developer_uid: robert_irvine
submission_id: chaiml-phase2-winner-13b2_v225
model_name: chaiml-phase2-winner-13b2_v225
model_group: ChaiML/phase2_winner_13b
status: torndown
timestamp: 2024-02-13T22:03:53+00:00
num_battles: 1178123
num_wins: 578689
celo_rating: 1145.77
family_friendly_score: 0.0
submission_type: basic
model_repo: ChaiML/phase2_winner_13b2
reward_repo: rirv938/reward_gpt2_preference_24m_e2
model_num_parameters: 13015864320.0
best_of: 8
max_input_tokens: 512
max_output_tokens: 64
display_name: chaiml-phase2-winner-13b2_v225
is_internal_developer: True
language_model: ChaiML/phase2_winner_13b2
model_size: 13B
ranking_group: single
us_pacific_date: 2024-02-13
win_ratio: 0.49119574102194763
generation_params: {'temperature': 1.0733671330918084, 'top_p': 0.6971846333941389, 'min_p': 0.0, 'top_k': 50, 'presence_penalty': 0.0, 'frequency_penalty': 0.312882778758545, 'stopping_words': ['\n'], 'max_input_tokens': 512, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': False}
reward_formatter: {'bot_template': 'Bot: {message}\n', 'memory_template': 'Memory: {memory}\n', 'prompt_template': '{prompt}\n', 'response_template': 'Bot:', 'truncate_by_message': False, 'user_template': 'User: {message}\n'}
model_eval_status: success
Resubmit model
Running pipeline stage MKMLizer
Starting job with name chaiml-phase2-winner-13b2-v225-mkmlizer
Waiting for job on chaiml-phase2-winner-13b2-v225-mkmlizer to finish
chaiml-phase2-winner-13b2-v225-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
chaiml-phase2-winner-13b2-v225-mkmlizer: ║ _____ __ __ ║
chaiml-phase2-winner-13b2-v225-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
chaiml-phase2-winner-13b2-v225-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
chaiml-phase2-winner-13b2-v225-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
chaiml-phase2-winner-13b2-v225-mkmlizer: ║ /___/ ║
chaiml-phase2-winner-13b2-v225-mkmlizer: ║ ║
chaiml-phase2-winner-13b2-v225-mkmlizer: ║ Version: 0.6.11 ║
chaiml-phase2-winner-13b2-v225-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
chaiml-phase2-winner-13b2-v225-mkmlizer: ║ ║
chaiml-phase2-winner-13b2-v225-mkmlizer: ║ The license key for the current software has been verified as ║
chaiml-phase2-winner-13b2-v225-mkmlizer: ║ belonging to: ║
chaiml-phase2-winner-13b2-v225-mkmlizer: ║ ║
chaiml-phase2-winner-13b2-v225-mkmlizer: ║ Chai Research Corp. ║
chaiml-phase2-winner-13b2-v225-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
chaiml-phase2-winner-13b2-v225-mkmlizer: ║ Expiration: 2024-04-15 23:59:59 ║
chaiml-phase2-winner-13b2-v225-mkmlizer: ║ ║
chaiml-phase2-winner-13b2-v225-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
chaiml-phase2-winner-13b2-v225-mkmlizer: .gitattributes: 0%| | 0.00/1.52k [00:00<?, ?B/s] .gitattributes: 100%|██████████| 1.52k/1.52k [00:00<00:00, 20.1MB/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: README.md: 0%| | 0.00/1.53k [00:00<?, ?B/s] README.md: 100%|██████████| 1.53k/1.53k [00:00<00:00, 12.2MB/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: config.json: 0%| | 0.00/651 [00:00<?, ?B/s] config.json: 100%|██████████| 651/651 [00:00<00:00, 9.86MB/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: generation_config.json: 0%| | 0.00/170 [00:00<?, ?B/s] generation_config.json: 100%|██████████| 170/170 [00:00<00:00, 1.39MB/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: pytorch_model-00001-of-00003.bin: 0%| | 0.00/9.95G [00:00<?, ?B/s] pytorch_model-00001-of-00003.bin: 0%| | 10.5M/9.95G [00:00<05:16, 31.4MB/s] pytorch_model-00001-of-00003.bin: 0%| | 31.5M/9.95G [00:00<03:20, 49.4MB/s] pytorch_model-00001-of-00003.bin: 1%| | 62.9M/9.95G [00:00<01:47, 92.1MB/s] pytorch_model-00001-of-00003.bin: 2%|▏ | 157M/9.95G [00:00<00:38, 257MB/s] pytorch_model-00001-of-00003.bin: 2%|▏ | 220M/9.95G [00:01<00:29, 335MB/s] pytorch_model-00001-of-00003.bin: 3%|▎ | 273M/9.95G [00:01<00:25, 374MB/s] pytorch_model-00001-of-00003.bin: 3%|▎ | 336M/9.95G [00:01<00:23, 416MB/s] pytorch_model-00001-of-00003.bin: 4%|▍ | 388M/9.95G [00:01<00:22, 426MB/s] pytorch_model-00001-of-00003.bin: 5%|▌ | 524M/9.95G [00:01<00:14, 665MB/s] pytorch_model-00001-of-00003.bin: 6%|▌ | 608M/9.95G [00:01<00:13, 669MB/s] pytorch_model-00001-of-00003.bin: 7%|▋ | 682M/9.95G [00:01<00:15, 587MB/s] pytorch_model-00001-of-00003.bin: 8%|▊ | 765M/9.95G [00:01<00:14, 638MB/s] pytorch_model-00001-of-00003.bin: 9%|▉ | 881M/9.95G [00:01<00:11, 761MB/s] pytorch_model-00001-of-00003.bin: 10%|▉ | 965M/9.95G [00:02<00:11, 758MB/s] pytorch_model-00001-of-00003.bin: 11%|█ | 1.05G/9.95G [00:02<00:15, 562MB/s] pytorch_model-00001-of-00003.bin: 11%|█▏ | 1.13G/9.95G [00:02<00:16, 551MB/s] pytorch_model-00001-of-00003.bin: 12%|█▏ | 1.22G/9.95G [00:02<00:14, 606MB/s] pytorch_model-00001-of-00003.bin: 13%|█▎ | 1.29G/9.95G [00:02<00:14, 618MB/s] pytorch_model-00001-of-00003.bin: 14%|█▎ | 1.36G/9.95G [00:02<00:14, 588MB/s] pytorch_model-00001-of-00003.bin: 15%|█▍ | 1.45G/9.95G [00:02<00:13, 646MB/s] pytorch_model-00001-of-00003.bin: 16%|█▌ | 1.57G/9.95G [00:03<00:10, 783MB/s] pytorch_model-00001-of-00003.bin: 18%|█▊ | 1.76G/9.95G [00:03<00:07, 1.06GB/s] pytorch_model-00001-of-00003.bin: 19%|█▉ | 1.88G/9.95G [00:03<00:08, 945MB/s] pytorch_model-00001-of-00003.bin: 20%|█▉ | 1.98G/9.95G [00:03<00:08, 956MB/s] pytorch_model-00001-of-00003.bin: 21%|██▏ | 2.13G/9.95G [00:03<00:07, 1.02GB/s] pytorch_model-00001-of-00003.bin: 23%|██▎ | 2.28G/9.95G [00:03<00:06, 1.13GB/s] pytorch_model-00001-of-00003.bin: 24%|██▍ | 2.40G/9.95G [00:03<00:07, 1.05GB/s] pytorch_model-00001-of-00003.bin: 26%|██▌ | 2.60G/9.95G [00:03<00:05, 1.27GB/s] pytorch_model-00001-of-00003.bin: 28%|██▊ | 2.74G/9.95G [00:04<00:10, 709MB/s] pytorch_model-00001-of-00003.bin: 29%|██▊ | 2.84G/9.95G [00:04<00:13, 538MB/s] pytorch_model-00001-of-00003.bin: 29%|██▉ | 2.93G/9.95G [00:04<00:13, 518MB/s] pytorch_model-00001-of-00003.bin: 31%|███ | 3.04G/9.95G [00:04<00:11, 601MB/s] pytorch_model-00001-of-00003.bin: 31%|███▏ | 3.12G/9.95G [00:05<00:10, 631MB/s] pytorch_model-00001-of-00003.bin: 32%|███▏ | 3.21G/9.95G [00:05<00:11, 600MB/s] pytorch_model-00001-of-00003.bin: 33%|███▎ | 3.29G/9.95G [00:05<00:10, 643MB/s] pytorch_model-00001-of-00003.bin: 34%|███▍ | 3.37G/9.95G [00:05<00:10, 654MB/s] pytorch_model-00001-of-00003.bin: 35%|███▍ | 3.44G/9.95G [00:05<00:10, 633MB/s] pytorch_model-00001-of-00003.bin: 35%|███▌ | 3.51G/9.95G [00:05<00:11, 537MB/s] pytorch_model-00001-of-00003.bin: 36%|███▌ | 3.58G/9.95G [00:05<00:12, 519MB/s] pytorch_model-00001-of-00003.bin: 37%|███▋ | 3.64G/9.95G [00:06<00:12, 507MB/s] pytorch_model-00001-of-00003.bin: 38%|███▊ | 3.73G/9.95G [00:06<00:10, 597MB/s] pytorch_model-00001-of-00003.bin: 38%|███▊ | 3.81G/9.95G [00:06<00:10, 588MB/s] pytorch_model-00001-of-00003.bin: 39%|███▉ | 3.87G/9.95G [00:06<00:14, 422MB/s] pytorch_model-00001-of-00003.bin: 39%|███▉ | 3.92G/9.95G [00:06<00:16, 360MB/s] pytorch_model-00001-of-00003.bin: 40%|████ | 4.00G/9.95G [00:06<00:14, 416MB/s] pytorch_model-00001-of-00003.bin: 41%|████ | 4.05G/9.95G [00:07<00:14, 418MB/s] pytorch_model-00001-of-00003.bin: 41%|████▏ | 4.11G/9.95G [00:07<00:12, 460MB/s] pytorch_model-00001-of-00003.bin: 42%|████▏ | 4.19G/9.95G [00:07<00:10, 538MB/s] pytorch_model-00001-of-00003.bin: 43%|████▎ | 4.26G/9.95G [00:07<00:10, 559MB/s] pytorch_model-00001-of-00003.bin: 43%|████▎ | 4.32G/9.95G [00:07<00:12, 468MB/s] pytorch_model-00001-of-00003.bin: 44%|████▍ | 4.37G/9.95G [00:07<00:13, 407MB/s] pytorch_model-00001-of-00003.bin: 45%|████▍ | 4.45G/9.95G [00:07<00:12, 454MB/s] pytorch_model-00001-of-00003.bin: 45%|████▌ | 4.50G/9.95G [00:08<00:16, 321MB/s] pytorch_model-00001-of-00003.bin: 46%|████▌ | 4.55G/9.95G [00:08<00:15, 344MB/s] pytorch_model-00001-of-00003.bin: 46%|████▌ | 4.59G/9.95G [00:08<00:18, 294MB/s] pytorch_model-00001-of-00003.bin: 47%|████▋ | 4.67G/9.95G [00:08<00:14, 370MB/s] pytorch_model-00001-of-00003.bin: 47%|████▋ | 4.72G/9.95G [00:08<00:15, 344MB/s] pytorch_model-00001-of-00003.bin: 49%|████▉ | 4.87G/9.95G [00:08<00:09, 556MB/s] pytorch_model-00001-of-00003.bin: 50%|█████ | 4.98G/9.95G [00:08<00:07, 646MB/s] pytorch_model-00001-of-00003.bin: 51%|█████ | 5.05G/9.95G [00:09<00:08, 569MB/s] pytorch_model-00001-of-00003.bin: 52%|█████▏ | 5.13G/9.95G [00:09<00:09, 506MB/s] pytorch_model-00001-of-00003.bin: 52%|█████▏ | 5.20G/9.95G [00:09<00:08, 544MB/s] pytorch_model-00001-of-00003.bin: 53%|█████▎ | 5.26G/9.95G [00:09<00:12, 375MB/s] pytorch_model-00001-of-00003.bin: 53%|█████▎ | 5.32G/9.95G [00:10<00:15, 297MB/s] pytorch_model-00001-of-00003.bin: 54%|█████▍ | 5.37G/9.95G [00:10<00:15, 295MB/s] pytorch_model-00001-of-00003.bin: 55%|█████▍ | 5.46G/9.95G [00:10<00:11, 401MB/s] pytorch_model-00001-of-00003.bin: 56%|█████▌ | 5.54G/9.95G [00:10<00:10, 419MB/s] pytorch_model-00001-of-00003.bin: 56%|█████▋ | 5.61G/9.95G [00:10<00:09, 462MB/s] pytorch_model-00001-of-00003.bin: 57%|█████▋ | 5.68G/9.95G [00:10<00:08, 495MB/s] pytorch_model-00001-of-00003.bin: 58%|█████▊ | 5.76G/9.95G [00:10<00:08, 510MB/s] pytorch_model-00001-of-00003.bin: 59%|█████▊ | 5.84G/9.95G [00:11<00:07, 577MB/s] pytorch_model-00001-of-00003.bin: 59%|█████▉ | 5.90G/9.95G [00:11<00:06, 582MB/s] pytorch_model-00001-of-00003.bin: 61%|██████ | 6.03G/9.95G [00:11<00:05, 702MB/s] pytorch_model-00001-of-00003.bin: 61%|██████▏ | 6.11G/9.95G [00:11<00:05, 732MB/s] pytorch_model-00001-of-00003.bin: 62%|██████▏ | 6.20G/9.95G [00:11<00:05, 735MB/s] pytorch_model-00001-of-00003.bin: 63%|██████▎ | 6.29G/9.95G [00:11<00:04, 753MB/s] pytorch_model-00001-of-00003.bin: 64%|██████▍ | 6.41G/9.95G [00:11<00:04, 834MB/s] pytorch_model-00001-of-00003.bin: 65%|██████▌ | 6.50G/9.95G [00:11<00:04, 795MB/s] pytorch_model-00001-of-00003.bin: 66%|██████▌ | 6.59G/9.95G [00:12<00:05, 603MB/s] pytorch_model-00001-of-00003.bin: 67%|██████▋ | 6.66G/9.95G [00:12<00:05, 625MB/s] pytorch_model-00001-of-00003.bin: 68%|██████▊ | 6.73G/9.95G [00:12<00:05, 561MB/s] pytorch_model-00001-of-00003.bin: 69%|██████▊ | 6.83G/9.95G [00:12<00:04, 646MB/s] pytorch_model-00001-of-00003.bin: 70%|██████▉ | 6.94G/9.95G [00:12<00:04, 741MB/s] pytorch_model-00001-of-00003.bin: 71%|███████ | 7.05G/9.95G [00:12<00:03, 792MB/s] pytorch_model-00001-of-00003.bin: 72%|███████▏ | 7.16G/9.95G [00:12<00:03, 758MB/s] pytorch_model-00001-of-00003.bin: 73%|███████▎ | 7.25G/9.95G [00:12<00:03, 753MB/s] pytorch_model-00001-of-00003.bin: 74%|███████▎ | 7.33G/9.95G [00:13<00:03, 727MB/s] pytorch_model-00001-of-00003.bin: 75%|███████▍ | 7.41G/9.95G [00:13<00:04, 601MB/s] pytorch_model-00001-of-00003.bin: 75%|███████▌ | 7.49G/9.95G [00:13<00:03, 626MB/s] pytorch_model-00001-of-00003.bin: 76%|███████▋ | 7.60G/9.95G [00:13<00:03, 735MB/s] pytorch_model-00001-of-00003.bin: 77%|███████▋ | 7.69G/9.95G [00:13<00:03, 648MB/s] pytorch_model-00001-of-00003.bin: 78%|███████▊ | 7.76G/9.95G [00:13<00:03, 586MB/s] pytorch_model-00001-of-00003.bin: 79%|███████▊ | 7.82G/9.95G [00:13<00:03, 564MB/s] pytorch_model-00001-of-00003.bin: 79%|███████▉ | 7.90G/9.95G [00:14<00:03, 560MB/s] pytorch_model-00001-of-00003.bin: 80%|████████ | 7.97G/9.95G [00:14<00:03, 583MB/s] pytorch_model-00001-of-00003.bin: 81%|████████ | 8.05G/9.95G [00:14<00:02, 637MB/s] pytorch_model-00001-of-00003.bin: 82%|████████▏ | 8.13G/9.95G [00:14<00:03, 495MB/s] pytorch_model-00001-of-00003.bin: 82%|████████▏ | 8.19G/9.95G [00:14<00:04, 416MB/s] pytorch_model-00001-of-00003.bin: 83%|████████▎ | 8.27G/9.95G [00:14<00:03, 497MB/s] pytorch_model-00001-of-00003.bin: 84%|████████▍ | 8.34G/9.95G [00:14<00:03, 493MB/s] pytorch_model-00001-of-00003.bin: 84%|████████▍ | 8.40G/9.95G [00:15<00:03, 411MB/s] pytorch_model-00001-of-00003.bin: 85%|████████▍ | 8.45G/9.95G [00:15<00:03, 424MB/s] pytorch_model-00001-of-00003.bin: 85%|████████▌ | 8.50G/9.95G [00:15<00:03, 432MB/s] pytorch_model-00001-of-00003.bin: 86%|████████▌ | 8.57G/9.95G [00:15<00:03, 460MB/s] pytorch_model-00001-of-00003.bin: 87%|████████▋ | 8.63G/9.95G [00:15<00:02, 479MB/s] pytorch_model-00001-of-00003.bin: 88%|████████▊ | 8.73G/9.95G [00:15<00:02, 574MB/s] pytorch_model-00001-of-00003.bin: 89%|████████▉ | 8.86G/9.95G [00:15<00:01, 725MB/s] pytorch_model-00001-of-00003.bin: 90%|█████████ | 8.97G/9.95G [00:16<00:01, 786MB/s] pytorch_model-00001-of-00003.bin: 91%|█████████ | 9.07G/9.95G [00:16<00:01, 853MB/s] pytorch_model-00001-of-00003.bin: 92%|█████████▏| 9.16G/9.95G [00:16<00:00, 876MB/s] pytorch_model-00001-of-00003.bin: 93%|█████████▎| 9.26G/9.95G [00:16<00:00, 696MB/s] pytorch_model-00001-of-00003.bin: 94%|█████████▍| 9.34G/9.95G [00:16<00:00, 710MB/s] pytorch_model-00001-of-00003.bin: 95%|█████████▍| 9.45G/9.95G [00:16<00:00, 767MB/s] pytorch_model-00001-of-00003.bin: 96%|█████████▌| 9.53G/9.95G [00:16<00:00, 754MB/s] pytorch_model-00001-of-00003.bin: 97%|█████████▋| 9.62G/9.95G [00:16<00:00, 784MB/s] pytorch_model-00001-of-00003.bin: 98%|█████████▊| 9.71G/9.95G [00:17<00:00, 716MB/s] pytorch_model-00001-of-00003.bin: 98%|█████████▊| 9.79G/9.95G [00:17<00:00, 645MB/s] pytorch_model-00001-of-00003.bin: 99%|█████████▉| 9.86G/9.95G [00:17<00:00, 623MB/s] pytorch_model-00001-of-00003.bin: 100%|█████████▉| 9.94G/9.95G [00:17<00:00, 303MB/s] pytorch_model-00001-of-00003.bin: 100%|█████████▉| 9.95G/9.95G [00:18<00:00, 540MB/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: pytorch_model-00002-of-00003.bin: 0%| | 0.00/9.90G [00:00<?, ?B/s] pytorch_model-00002-of-00003.bin: 0%| | 10.5M/9.90G [00:00<05:31, 29.9MB/s] pytorch_model-00002-of-00003.bin: 0%| | 21.0M/9.90G [00:00<05:00, 