submission_id: chaiml-phase2-winner-13b2_v225
developer_uid: robert_irvine
status: deployed
model_repo: ChaiML/phase2_winner_13b2
reward_repo: rirv938/reward_gpt2_preference_24m_e2
generation_params: {'temperature': 1.0733671330918084, 'top_p': 0.6971846333941389, 'top_k': 50, 'presence_penalty': 0.0, 'frequency_penalty': 0.312882778758545, 'stopping_words': ['\n'], 'max_input_tokens': 512, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:'}
reward_formatter: {'memory_template': 'Memory: {memory}\n', 'prompt_template': '{prompt}\n', 'bot_template': 'Bot: {message}\n', 'user_template': 'User: {message}\n', 'response_template': 'Bot:'}
timestamp: 2024-02-13T22:03:53+00:00
model_name: chaiml-phase2-winner-13b2_v225
model_eval_status: success
safety_score: 0.93
entertaining: 7.06
stay_in_character: 8.56
user_preference: 7.4
double_thumbs_up: 5687
thumbs_up: 8283
thumbs_down: 3626
num_battles: 328762
num_wins: 162296
win_ratio: 0.4936580261709078
celo_rating: 1145.13
Resubmit model
Running pipeline stage MKMLizer
Starting job with name chaiml-phase2-winner-13b2-v225-mkmlizer
Waiting for job on chaiml-phase2-winner-13b2-v225-mkmlizer to finish
chaiml-phase2-winner-13b2-v225-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
chaiml-phase2-winner-13b2-v225-mkmlizer: ║ _____ __ __ ║
chaiml-phase2-winner-13b2-v225-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
chaiml-phase2-winner-13b2-v225-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
chaiml-phase2-winner-13b2-v225-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
chaiml-phase2-winner-13b2-v225-mkmlizer: ║ /___/ ║
chaiml-phase2-winner-13b2-v225-mkmlizer: ║ ║
chaiml-phase2-winner-13b2-v225-mkmlizer: ║ Version: 0.6.11 ║
chaiml-phase2-winner-13b2-v225-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
chaiml-phase2-winner-13b2-v225-mkmlizer: ║ ║
chaiml-phase2-winner-13b2-v225-mkmlizer: ║ The license key for the current software has been verified as ║
chaiml-phase2-winner-13b2-v225-mkmlizer: ║ belonging to: ║
chaiml-phase2-winner-13b2-v225-mkmlizer: ║ ║
chaiml-phase2-winner-13b2-v225-mkmlizer: ║ Chai Research Corp. ║
chaiml-phase2-winner-13b2-v225-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
chaiml-phase2-winner-13b2-v225-mkmlizer: ║ Expiration: 2024-04-15 23:59:59 ║
chaiml-phase2-winner-13b2-v225-mkmlizer: ║ ║
chaiml-phase2-winner-13b2-v225-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
