] model-00001-of-00002.safetensors: 100%|█████████▉| 9.94G/9.94G [00:05<00:00, 1.81GB/s]
wespro-miss-kunodolph-v2-mkmlizer: model-00002-of-00002.safetensors: 0%| | 0.00/4.54G [00:00<?, ?B/s] model-00002-of-00002.safetensors: 0%| | 10.5M/4.54G [00:00<04:33, 16.6MB/s] model-00002-of-00002.safetensors: 0%| | 21.0M/4.54G [00:04<16:22, 4.60MB/s] model-00002-of-00002.safetensors: 1%|▏ | 62.9M/4.54G [00:04<03:51, 19.3MB/s] model-00002-of-00002.safetensors: 24%|██▍ | 1.08G/4.54G [00:04<00:06, 495MB/s] model-00002-of-00002.safetensors: 30%|██▉ | 1.35G/4.54G [00:05<00:08, 375MB/s] model-00002-of-00002.safetensors: 34%|███▎ | 1.53G/4.54G [00:05<00:07, 389MB/s] model-00002-of-00002.safetensors: 37%|███▋ | 1.69G/4.54G [00:06<00:06, 454MB/s] model-00002-of-00002.safetensors: 44%|████▍ | 2.01G/4.54G [00:06<00:03, 665MB/s] model-00002-of-00002.safetensors: 49%|████▉ | 2.22G/4.54G [00:06<00:02, 802MB/s] model-00002-of-00002.safetensors: 53%|█████▎ | 2.42G/4.54G [00:06<00:02, 910MB/s] model-00002-of-00002.safetensors: 57%|█████▋ | 2.60G/4.54G [00:06<00:02, 778MB/s] model-00002-of-00002.safetensors: 61%|██████ | 2.75G/4.54G [00:07<00:03, 463MB/s] model-00002-of-00002.safetensors: 63%|██████▎ | 2.85G/4.54G [00:07<00:03, 464MB/s] model-00002-of-00002.safetensors: 65%|██████▌ | 2.96G/4.54G [00:07<00:03, 520MB/s] model-00002-of-00002.safetensors: 68%|██████▊ | 3.10G/4.54G [00:07<00:02, 635MB/s] model-00002-of-00002.safetensors: 71%|███████ | 3.21G/4.54G [00:08<00:02, 665MB/s] model-00002-of-00002.safetensors: 73%|███████▎ | 3.31G/4.54G [00:08<00:01, 731MB/s] model-00002-of-00002.safetensors: 76%|███████▌ | 3.44G/4.54G [00:08<00:01, 784MB/s] model-00002-of-00002.safetensors: 79%|███████▊ | 3.58G/4.54G [00:08<00:01, 900MB/s] model-00002-of-00002.safetensors: 83%|████████▎ | 3.76G/4.54G [00:08<00:00, 1.12GB/s] model-00002-of-00002.safetensors: 86%|████████▌ | 3.91G/4.54G [00:08<00:00, 1.15GB/s] model-00002-of-00002.safetensors: 89%|████████▉ | 4.05G/4.54G [00:08<00:00, 987MB/s] model-00002-of-00002.safetensors: 93%|█████████▎| 4.20G/4.54G [00:08<00:00, 1.08GB/s] model-00002-of-00002.safetensors: 97%|█████████▋| 4.40G/4.54G [00:09<00:00, 1.28GB/s] model-00002-of-00002.safetensors: 100%|█████████▉| 4.54G/4.54G [00:09<00:00, 499MB/s]
wespro-miss-kunodolph-v2-mkmlizer: model.safetensors.index.json: 0%| | 0.00/22.8k [00:00<?, ?B/s] model.safetensors.index.json: 100%|██████████| 22.8k/22.8k [00:00<00:00, 14.5MB/s]
wespro-miss-kunodolph-v2-mkmlizer: special_tokens_map.json: 0%| | 0.00/414 [00:00<?, ?B/s] special_tokens_map.json: 100%|██████████| 414/414 [00:00<00:00, 3.28MB/s]
wespro-miss-kunodolph-v2-mkmlizer: tokenizer.json: 0%| | 0.00/1.80M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 1.80M/1.80M [00:00<00:00, 14.8MB/s] tokenizer.json: 100%|██████████| 1.80M/1.80M [00:00<00:00, 14.8MB/s]
wespro-miss-kunodolph-v2-mkmlizer: tokenizer.model: 0%| | 0.00/493k [00:00<?, ?B/s] tokenizer.model: 100%|██████████| 493k/493k [00:00<00:00, 5.85MB/s]
wespro-miss-kunodolph-v2-mkmlizer: tokenizer_config.json: 0%| | 0.00/1.46k [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 1.46k/1.46k [00:00<00:00, 12.1MB/s]
wespro-miss-kunodolph-v2-mkmlizer: Downloaded to shared memory in 16.956s