32.9MB/s] pytorch_model-00002-of-00003.bin: 1%| | 94.4M/9.90G [00:00<00:54, 178MB/s] pytorch_model-00002-of-00003.bin: 3%|▎ | 252M/9.90G [00:00<00:19, 491MB/s] pytorch_model-00002-of-00003.bin: 4%|▍ | 377M/9.90G [00:00<00:14, 669MB/s] pytorch_model-00002-of-00003.bin: 6%|▌ | 619M/9.90G [00:01<00:08, 1.08GB/s] pytorch_model-00002-of-00003.bin: 8%|▊ | 755M/9.90G [00:01<00:08, 1.06GB/s] pytorch_model-00002-of-00003.bin: 9%|▉ | 881M/9.90G [00:01<00:08, 1.09GB/s] pytorch_model-00002-of-00003.bin: 10%|█ | 1.01G/9.90G [00:01<00:11, 751MB/s] pytorch_model-00002-of-00003.bin: 12%|█▏ | 1.16G/9.90G [00:01<00:09, 899MB/s] pytorch_model-00002-of-00003.bin: 13%|█▎ | 1.30G/9.90G [00:01<00:08, 999MB/s] pytorch_model-00002-of-00003.bin: 14%|█▍ | 1.43G/9.90G [00:02<00:11, 737MB/s] pytorch_model-00002-of-00003.bin: 15%|█▌ | 1.53G/9.90G [00:02<00:16, 496MB/s] pytorch_model-00002-of-00003.bin: 16%|█▋ | 1.61G/9.90G [00:02<00:17, 473MB/s] pytorch_model-00002-of-00003.bin: 17%|█▋ | 1.69G/9.90G [00:02<00:17, 475MB/s] pytorch_model-00002-of-00003.bin: 18%|█▊ | 1.75G/9.90G [00:03<00:17, 467MB/s] pytorch_model-00002-of-00003.bin: 19%|█▊ | 1.84G/9.90G [00:03<00:16, 485MB/s] pytorch_model-00002-of-00003.bin: 20%|█▉ | 1.95G/9.90G [00:03<00:13, 607MB/s] pytorch_model-00002-of-00003.bin: 20%|██ | 2.02G/9.90G [00:03<00:12, 616MB/s] pytorch_model-00002-of-00003.bin: 22%|██▏ | 2.18G/9.90G [00:03<00:10, 758MB/s] pytorch_model-00002-of-00003.bin: 23%|██▎ | 2.26G/9.90G [00:03<00:10, 752MB/s] pytorch_model-00002-of-00003.bin: 24%|██▎ | 2.35G/9.90G [00:03<00:10, 718MB/s] pytorch_model-00002-of-00003.bin: 25%|██▍ | 2.47G/9.90G [00:03<00:08, 840MB/s] pytorch_model-00002-of-00003.bin: 26%|██▌ | 2.57G/9.90G [00:04<00:08, 843MB/s] pytorch_model-00002-of-00003.bin: 28%|██▊ | 2.74G/9.90G [00:04<00:06, 1.04GB/s] pytorch_model-00002-of-00003.bin: 29%|██▉ | 2.90G/9.90G [00:04<00:05, 1.20GB/s] pytorch_model-00002-of-00003.bin: 31%|███ | 3.03G/9.90G [00:04<00:05, 1.21GB/s] pytorch_model-00002-of-00003.bin: 33%|███▎ | 3.23G/9.90G [00:04<00:04, 1.42GB/s] pytorch_model-00002-of-00003.bin: 34%|███▍ | 3.38G/9.90G [00:04<00:04, 1.34GB/s] pytorch_model-00002-of-00003.bin: 36%|███▌ | 3.55G/9.90G [00:04<00:04, 1.45GB/s] pytorch_model-00002-of-00003.bin: 38%|███▊ | 3.74G/9.90G [00:04<00:03, 1.56GB/s] pytorch_model-00002-of-00003.bin: 41%|████ | 4.07G/9.90G [00:04<00:02, 1.98GB/s] pytorch_model-00002-of-00003.bin: 44%|████▎ | 4.33G/9.90G [00:04<00:02, 2.16GB/s] pytorch_model-00002-of-00003.bin: 46%|████▌ | 4.55G/9.90G [00:05<00:03, 1.66GB/s] pytorch_model-00002-of-00003.bin: 48%|████▊ | 4.74G/9.90G [00:05<00:05, 917MB/s] pytorch_model-00002-of-00003.bin: 49%|████▉ | 4.89G/9.90G [00:05<00:05, 899MB/s] pytorch_model-00002-of-00003.bin: 51%|█████ | 5.01G/9.90G [00:05<00:05, 869MB/s] pytorch_model-00002-of-00003.bin: 52%|█████▏ | 5.13G/9.90G [00:06<00:05, 892MB/s] pytorch_model-00002-of-00003.bin: 53%|█████▎ | 5.24G/9.90G [00:06<00:05, 782MB/s] pytorch_model-00002-of-00003.bin: 54%|█████▍ | 5.34G/9.90G [00:06<00:06, 751MB/s] pytorch_model-00002-of-00003.bin: 55%|█████▍ | 5.43G/9.90G [00:06<00:06, 713MB/s] pytorch_model-00002-of-00003.bin: 56%|█████▌ | 5.52G/9.90G [00:06<00:08, 532MB/s] pytorch_model-00002-of-00003.bin: 56%|█████▋ | 5.58G/9.90G [00:07<00:08, 524MB/s] pytorch_model-00002-of-00003.bin: 57%|█████▋ | 5.64G/9.90G [00:07<00:08, 498MB/s] pytorch_model-00002-of-00003.bin: 58%|█████▊ | 5.75G/9.90G [00:07<00:06, 607MB/s] pytorch_model-00002-of-00003.bin: 59%|█████▉ | 5.87G/9.90G [00:07<00:05, 742MB/s] pytorch_model-00002-of-00003.bin: 60%|██████ | 5.96G/9.90G [00:07<00:05, 726MB/s] pytorch_model-00002-of-00003.bin: 62%|██████▏ | 6.10G/9.90G [00:07<00:04, 898MB/s] pytorch_model-00002-of-00003.bin: 63%|██████▎ | 6.22G/9.90G [00:07<00:03, 926MB/s] pytorch_model-00002-of-00003.bin: 64%|██████▍ | 6.32G/9.90G [00:07<00:04, 809MB/s] pytorch_model-00002-of-00003.bin: 66%|██████▌ | 6.51G/9.90G [00:07<00:03, 1.06GB/s] pytorch_model-00002-of-00003.bin: 67%|██████▋ | 6.64G/9.90G [00:08<00:04, 804MB/s] pytorch_model-00002-of-00003.bin: 68%|██████▊ | 6.74G/9.90G [00:08<00:04, 784MB/s] pytorch_model-00002-of-00003.bin: 69%|██████▉ | 6.84G/9.90G [00:08<00:04, 631MB/s] pytorch_model-00002-of-00003.bin: 70%|███████ | 6.95G/9.90G [00:08<00:04, 689MB/s] pytorch_model-00002-of-00003.bin: 71%|███████ | 7.04G/9.90G [00:08<00:04, 692MB/s] pytorch_model-00002-of-00003.bin: 72%|███████▏ | 7.12G/9.90G [00:09<00:04, 597MB/s] pytorch_model-00002-of-00003.bin: 73%|███████▎ | 7.25G/9.90G [00:09<00:03, 