chaiml-phase2-winner-13b2-v225-mkmlizer: .gitattributes: 0%| | 0.00/1.52k [00:00<?, ?B/s] .gitattributes: 100%|██████████| 1.52k/1.52k [00:00<00:00, 20.1MB/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: README.md: 0%| | 0.00/1.53k [00:00<?, ?B/s] README.md: 100%|██████████| 1.53k/1.53k [00:00<00:00, 12.2MB/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: config.json: 0%| | 0.00/651 [00:00<?, ?B/s] config.json: 100%|██████████| 651/651 [00:00<00:00, 9.86MB/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: generation_config.json: 0%| | 0.00/170 [00:00<?, ?B/s] generation_config.json: 100%|██████████| 170/170 [00:00<00:00, 1.39MB/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: pytorch_model-00001-of-00003.bin: 0%| | 0.00/9.95G [00:00<?, ?B/s] pytorch_model-00001-of-00003.bin: 0%| | 10.5M/9.95G [00:00<05:16, 31.4MB/s] pytorch_model-00001-of-00003.bin: 0%| | 31.5M/9.95G [00:00<03:20, 49.4MB/s] pytorch_model-00001-of-00003.bin: 1%| | 62.9M/9.95G [00:00<01:47, 92.1MB/s] pytorch_model-00001-of-00003.bin: 2%|▏ | 157M/9.95G [00:00<00:38, 257MB/s] pytorch_model-00001-of-00003.bin: 2%|▏ | 220M/9.95G [00:01<00:29, 335MB/s] pytorch_model-00001-of-00003.bin: 3%|▎ | 273M/9.95G [00:01<00:25, 374MB/s] pytorch_model-00001-of-00003.bin: 3%|▎ | 336M/9.95G [00:01<00:23, 416MB/s] pytorch_model-00001-of-00003.bin: 4%|▍ | 388M/9.95G [00:01<00:22, 426MB/s] pytorch_model-00001-of-00003.bin: 5%|▌ | 524M/9.95G [00:01<00:14, 665MB/s] pytorch_model-00001-of-00003.bin: 6%|▌ | 608M/9.95G [00:01<00:13, 669MB/s] pytorch_model-00001-of-00003.bin: 7%|▋ | 682M/9.95G [00:01<00:15, 587MB/s] pytorch_model-00001-of-00003.bin: 8%|▊ | 765M/9.95G [00:01<00:14, 638MB/s] pytorch_model-00001-of-00003.bin: 9%|▉ | 881M/9.95G [00:01<00:11, 761MB/s] pytorch_model-00001-of-00003.bin: 10%|▉ | 965M/9.95G [00:02<00:11, 758MB/s] pytorch_model-00001-of-00003.bin: 11%|█ | 1.05G/9.95G [00:02<00:15, 562MB/s] pytorch_model-00001-of-00003.bin: 11%|█▏ | 1.13G/9.95G [00:02<00:16, 551MB/s] pytorch_model-00001-of-00003.bin: 12%|█▏ | 1.22G/9.95G [00:02<00:14, 606MB/s] pytorch_model-00001-of-00003.bin: 13%|█▎ | 1.29G/9.95G [00:02<00:14, 618MB/s] pytorch_model-00001-of-00003.bin: 14%|█▎ | 1.36G/9.95G [00:02<00:14, 588MB/s] pytorch_model-00001-of-00003.bin: 15%|█▍ | 1.45G/9.95G [00:02<00:13, 646MB/s] pytorch_model-00001-of-00003.bin: 16%|█▌ | 1.57G/9.95G [00:03<00:10, 783MB/s] pytorch_model-00001-of-00003.bin: 18%|█▊ | 1.76G/9.95G [00:03<00:07, 1.06GB/s] pytorch_model-00001-of-00003.bin: 19%|█▉ | 1.88G/9.95G [00:03<00:08, 945MB/s] pytorch_model-00001-of-00003.bin: 20%|█▉ | 1.98G/9.95G [00:03<00:08, 956MB/s] pytorch_model-00001-of-00003.bin: 21%|██▏ | 2.13G/9.95G [00:03<00:07, 1.02GB/s] pytorch_model-00001-of-00003.bin: 23%|██▎ | 2.28G/9.95G [00:03<00:06, 1.13GB/s] pytorch_model-00001-of-00003.bin: 24%|██▍ | 2.40G/9.95G [00:03<00:07, 1.05GB/s] pytorch_model-00001-of-00003.bin: 26%|██▌ | 2.60G/9.95G [00:03<00:05, 