wespro-miss-kunodolph-v2-mkmlizer: quantizing model to /dev/shm/model_cache
wespro-miss-kunodolph-v2-mkmlizer: Saving mkml model at /dev/shm/model_cache
wespro-miss-kunodolph-v2-mkmlizer: Reading /tmp/tmp7mbynha5/model.safetensors.index.json
wespro-miss-kunodolph-v2-mkmlizer: Profiling: 0%| | 0/291 [00:00<?, ?it/s] Profiling: 0%| | 1/291 [00:01<05:37, 1.16s/it] Profiling: 5%|▍ | 14/291 [00:01<00:18, 14.96it/s] Profiling: 12%|█▏ | 34/291 [00:01<00:06, 39.88it/s] Profiling: 18%|█▊ | 53/291 [00:01<00:03, 64.07it/s] Profiling: 25%|██▍ | 72/291 [00:01<00:02, 87.44it/s] Profiling: 32%|███▏ | 93/291 [00:01<00:01, 111.63it/s] Profiling: 38%|███▊ | 112/291 [00:01<00:01, 127.50it/s] Profiling: 45%|████▌ | 131/291 [00:01<00:01, 140.22it/s] Profiling: 53%|█████▎ | 153/291 [00:01<00:00, 159.54it/s] Profiling: 60%|██████ | 175/291 [00:02<00:00, 174.46it/s] Profiling: 67%|██████▋ | 196/291 [00:02<00:00, 181.36it/s] Profiling: 74%|███████▍ | 216/291 [00:04<00:02, 32.02it/s] Profiling: 82%|████████▏ | 238/291 [00:04<00:01, 43.79it/s] Profiling: 88%|████████▊ | 257/291 [00:04<00:00, 55.78it/s] Profiling: 95%|█████████▍| 276/291 [00:04<00:00, 69.72it/s] Profiling: 100%|██████████| 291/291 [00:04<00:00, 63.19it/s]
wespro-miss-kunodolph-v2-mkmlizer: quantized model in 14.736s
wespro-miss-kunodolph-v2-mkmlizer: Processed model WesPro/Miss_KunoDolph in 32.654s
wespro-miss-kunodolph-v2-mkmlizer: creating bucket guanaco-mkml-models
wespro-miss-kunodolph-v2-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
wespro-miss-kunodolph-v2-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/wespro-miss-kunodolph-v2
wespro-miss-kunodolph-v2-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/wespro-miss-kunodolph-v2/config.json
wespro-miss-kunodolph-v2-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/wespro-miss-kunodolph-v2/tokenizer_config.json
wespro-miss-kunodolph-v2-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/wespro-miss-kunodolph-v2/special_tokens_map.json
wespro-miss-kunodolph-v2-mkmlizer: cp /dev/shm/model_cache/tokenizer.model s3://guanaco-mkml-models/wespro-miss-kunodolph-v2/tokenizer.model
wespro-miss-kunodolph-v2-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/wespro-miss-kunodolph-v2/tokenizer.json
wespro-miss-kunodolph-v2-mkmlizer: cp /dev/shm/model_cache/mkml_model.tensors s3://guanaco-mkml-models/wespro-miss-kunodolph-v2/mkml_model.tensors
wespro-miss-kunodolph-v2-mkmlizer: loading reward model from ChaiML/reward_gpt2_medium_preference_24m_e2
wespro-miss-kunodolph-v2-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:1067: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
wespro-miss-kunodolph-v2-mkmlizer: warnings.warn(
wespro-miss-kunodolph-v2-mkmlizer: config.json: 0%| | 0.00/1.05k [00:00<?, ?B/s] config.json: 100%|██████████| 1.05k/1.05k [00:00<00:00, 13.4MB/s]
wespro-miss-kunodolph-v2-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:690: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
wespro-miss-kunodolph-v2-mkmlizer: warnings.warn(
wespro-miss-kunodolph-v2-mkmlizer: tokenizer_config.json: 0%| | 0.00/234 [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 234/234 [00:00<00:00, 3.35MB/s]