711MB/s] pytorch_model-00002-of-00003.bin: 74%|███████▍ | 7.33G/9.90G [00:09<00:03, 689MB/s] pytorch_model-00002-of-00003.bin: 76%|███████▌ | 7.51G/9.90G [00:09<00:02, 914MB/s] pytorch_model-00002-of-00003.bin: 77%|███████▋ | 7.61G/9.90G [00:09<00:02, 887MB/s] pytorch_model-00002-of-00003.bin: 78%|███████▊ | 7.72G/9.90G [00:09<00:04, 542MB/s] pytorch_model-00002-of-00003.bin: 79%|███████▉ | 7.80G/9.90G [00:10<00:03, 552MB/s] pytorch_model-00002-of-00003.bin: 80%|███████▉ | 7.87G/9.90G [00:10<00:03, 572MB/s] pytorch_model-00002-of-00003.bin: 80%|████████ | 7.95G/9.90G [00:10<00:03, 534MB/s] pytorch_model-00002-of-00003.bin: 81%|████████▏ | 8.06G/9.90G [00:10<00:02, 648MB/s] pytorch_model-00002-of-00003.bin: 82%|████████▏ | 8.15G/9.90G [00:10<00:02, 599MB/s] pytorch_model-00002-of-00003.bin: 83%|████████▎ | 8.23G/9.90G [00:10<00:02, 618MB/s] pytorch_model-00002-of-00003.bin: 84%|████████▍ | 8.30G/9.90G [00:10<00:03, 505MB/s] pytorch_model-00002-of-00003.bin: 85%|████████▍ | 8.38G/9.90G [00:11<00:02, 546MB/s] pytorch_model-00002-of-00003.bin: 85%|████████▌ | 8.46G/9.90G [00:11<00:02, 599MB/s] pytorch_model-00002-of-00003.bin: 86%|████████▌ | 8.54G/9.90G [00:11<00:02, 515MB/s] pytorch_model-00002-of-00003.bin: 87%|████████▋ | 8.60G/9.90G [00:11<00:02, 507MB/s] pytorch_model-00002-of-00003.bin: 89%|████████▉ | 8.80G/9.90G [00:11<00:01, 728MB/s] pytorch_model-00002-of-00003.bin: 90%|████████▉ | 8.88G/9.90G [00:12<00:02, 420MB/s] pytorch_model-00002-of-00003.bin: 90%|█████████ | 8.94G/9.90G [00:12<00:02, 439MB/s] pytorch_model-00002-of-00003.bin: 92%|█████████▏| 9.11G/9.90G [00:12<00:01, 644MB/s] pytorch_model-00002-of-00003.bin: 93%|█████████▎| 9.21G/9.90G [00:12<00:01, 697MB/s] pytorch_model-00002-of-00003.bin: 94%|█████████▍| 9.31G/9.90G [00:12<00:00, 767MB/s] pytorch_model-00002-of-00003.bin: 95%|█████████▌| 9.41G/9.90G [00:12<00:00, 623MB/s] pytorch_model-00002-of-00003.bin: 96%|█████████▌| 9.50G/9.90G [00:12<00:00, 648MB/s] pytorch_model-00002-of-00003.bin: 97%|█████████▋| 9.58G/9.90G [00:13<00:00, 535MB/s] pytorch_model-00002-of-00003.bin: 97%|█████████▋| 9.65G/9.90G [00:13<00:00, 537MB/s] pytorch_model-00002-of-00003.bin: 98%|█████████▊| 9.72G/9.90G [00:13<00:00, 504MB/s] pytorch_model-00002-of-00003.bin: 99%|█████████▊| 9.78G/9.90G [00:13<00:00, 468MB/s] pytorch_model-00002-of-00003.bin: 99%|█████████▉| 9.83G/9.90G [00:13<00:00, 344MB/s] pytorch_model-00002-of-00003.bin: 100%|█████████▉| 9.87G/9.90G [00:14<00:00, 284MB/s] pytorch_model-00002-of-00003.bin: 100%|█████████▉| 9.90G/9.90G [00:20<00:00, 482MB/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: pytorch_model-00003-of-00003.bin: 0%| | 0.00/6.18G [00:00<?, ?B/s] pytorch_model-00003-of-00003.bin: 0%| | 10.5M/6.18G [00:00<08:28, 12.1MB/s] pytorch_model-00003-of-00003.bin: 0%| | 21.0M/6.18G [00:00<04:07, 24.9MB/s] pytorch_model-00003-of-00003.bin: 1%| | 62.9M/6.18G [00:01<01:13, 83.2MB/s] pytorch_model-00003-of-00003.bin: 1%|▏ | 83.9M/6.18G [00:01<00:57, 106MB/s] pytorch_model-00003-of-00003.bin: 2%|▏ | 136M/6.18G [00:01<00:37, 162MB/s] pytorch_model-00003-of-00003.bin: 3%|▎ | 168M/6.18G [00:01<00:32, 183MB/s] pytorch_model-00003-of-00003.bin: 3%|▎ | 199M/6.18G [00:01<00:30, 197MB/s] pytorch_model-00003-of-00003.bin: 5%|▍ | 283M/6.18G [00:01<00:18, 320MB/s] pytorch_model-00003-of-00003.bin: 6%|▌ | 377M/6.18G [00:01<00:13, 439MB/s] pytorch_model-00003-of-00003.bin: 8%|▊ | 503M/6.18G [00:02<00:09, 625MB/s] pytorch_model-00003-of-00003.bin: 10%|▉ | 608M/6.18G [00:02<00:07, 704MB/s] pytorch_model-00003-of-00003.bin: 11%|█ | 692M/6.18G [00:02<00:08, 664MB/s] pytorch_model-00003-of-00003.bin: 13%|█▎ | 776M/6.18G [00:02<00:08, 675MB/s] pytorch_model-00003-of-00003.bin: 14%|█▍ | 891M/6.18G [00:02<00:06, 794MB/s] pytorch_model-00003-of-00003.bin: 16%|█▌ | 986M/6.18G [00:02<00:06, 778MB/s] pytorch_model-00003-of-00003.bin: 18%|█▊ | 1.09G/6.18G [00:02<00:06, 834MB/s] pytorch_model-00003-of-00003.bin: 20%|██ | 1.26G/6.18G [00:02<00:04, 1.06GB/s] pytorch_model-00003-of-00003.bin: 23%|██▎ | 1.44G/6.18G [00:02<00:03, 1.25GB/s] pytorch_model-00003-of-00003.bin: 26%|██▌ | 1.58G/6.18G [00:03<00:03, 1.31GB/s] pytorch_model-00003-of-00003.bin: 28%|██▊ | 1.72G/6.18G [00:03<00:03, 1.28GB/s] pytorch_model-00003-of-00003.bin: 31%|███ | 1.90G/6.18G [00:03<00:03, 1.38GB/s] pytorch_model-00003-of-00003.bin: 33%|███▎ | 2.07G/6.18G [00:03<00:02, 1.43GB/s] pytorch_model-00003-of-00003.bin: 36%|███▌ | 2.21G/6.18G [00:03<00:04, 958MB/s] pytorch_model-00003-of-00003.bin: 38%|███▊ | 2.34G/6.18G [00:03<00:04, 770MB/s] pytorch_model-00003-of-00003.bin: 40%|███▉ | 2.44G/6.18G [00:04<00:04, 784MB/s] pytorch_model-00003-of-00003.bin: 41%|████ | 2.54G/6.18G [00:04<00:05, 667MB/s] pytorch_model-00003-of-00003.bin: 42%|████▏ | 2.62G/6.18G [00:04<00:05, 636MB/s] pytorch_model-00003-of-00003.bin: 44%|████▎ | 2.69G/6.18G [00:04<00:06, 580MB/s] pytorch_model-00003-of-00003.bin: 46%|████▌ | 2.83G/6.18G [00:04<00:04, 736MB/s] pytorch_model-00003-of-00003.bin: 47%|████▋ | 2.93G/6.18G [00:04<00:04, 751MB/s] pytorch_model-00003-of-00003.bin: 49%|████▊ | 3.01G/6.18G [00:04<00:05, 621MB/s] pytorch_model-00003-of-00003.bin: 50%|█████ | 3.09G/6.18G [00:05<00:04, 667MB/s] pytorch_model-00003-of-00003.bin: 51%|█████▏ | 3.18G/6.18G [00:05<00:06, 436MB/s] pytorch_model-00003-of-00003.bin: 52%|█████▏ | 3.24G/6.18G [00:05<00:07, 383MB/s] pytorch_model-00003-of-00003.bin: 54%|█████▍ | 3.33G/6.18G [00:05<00:06, 461MB/s] pytorch_model-00003-of-00003.bin: 56%|█████▌ | 3.46G/6.18G [00:05<00:04, 605MB/s] pytorch_model-00003-of-00003.bin: 57%|█████▋ | 3.54G/6.18G [00:06<00:04, 588MB/s] pytorch_model-00003-of-00003.bin: 59%|█████▊ | 3.62G/6.18G [00:06<00:05, 499MB/s] pytorch_model-00003-of-00003.bin: 60%|█████▉ | 3.68G/6.18G [00:06<00:05, 477MB/s] pytorch_model-00003-of-00003.bin: 61%|██████ | 3.74G/6.18G [00:06<00:05, 444MB/s] pytorch_model-00003-of-00003.bin: 61%|██████▏ | 3.80G/6.18G [00:06<00:05, 445MB/s] pytorch_model-00003-of-00003.bin: 62%|██████▏ | 3.86G/6.18G [00:06<00:04, 472MB/s] pytorch_model-00003-of-00003.bin: 64%|██████▎ | 3.93G/6.18G [00:06<00:04, 483MB/s] pytorch_model-00003-of-00003.bin: 64%|██████▍ | 3.98G/6.18G [00:07<00:05, 432MB/s] pytorch_model-00003-of-00003.bin: 65%|██████▌ | 4.04G/6.18G [00:07<00:05, 420MB/s] pytorch_model-00003-of-00003.bin: 67%|██████▋ | 4.14G/6.18G [00:07<00:03, 551MB/s] pytorch_model-00003-of-00003.bin: 68%|██████▊ | 4.20G/6.18G [00:07<00:03, 508MB/s] pytorch_model-00003-of-00003.bin: 69%|██████▉ | 4.27G/6.18G [00:07<00:03, 518MB/s] pytorch_model-00003-of-00003.bin: 70%|███████ | 4.33G/6.18G [00:07<00:03, 490MB/s] pytorch_model-00003-of-00003.bin: 71%|███████ | 4.38G/6.18G [00:07<00:03, 492MB/s] pytorch_model-00003-of-00003.bin: 72%|███████▏ | 4.44G/6.18G [00:08<00:03, 479MB/s] pytorch_model-00003-of-00003.bin: 73%|███████▎ | 4.49G/6.18G [00:08<00:03, 479MB/s] pytorch_model-00003-of-00003.bin: 74%|███████▍ | 4.58G/6.18G [00:08<00:02, 579MB/s] pytorch_model-00003-of-00003.bin: 76%|███████▌ | 4.71G/6.18G [00:08<00:01, 759MB/s] pytorch_model-00003-of-00003.bin: 78%|███████▊ | 4.80G/6.18G [00:08<00:01, 805MB/s] pytorch_model-00003-of-00003.bin: 79%|███████▉ | 4.89G/6.18G [00:08<00:01, 786MB/s] pytorch_model-00003-of-00003.bin: 80%|████████ | 4.97G/6.18G [00:08<00:01, 767MB/s] pytorch_model-00003-of-00003.bin: 82%|████████▏ | 5.05G/6.18G [00:08<00:01, 767MB/s] pytorch_model-00003-of-00003.bin: 83%|████████▎ | 5.14G/6.18G [00:09<00:01, 533MB/s] pytorch_model-00003-of-00003.bin: 84%|████████▍ | 5.21G/6.18G [00:09<00:01, 529MB/s] pytorch_model-00003-of-00003.bin: 86%|████████▌ | 5.32G/6.18G [00:09<00:01, 626MB/s] pytorch_model-00003-of-00003.bin: 88%|████████▊ | 5.46G/6.18G [00:09<00:00, 776MB/s] pytorch_model-00003-of-00003.bin: 90%|████████▉ | 5.55G/6.18G [00:09<00:00, 733MB/s] pytorch_model-00003-of-00003.bin: 91%|█████████ | 5.63G/6.18G [00:09<00:00, 724MB/s] pytorch_model-00003-of-00003.bin: 93%|█████████▎| 5.72G/6.18G [00:09<00:00, 744MB/s] pytorch_model-00003-of-00003.bin: 94%|█████████▍| 5.80G/6.18G [00:09<00:00, 764MB/s] pytorch_model-00003-of-00003.bin: 95%|█████████▌| 5.89G/6.18G [00:10<00:00, 700MB/s] pytorch_model-00003-of-00003.bin: 96%|█████████▋| 5.96G/6.18G [00:10<00:00, 599MB/s] pytorch_model-00003-of-00003.bin: 98%|█████████▊| 6.03G/6.18G [00:10<00:00, 404MB/s] pytorch_model-00003-of-00003.bin: 98%|█████████▊| 6.08G/6.18G [00:11<00:00, 241MB/s] pytorch_model-00003-of-00003.bin: 99%|█████████▉| 6.13G/6.18G [00:11<00:00, 242MB/s] pytorch_model-00003-of-00003.bin: 100%|█████████▉| 6.17G/6.18G [00:11<00:00, 195MB/s] pytorch_model-00003-of-00003.bin: 100%|█████████▉| 6.18G/6.18G [00:12<00:00, 503MB/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: pytorch_model.bin.index.json: 0%| | 0.00/33.4k [00:00<?, ?B/s] pytorch_model.bin.index.json: 100%|██████████| 33.4k/33.4k [00:00<00:00, 8.54MB/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: special_tokens_map.json: 0%| | 0.00/414 [00:00<?, ?B/s] special_tokens_map.json: 100%|██████████| 414/414 [00:00<00:00, 