1.27GB/s] pytorch_model-00001-of-00003.bin: 28%|██▊ | 2.74G/9.95G [00:04<00:10, 709MB/s] pytorch_model-00001-of-00003.bin: 29%|██▊ | 2.84G/9.95G [00:04<00:13, 538MB/s] pytorch_model-00001-of-00003.bin: 29%|██▉ | 2.93G/9.95G [00:04<00:13, 518MB/s] pytorch_model-00001-of-00003.bin: 31%|███ | 3.04G/9.95G [00:04<00:11, 601MB/s] pytorch_model-00001-of-00003.bin: 31%|███▏ | 3.12G/9.95G [00:05<00:10, 631MB/s] pytorch_model-00001-of-00003.bin: 32%|███▏ | 3.21G/9.95G [00:05<00:11, 600MB/s] pytorch_model-00001-of-00003.bin: 33%|███▎ | 3.29G/9.95G [00:05<00:10, 643MB/s] pytorch_model-00001-of-00003.bin: 34%|███▍ | 3.37G/9.95G [00:05<00:10, 654MB/s] pytorch_model-00001-of-00003.bin: 35%|███▍ | 3.44G/9.95G [00:05<00:10, 633MB/s] pytorch_model-00001-of-00003.bin: 35%|███▌ | 3.51G/9.95G [00:05<00:11, 537MB/s] pytorch_model-00001-of-00003.bin: 36%|███▌ | 3.58G/9.95G [00:05<00:12, 519MB/s] pytorch_model-00001-of-00003.bin: 37%|███▋ | 3.64G/9.95G [00:06<00:12, 507MB/s] pytorch_model-00001-of-00003.bin: 38%|███▊ | 3.73G/9.95G [00:06<00:10, 597MB/s] pytorch_model-00001-of-00003.bin: 38%|███▊ | 3.81G/9.95G [00:06<00:10, 588MB/s] pytorch_model-00001-of-00003.bin: 39%|███▉ | 3.87G/9.95G [00:06<00:14, 422MB/s] pytorch_model-00001-of-00003.bin: 39%|███▉ | 3.92G/9.95G [00:06<00:16, 360MB/s] pytorch_model-00001-of-00003.bin: 40%|████ | 4.00G/9.95G [00:06<00:14, 416MB/s] pytorch_model-00001-of-00003.bin: 41%|████ | 4.05G/9.95G [00:07<00:14, 418MB/s] pytorch_model-00001-of-00003.bin: 41%|████▏ | 4.11G/9.95G [00:07<00:12, 460MB/s] pytorch_model-00001-of-00003.bin: 42%|████▏ | 4.19G/9.95G [00:07<00:10, 538MB/s] pytorch_model-00001-of-00003.bin: 43%|████▎ | 4.26G/9.95G [00:07<00:10, 559MB/s] pytorch_model-00001-of-00003.bin: 43%|████▎ | 4.32G/9.95G [00:07<00:12, 468MB/s] pytorch_model-00001-of-00003.bin: 44%|████▍ | 4.37G/9.95G [00:07<00:13, 407MB/s] pytorch_model-00001-of-00003.bin: 45%|████▍ | 4.45G/9.95G [00:07<00:12, 454MB/s] pytorch_model-00001-of-00003.bin: 45%|████▌ | 4.50G/9.95G [00:08<00:16, 321MB/s] pytorch_model-00001-of-00003.bin: 46%|████▌ | 4.55G/9.95G [00:08<00:15, 344MB/s] pytorch_model-00001-of-00003.bin: 46%|████▌ | 4.59G/9.95G [00:08<00:18, 294MB/s] pytorch_model-00001-of-00003.bin: 47%|████▋ | 4.67G/9.95G [00:08<00:14, 370MB/s] pytorch_model-00001-of-00003.bin: 47%|████▋ | 4.72G/9.95G [00:08<00:15, 344MB/s] pytorch_model-00001-of-00003.bin: 49%|████▉ | 4.87G/9.95G [00:08<00:09, 556MB/s] pytorch_model-00001-of-00003.bin: 50%|█████ | 4.98G/9.95G [00:08<00:07, 646MB/s] pytorch_model-00001-of-00003.bin: 51%|█████ | 5.05G/9.95G [00:09<00:08, 569MB/s] pytorch_model-00001-of-00003.bin: 52%|█████▏ | 5.13G/9.95G [00:09<00:09, 506MB/s] pytorch_model-00001-of-00003.bin: 