wespro-miss-kunodolph-v2-mkmlizer: vocab.json: 0%| | 0.00/1.04M [00:00<?, ?B/s] vocab.json: 100%|██████████| 1.04M/1.04M [00:00<00:00, 9.93MB/s] vocab.json: 100%|██████████| 1.04M/1.04M [00:00<00:00, 9.89MB/s]
wespro-miss-kunodolph-v2-mkmlizer: tokenizer.json: 0%| | 0.00/2.11M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 2.11M/2.11M [00:00<00:00, 47.9MB/s]
wespro-miss-kunodolph-v2-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:472: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
wespro-miss-kunodolph-v2-mkmlizer: warnings.warn(
wespro-miss-kunodolph-v2-mkmlizer: pytorch_model.bin: 0%| | 0.00/1.44G [00:00<?, ?B/s] pytorch_model.bin: 1%| | 10.5M/1.44G [00:00<01:04, 22.1MB/s] pytorch_model.bin: 1%|▏ | 21.0M/1.44G [00:00<00:55, 25.6MB/s] pytorch_model.bin: 4%|▍ | 62.9M/1.44G [00:01<00:20, 68.6MB/s] pytorch_model.bin: 7%|▋ | 105M/1.44G [00:01<00:11, 122MB/s] pytorch_model.bin: 12%|█▏ | 168M/1.44G [00:01<00:06, 212MB/s] pytorch_model.bin: 19%|█▉ | 273M/1.44G [00:01<00:03, 378MB/s] pytorch_model.bin: 23%|██▎ | 336M/1.44G [00:01<00:03, 361MB/s] pytorch_model.bin: 71%|███████ | 1.03G/1.44G [00:01<00:00, 1.73GB/s] pytorch_model.bin: 93%|█████████▎| 1.34G/1.44G [00:01<00:00, 2.04GB/s] pytorch_model.bin: 100%|█████████▉| 1.44G/1.44G [00:01<00:00, 757MB/s]
wespro-miss-kunodolph-v2-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
wespro-miss-kunodolph-v2-mkmlizer: Saving duration: 0.249s
wespro-miss-kunodolph-v2-mkmlizer: Processed model ChaiML/reward_gpt2_medium_preference_24m_e2 in 6.183s
wespro-miss-kunodolph-v2-mkmlizer: creating bucket guanaco-reward-models
wespro-miss-kunodolph-v2-mkmlizer: Bucket 's3://guanaco-reward-models/' created
wespro-miss-kunodolph-v2-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/wespro-miss-kunodolph-v2_reward
wespro-miss-kunodolph-v2-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/wespro-miss-kunodolph-v2_reward/config.json
wespro-miss-kunodolph-v2-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/wespro-miss-kunodolph-v2_reward/special_tokens_map.json
wespro-miss-kunodolph-v2-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/wespro-miss-kunodolph-v2_reward/tokenizer_config.json
wespro-miss-kunodolph-v2-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/wespro-miss-kunodolph-v2_reward/merges.txt
wespro-miss-kunodolph-v2-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/wespro-miss-kunodolph-v2_reward/vocab.json
wespro-miss-kunodolph-v2-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/wespro-miss-kunodolph-v2_reward/tokenizer.json
Job wespro-miss-kunodolph-v2-mkmlizer completed after 64.58s with status: succeeded
Stopping job with name wespro-miss-kunodolph-v2-mkmlizer
Pipeline stage MKMLizer completed in 67.96s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.10s
Running pipeline stage ISVCDeployer
Creating inference service wespro-miss-kunodolph-v2
Waiting for inference service wespro-miss-kunodolph-v2 to be ready
Inference service wespro-miss-kunodolph-v2 ready after 40.21306276321411s
Pipeline stage ISVCDeployer completed in 47.40s
Running pipeline stage StressChecker
Received healthy response to inference request in 1.2664525508880615s