5.44MB/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: tokenizer.json: 0%| | 0.00/1.84M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 1.84M/1.84M [00:00<00:00, 16.3MB/s] tokenizer.json: 100%|██████████| 1.84M/1.84M [00:00<00:00, 16.2MB/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: tokenizer.model: 0%| | 0.00/500k [00:00<?, ?B/s] tokenizer.model: 100%|██████████| 500k/500k [00:00<00:00, 5.59MB/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: tokenizer_config.json: 0%| | 0.00/725 [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 725/725 [00:00<00:00, 5.84MB/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: Downloaded to shared memory in 55.116s
chaiml-phase2-winner-13b2-v225-mkmlizer: quantizing model to /dev/shm/model_cache
chaiml-phase2-winner-13b2-v225-mkmlizer: Saving mkml model at /dev/shm/model_cache
chaiml-phase2-winner-13b2-v225-mkmlizer: Reading /tmp/tmphys0ffor/pytorch_model.bin.index.json
chaiml-phase2-winner-13b2-v225-mkmlizer: Profiling: 0%| | 0/363 [00:00<?, ?it/s] Profiling: 0%| | 1/363 [00:04<25:01, 4.15s/it] Profiling: 38%|███▊ | 139/363 [00:06<00:07, 28.23it/s] Profiling: 77%|███████▋ | 278/363 [00:07<00:01, 49.63it/s] Profiling: 100%|██████████| 363/363 [00:09<00:00, 49.43it/s] Profiling: 100%|██████████| 363/363 [00:09<00:00, 39.42it/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: quantized model in 28.247s
chaiml-phase2-winner-13b2-v225-mkmlizer: Processed model ChaiML/phase2_winner_13b2 in 84.962s
chaiml-phase2-winner-13b2-v225-mkmlizer: creating bucket guanaco-mkml-models
chaiml-phase2-winner-13b2-v225-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
chaiml-phase2-winner-13b2-v225-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v225
chaiml-phase2-winner-13b2-v225-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v225/tokenizer_config.json
chaiml-phase2-winner-13b2-v225-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v225/config.json
chaiml-phase2-winner-13b2-v225-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v225/special_tokens_map.json
chaiml-phase2-winner-13b2-v225-mkmlizer: cp /dev/shm/model_cache/tokenizer.model s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v225/tokenizer.model
chaiml-phase2-winner-13b2-v225-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v225/tokenizer.json
chaiml-phase2-winner-13b2-v225-mkmlizer: cp /dev/shm/model_cache/mkml_model.tensors s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v225/mkml_model.tensors
chaiml-phase2-winner-13b2-v225-mkmlizer: loading reward model from rirv938/reward_gpt2_preference_24m_e2
chaiml-phase2-winner-13b2-v225-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:1067: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
chaiml-phase2-winner-13b2-v225-mkmlizer: warnings.warn(
chaiml-phase2-winner-13b2-v225-mkmlizer: config.json: 0%| | 0.00/995 [00:00<?, ?B/s] config.json: 100%|██████████| 995/995 [00:00<00:00, 12.3MB/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:690: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
chaiml-phase2-winner-13b2-v225-mkmlizer: warnings.warn(
chaiml-phase2-winner-13b2-v225-mkmlizer: tokenizer_config.json: 0%| | 0.00/234 [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 234/234 [00:00<00:00, 3.13MB/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: vocab.json: 0%| | 0.00/1.04M [00:00<?, ?B/s] vocab.json: 100%|██████████| 1.04M/1.04M [00:00<00:00, 10.2MB/s] vocab.json: 100%|██████████| 1.04M/1.04M [00:00<00:00, 10.2MB/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: tokenizer.json: 0%| | 0.00/2.11M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 2.11M/2.11M [00:00<00:00, 12.6MB/s] tokenizer.json: 100%|██████████| 2.11M/2.11M [00:00<00:00, 12.5MB/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:472: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
chaiml-phase2-winner-13b2-v225-mkmlizer: warnings.warn(
chaiml-phase2-winner-13b2-v225-mkmlizer: pytorch_model.bin: 0%| | 0.00/510M [00:00<?, ?B/s] pytorch_model.bin: 2%|▏ | 10.5M/510M [00:00<00:15, 32.0MB/s] pytorch_model.bin: 4%|▍ | 21.0M/510M [00:00<00:21, 22.6MB/s] pytorch_model.bin: 12%|█▏ | 62.9M/510M [00:00<00:05, 83.3MB/s] pytorch_model.bin: 36%|███▋ | 185M/510M [00:01<00:01, 288MB/s] pytorch_model.bin: 67%|██████▋ | 343M/510M [00:01<00:00, 487MB/s] pytorch_model.bin: 84%|████████▎ | 427M/510M [00:01<00:00, 454MB/s] pytorch_model.bin: 96%|█████████▌| 489M/510M [00:02<00:00, 204MB/s] pytorch_model.bin: 100%|█████████▉| 510M/510M [00:02<00:00, 210MB/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