52%|█████▏ | 5.20G/9.95G [00:09<00:08, 544MB/s] pytorch_model-00001-of-00003.bin: 53%|█████▎ | 5.26G/9.95G [00:09<00:12, 375MB/s] pytorch_model-00001-of-00003.bin: 53%|█████▎ | 5.32G/9.95G [00:10<00:15, 297MB/s] pytorch_model-00001-of-00003.bin: 54%|█████▍ | 5.37G/9.95G [00:10<00:15, 295MB/s] pytorch_model-00001-of-00003.bin: 55%|█████▍ | 5.46G/9.95G [00:10<00:11, 401MB/s] pytorch_model-00001-of-00003.bin: 56%|█████▌ | 5.54G/9.95G [00:10<00:10, 419MB/s] pytorch_model-00001-of-00003.bin: 56%|█████▋ | 5.61G/9.95G [00:10<00:09, 462MB/s] pytorch_model-00001-of-00003.bin: 57%|█████▋ | 5.68G/9.95G [00:10<00:08, 495MB/s] pytorch_model-00001-of-00003.bin: 58%|█████▊ | 5.76G/9.95G [00:10<00:08, 510MB/s] pytorch_model-00001-of-00003.bin: 59%|█████▊ | 5.84G/9.95G [00:11<00:07, 577MB/s] pytorch_model-00001-of-00003.bin: 59%|█████▉ | 5.90G/9.95G [00:11<00:06, 582MB/s] pytorch_model-00001-of-00003.bin: 61%|██████ | 6.03G/9.95G [00:11<00:05, 702MB/s] pytorch_model-00001-of-00003.bin: 61%|██████▏ | 6.11G/9.95G [00:11<00:05, 732MB/s] pytorch_model-00001-of-00003.bin: 62%|██████▏ | 6.20G/9.95G [00:11<00:05, 735MB/s] pytorch_model-00001-of-00003.bin: 63%|██████▎ | 6.29G/9.95G [00:11<00:04, 753MB/s] pytorch_model-00001-of-00003.bin: 64%|██████▍ | 6.41G/9.95G [00:11<00:04, 834MB/s] pytorch_model-00001-of-00003.bin: 65%|██████▌ | 6.50G/9.95G [00:11<00:04, 795MB/s] pytorch_model-00001-of-00003.bin: 66%|██████▌ | 6.59G/9.95G [00:12<00:05, 603MB/s] pytorch_model-00001-of-00003.bin: 67%|██████▋ | 6.66G/9.95G [00:12<00:05, 625MB/s] pytorch_model-00001-of-00003.bin: 68%|██████▊ | 6.73G/9.95G [00:12<00:05, 561MB/s] pytorch_model-00001-of-00003.bin: 69%|██████▊ | 6.83G/9.95G [00:12<00:04, 646MB/s] pytorch_model-00001-of-00003.bin: 70%|██████▉ | 6.94G/9.95G [00:12<00:04, 741MB/s] pytorch_model-00001-of-00003.bin: 71%|███████ | 7.05G/9.95G [00:12<00:03, 792MB/s] pytorch_model-00001-of-00003.bin: 72%|███████▏ | 7.16G/9.95G [00:12<00:03, 758MB/s] pytorch_model-00001-of-00003.bin: 73%|███████▎ | 7.25G/9.95G [00:12<00:03, 753MB/s] pytorch_model-00001-of-00003.bin: 74%|███████▎ | 7.33G/9.95G [00:13<00:03, 727MB/s] pytorch_model-00001-of-00003.bin: 75%|███████▍ | 7.41G/9.95G [00:13<00:04, 601MB/s] pytorch_model-00001-of-00003.bin: 75%|███████▌ | 7.49G/9.95G [00:13<00:03, 626MB/s] pytorch_model-00001-of-00003.bin: 76%|███████▋ | 7.60G/9.95G [00:13<00:03, 735MB/s] pytorch_model-00001-of-00003.bin: 77%|███████▋ | 7.69G/9.95G [00:13<00:03, 648MB/s] pytorch_model-00001-of-00003.bin: 78%|███████▊ | 7.76G/9.95G [00:13<00:03, 586MB/s] pytorch_model-00001-of-00003.bin: 79%|███████▊ | 7.82G/9.95G [00:13<00:03, 564MB/s] pytorch_model-00001-of-00003.bin: 