Received healthy response to inference request in 0.660261869430542s
Received healthy response to inference request in 0.9481391906738281s
Received healthy response to inference request in 0.7501752376556396s
Received healthy response to inference request in 0.6288392543792725s
5 requests
0 failed requests
5th percentile: 0.6351237773895264
10th percentile: 0.6414083003997803
20th percentile: 0.653977346420288
30th percentile: 0.6782445430755615
40th percentile: 0.7142098903656006
50th percentile: 0.7501752376556396
60th percentile: 0.829360818862915
70th percentile: 0.9085464000701904
80th percentile: 1.011801862716675
90th percentile: 1.1391272068023681
95th percentile: 1.2027898788452147
99th percentile: 1.2537200164794922
mean time: 0.8507736206054688
Pipeline stage StressChecker completed in 5.04s
Running pipeline stage DaemonicModelEvalScorer
Pipeline stage DaemonicModelEvalScorer completed in 0.04s
Running pipeline stage DaemonicSafetyScorer
Running M-Eval for topic stay_in_character
Pipeline stage DaemonicSafetyScorer completed in 0.04s
M-Eval Dataset for topic stay_in_character is loaded
wespro-miss-kunodolph_v2 status is now deployed due to DeploymentManager action
wespro-miss-kunodolph_v2 status is now inactive due to auto deactivation removed underperforming models
admin requested tearing down of wespro-miss-kunodolph_v2
Running pipeline stage ISVCDeleter
Checking if service wespro-miss-kunodolph-v2 is running
Connection pool is full, discarding connection: %s
Connection pool is full, discarding connection: %s
Tearing down inference service wespro-miss-kunodolph-v2
Toredown service wespro-miss-kunodolph-v2
Pipeline stage ISVCDeleter completed in 11.97s
Running pipeline stage MKMLModelDeleter
Cleaning model data from S3
Cleaning model data from model cache
Deleting key wespro-miss-kunodolph-v2/config.json from bucket guanaco-mkml-models
Deleting key wespro-miss-kunodolph-v2/mkml_model.tensors from bucket guanaco-mkml-models
Deleting key wespro-miss-kunodolph-v2/special_tokens_map.json from bucket guanaco-mkml-models
Deleting key wespro-miss-kunodolph-v2/tokenizer.json from bucket guanaco-mkml-models
Deleting key wespro-miss-kunodolph-v2/tokenizer.model from bucket guanaco-mkml-models
Deleting key wespro-miss-kunodolph-v2/tokenizer_config.json from bucket guanaco-mkml-models
Cleaning model data from model cache
Deleting key wespro-miss-kunodolph-v2_reward/config.json from bucket guanaco-reward-models
Deleting key wespro-miss-kunodolph-v2_reward/merges.txt from bucket guanaco-reward-models
Deleting key wespro-miss-kunodolph-v2_reward/reward.tensors from bucket guanaco-reward-models
Deleting key wespro-miss-kunodolph-v2_reward/special_tokens_map.json from bucket guanaco-reward-models
Deleting key wespro-miss-kunodolph-v2_reward/tokenizer.json from bucket guanaco-reward-models
Deleting key wespro-miss-kunodolph-v2_reward/tokenizer_config.json from bucket guanaco-reward-models
Deleting key wespro-miss-kunodolph-v2_reward/vocab.json from bucket guanaco-reward-models
Pipeline stage MKMLModelDeleter completed in 1.95s
wespro-miss-kunodolph_v2 status is now torndown due to DeploymentManager action