chaiml-phase2-winner-13b2-v225-mkmlizer: Saving duration: 0.092s
chaiml-phase2-winner-13b2-v225-mkmlizer: Processed model rirv938/reward_gpt2_preference_24m_e2 in 5.394s
chaiml-phase2-winner-13b2-v225-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/chaiml-phase2-winner-13b2-v225_reward/reward.tensors
Job chaiml-phase2-winner-13b2-v225-mkmlizer completed after 116.12s with status: succeeded
Stopping job with name chaiml-phase2-winner-13b2-v225-mkmlizer
Pipeline stage MKMLizer completed in 116.79s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.12s
Running pipeline stage ISVCDeployer
Creating inference service chaiml-phase2-winner-13b2-v225
Waiting for inference service chaiml-phase2-winner-13b2-v225 to be ready
Inference service chaiml-phase2-winner-13b2-v225 ready after 120.7554669380188s
Pipeline stage ISVCDeployer completed in 128.45s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.657670259475708s
Received healthy response to inference request in 1.7896597385406494s
Received healthy response to inference request in 1.7607007026672363s
Received healthy response to inference request in 1.731259822845459s
Received healthy response to inference request in 1.7567803859710693s
5 requests
0 failed requests
5th percentile: 1.736363935470581
10th percentile: 1.7414680480957032
20th percentile: 1.7516762733459472
30th percentile: 1.7575644493103026
40th percentile: 1.7591325759887695
50th percentile: 1.7607007026672363
60th percentile: 1.7722843170166016
70th percentile: 1.7838679313659669
80th percentile: 1.9632618427276614
90th percentile: 2.3104660511016846
95th percentile: 2.4840681552886963
99th percentile: 2.6229498386383057
mean time: 1.9392141819000244
Pipeline stage StressChecker completed in 10.64s
Running pipeline stage DaemonicModelEvalScorer
Pipeline stage DaemonicModelEvalScorer completed in 0.05s
Running pipeline stage DaemonicSafetyScorer
Pipeline stage DaemonicSafetyScorer completed in 0.05s
Running M-Eval for topic stay_in_character
M-Eval Dataset for topic stay_in_character is loaded
AUTO_DEACTIVATION: submission %s deactivated %s
chaiml-phase2-winner-13b2_v225 status is now inactive due to auto deactivation removed underperforming models
chaiml-phase2-winner-13b2_v225 status is now deployed due to admin request
chaiml-phase2-winner-13b2_v225 status is now inactive due to auto deactivation removed underperforming models
chaiml-phase2-winner-13b2_v225 status is now deployed due to admin request
chaiml-phase2-winner-13b2_v225 status is now inactive due to auto deactivation removed underperforming models
admin requested tearing down of chaiml-phase2-winner-13b2_v225
Running pipeline stage ISVCDeleter
Checking if service chaiml-phase2-winner-13b2-v225 is running
Tearing down inference service chaiml-phase2-winner-13b2-v225
Toredown service chaiml-phase2-winner-13b2-v225
Pipeline stage ISVCDeleter completed in 7.20s
Running pipeline stage MKMLModelDeleter
Cleaning model data from S3
Cleaning model data from model cache
Deleting key chaiml-phase2-winner-13b2-v225/config.json from bucket guanaco-mkml-models
Deleting key chaiml-phase2-winner-13b2-v225/mkml_model.tensors from bucket guanaco-mkml-models
Deleting key chaiml-phase2-winner-13b2-v225/special_tokens_map.json from bucket guanaco-mkml-models
Deleting key chaiml-phase2-winner-13b2-v225/tokenizer.json from bucket guanaco-mkml-models
Deleting key chaiml-phase2-winner-13b2-v225/tokenizer.model from bucket guanaco-mkml-models
Deleting key chaiml-phase2-winner-13b2-v225/tokenizer_config.json from bucket guanaco-mkml-models
Cleaning model data from model cache
Deleting key chaiml-phase2-winner-13b2-v225_reward/config.json from bucket guanaco-reward-models
Deleting key chaiml-phase2-winner-13b2-v225_reward/merges.txt from bucket guanaco-reward-models
Deleting key chaiml-phase2-winner-13b2-v225_reward/reward.tensors from bucket guanaco-reward-models
Deleting key chaiml-phase2-winner-13b2-v225_reward/special_tokens_map.json from bucket guanaco-reward-models
Deleting key chaiml-phase2-winner-13b2-v225_reward/tokenizer.json from bucket guanaco-reward-models
Deleting key chaiml-phase2-winner-13b2-v225_reward/tokenizer_config.json from bucket guanaco-reward-models
Deleting key chaiml-phase2-winner-13b2-v225_reward/vocab.json from bucket guanaco-reward-models
Pipeline stage MKMLModelDeleter completed in 3.00s
chaiml-phase2-winner-13b2_v225 status is now torndown due to DeploymentManager action