79%|███████▉ | 7.90G/9.95G [00:14<00:03, 560MB/s] pytorch_model-00001-of-00003.bin: 80%|████████ | 7.97G/9.95G [00:14<00:03, 583MB/s] pytorch_model-00001-of-00003.bin: 81%|████████ | 8.05G/9.95G [00:14<00:02, 637MB/s] pytorch_model-00001-of-00003.bin: 82%|████████▏ | 8.13G/9.95G [00:14<00:03, 495MB/s] pytorch_model-00001-of-00003.bin: 82%|████████▏ | 8.19G/9.95G [00:14<00:04, 416MB/s] pytorch_model-00001-of-00003.bin: 83%|████████▎ | 8.27G/9.95G [00:14<00:03, 497MB/s] pytorch_model-00001-of-00003.bin: 84%|████████▍ | 8.34G/9.95G [00:14<00:03, 493MB/s] pytorch_model-00001-of-00003.bin: 84%|████████▍ | 8.40G/9.95G [00:15<00:03, 411MB/s] pytorch_model-00001-of-00003.bin: 85%|████████▍ | 8.45G/9.95G [00:15<00:03, 424MB/s] pytorch_model-00001-of-00003.bin: 85%|████████▌ | 8.50G/9.95G [00:15<00:03, 432MB/s] pytorch_model-00001-of-00003.bin: 86%|████████▌ | 8.57G/9.95G [00:15<00:03, 460MB/s] pytorch_model-00001-of-00003.bin: 87%|████████▋ | 8.63G/9.95G [00:15<00:02, 479MB/s] pytorch_model-00001-of-00003.bin: 88%|████████▊ | 8.73G/9.95G [00:15<00:02, 574MB/s] pytorch_model-00001-of-00003.bin: 89%|████████▉ | 8.86G/9.95G [00:15<00:01, 725MB/s] pytorch_model-00001-of-00003.bin: 90%|█████████ | 8.97G/9.95G [00:16<00:01, 786MB/s] pytorch_model-00001-of-00003.bin: 91%|█████████ | 9.07G/9.95G [00:16<00:01, 853MB/s] pytorch_model-00001-of-00003.bin: 92%|█████████▏| 9.16G/9.95G [00:16<00:00, 876MB/s] pytorch_model-00001-of-00003.bin: 93%|█████████▎| 9.26G/9.95G [00:16<00:00, 696MB/s] pytorch_model-00001-of-00003.bin: 94%|█████████▍| 9.34G/9.95G [00:16<00:00, 710MB/s] pytorch_model-00001-of-00003.bin: 95%|█████████▍| 9.45G/9.95G [00:16<00:00, 767MB/s] pytorch_model-00001-of-00003.bin: 96%|█████████▌| 9.53G/9.95G [00:16<00:00, 754MB/s] pytorch_model-00001-of-00003.bin: 97%|█████████▋| 9.62G/9.95G [00:16<00:00, 784MB/s] pytorch_model-00001-of-00003.bin: 98%|█████████▊| 9.71G/9.95G [00:17<00:00, 716MB/s] pytorch_model-00001-of-00003.bin: 98%|█████████▊| 9.79G/9.95G [00:17<00:00, 645MB/s] pytorch_model-00001-of-00003.bin: 99%|█████████▉| 9.86G/9.95G [00:17<00:00, 623MB/s] pytorch_model-00001-of-00003.bin: 100%|█████████▉| 9.94G/9.95G [00:17<00:00, 303MB/s] pytorch_model-00001-of-00003.bin: 100%|█████████▉| 9.95G/9.95G [00:18<00:00, 540MB/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: pytorch_model-00002-of-00003.bin: 0%| | 0.00/9.90G [00:00<?, ?B/s] pytorch_model-00002-of-00003.bin: 0%| | 10.5M/9.90G [00:00<05:31, 29.9MB/s] pytorch_model-00002-of-00003.bin: 0%| | 21.0M/9.90G [00:00<05:00, 32.9MB/s] pytorch_model-00002-of-00003.bin: 1%| | 94.4M/9.90G [00:00<00:54, 178MB/s] pytorch_model-00002-of-00003.bin: 3%|▎ | 252M/9.90G [00:00<00:19, 491MB/s] pytorch_model-00002-of-00003.bin: 4%|▍ | 377M/9.90G [00:00<00:14, 669MB/s] pytorch_model-00002-of-00003.bin: 6%|▌ | 619M/9.90G [00:01<00:08, 1.08GB/s] pytorch_model-00002-of-00003.bin: 8%|▊ | 755M/9.90G [00:01<00:08, 1.06GB/s] pytorch_model-00002-of-00003.bin: 9%|▉ | 881M/9.90G [00:01<00:08, 1.09GB/s] pytorch_model-00002-of-00003.bin: 10%|█ | 1.01G/9.90G [00:01<00:11, 751MB/s] pytorch_model-00002-of-00003.bin: 12%|█▏ | 1.16G/9.90G [00:01<00:09, 899MB/s] pytorch_model-00002-of-00003.bin: 13%|█▎ | 1.30G/9.90G [00:01<00:08, 999MB/s] pytorch_model-00002-of-00003.bin: 14%|█▍ | 1.43G/9.90G [00:02<00:11, 737MB/s] pytorch_model-00002-of-00003.bin: 15%|█▌ | 1.53G/9.90G [00:02<00:16, 496MB/s] pytorch_model-00002-of-00003.bin: 16%|█▋ | 1.61G/9.90G [00:02<00:17, 473MB/s] pytorch_model-00002-of-00003.bin: 17%|█▋ | 1.69G/9.90G [00:02<00:17, 475MB/s] pytorch_model-00002-of-00003.bin: 18%|█▊ | 1.75G/9.90G [00:03<00:17, 467MB/s] pytorch_model-00002-of-00003.bin: 19%|█▊ | 1.84G/9.90G [00:03<00:16, 485MB/s] pytorch_model-00002-of-00003.bin: 20%|█▉ | 1.95G/9.90G [00:03<00:13, 607MB/s] pytorch_model-00002-of-00003.bin: 20%|██ | 2.02G/9.90G [00:03<00:12, 616MB/s] pytorch_model-00002-of-00003.bin: 22%|██▏ | 2.18G/9.90G [00:03<00:10, 758MB/s] pytorch_model-00002-of-00003.bin: 23%|██▎ | 2.26G/9.90G [00:03<00:10, 752MB/s] pytorch_model-00002-of-00003.bin: 24%|██▎ | 2.35G/9.90G [00:03<00:10, 718MB/s] pytorch_model-00002-of-00003.bin: 25%|██▍ | 2.47G/9.90G [00:03<00:08, 840MB/s] pytorch_model-00002-of-00003.bin: 26%|██▌ | 2.57G/9.90G [00:04<00:08, 843MB/s] pytorch_model-00002-of-00003.bin: 28%|██▊ | 2.74G/9.90G [00:04<00:06, 1.04GB/s] pytorch_model-00002-of-00003.bin: 29%|██▉ | 2.90G/9.90G [00:04<00:05, 1.20GB/s] pytorch_model-00002-of-00003.bin: 31%|███ | 3.03G/9.90G [00:04<00:05, 1.21GB/s] pytorch_model-00002-of-00003.bin: 33%|███▎ | 3.23G/9.90G [00:04<00:04, 1.42GB/s] pytorch_model-00002-of-00003.bin: 34%|███▍ | 3.38G/9.90G [00:04<00:04, 1.34GB/s] pytorch_model-00002-of-00003.bin: 36%|███▌ | 3.55G/9.90G [00:04<00:04, 1.45GB/s] pytorch_model-00002-of-00003.bin: 38%|███▊ | 3.74G/9.90G [00:04<00:03, 1.56GB/s] pytorch_model-00002-of-00003.bin: 41%|████ | 4.07G/9.90G [00:04<00:02, 1.98GB/s] pytorch_model-00002-of-00003.bin: 44%|████▎ | 4.33G/9.90G [00:04<00:02, 2.16GB/s] pytorch_model-00002-of-00003.bin: 46%|████▌ | 4.55G/9.90G [00:05<00:03, 1.66GB/s] pytorch_model-00002-of-00003.bin: 48%|████▊ | 4.74G/9.90G [00:05<00:05, 917MB/s] pytorch_model-00002-of-00003.bin: 49%|████▉ | 4.89G/9.90G [00:05<00:05, 899MB/s] pytorch_model-00002-of-00003.bin: 51%|█████ | 5.01G/9.90G [00:05<00:05, 869MB/s] pytorch_model-00002-of-00003.bin: 52%|█████▏ | 5.13G/9.90G [00:06<00:05, 892MB/s] pytorch_model-00002-of-00003.bin: 53%|█████▎ | 5.24G/9.90G [00:06<00:05, 782MB/s] pytorch_model-00002-of-00003.bin: 54%|█████▍ | 5.34G/9.90G [00:06<00:06, 751MB/s] pytorch_model-00002-of-00003.bin: 55%|█████▍ | 5.43G/9.90G [00:06<00:06, 713MB/s] pytorch_model-00002-of-00003.bin: 56%|█████▌ | 5.52G/9.90G [00:06<00:08, 532MB/s] pytorch_model-00002-of-00003.bin: 56%|█████▋ | 5.58G/9.90G [00:07<00:08, 524MB/s] pytorch_model-00002-of-00003.bin: 57%|█████▋ | 5.64G/9.90G [00:07<00:08, 498MB/s] pytorch_model-00002-of-00003.bin: 58%|█████▊ | 5.75G/9.90G [00:07<00:06, 607MB/s] pytorch_model-00002-of-00003.bin: 59%|█████▉ | 5.87G/9.90G [00:07<00:05, 742MB/s] pytorch_model-00002-of-00003.bin: 60%|██████ | 5.96G/9.90G [00:07<00:05, 726MB/s] pytorch_model-00002-of-00003.bin: 62%|██████▏ | 6.10G/9.90G [00:07<00:04, 898MB/s] pytorch_model-00002-of-00003.bin: 63%|██████▎ | 6.22G/9.90G [00:07<00:03, 926MB/s] pytorch_model-00002-of-00003.bin: 64%|██████▍ | 6.32G/9.90G [00:07<00:04, 809MB/s] pytorch_model-00002-of-00003.bin: 66%|██████▌ | 6.51G/9.90G [00:07<00:03, 1.06GB/s] pytorch_model-00002-of-00003.bin: 67%|██████▋ | 6.64G/9.90G [00:08<00:04, 804MB/s] pytorch_model-00002-of-00003.bin: 68%|██████▊ | 6.74G/9.90G [00:08<00:04, 784MB/s] pytorch_model-00002-of-00003.bin: 69%|██████▉ | 6.84G/9.90G [00:08<00:04, 631MB/s] pytorch_model-00002-of-00003.bin: 70%|███████ | 6.95G/9.90G [00:08<00:04, 689MB/s] pytorch_model-00002-of-00003.bin: 71%|███████ | 7.04G/9.90G [00:08<00:04, 692MB/s] pytorch_model-00002-of-00003.bin: 72%|███████▏ | 7.12G/9.90G [00:09<00:04, 597MB/s] pytorch_model-00002-of-00003.bin: 73%|███████▎ | 7.25G/9.90G [00:09<00:03, 711MB/s] pytorch_model-00002-of-00003.bin: 74%|███████▍ | 7.33G/9.90G [00:09<00:03, 689MB/s] pytorch_model-00002-of-00003.bin: 76%|███████▌ | 7.51G/9.90G [00:09<00:02, 914MB/s] pytorch_model-00002-of-00003.bin: 77%|███████▋ | 7.61G/9.90G [00:09<00:02, 887MB/s] pytorch_model-00002-of-00003.bin: 78%|███████▊ | 7.72G/9.90G [00:09<00:04, 542MB/s] pytorch_model-00002-of-00003.bin: 79%|███████▉ | 7.80G/9.90G [00:10<00:03, 552MB/s] pytorch_model-00002-of-00003.bin: 80%|███████▉ | 7.87G/9.90G [00:10<00:03, 572MB/s] pytorch_model-00002-of-00003.bin: 80%|████████ | 7.95G/9.90G [00:10<00:03, 534MB/s] pytorch_model-00002-of-00003.bin: 81%|████████▏ | 8.06G/9.90G [00:10<00:02, 648MB/s] pytorch_model-00002-of-00003.bin: 82%|████████▏ | 8.15G/9.90G [00:10<00:02, 599MB/s] pytorch_model-00002-of-00003.bin: 83%|████████▎ | 8.23G/9.90G [00:10<00:02, 618MB/s] pytorch_model-00002-of-00003.bin: 84%|████████▍ | 8.30G/9.90G [00:10<00:03, 505MB/s] pytorch_model-00002-of-00003.bin: 85%|████████▍ | 8.38G/9.90G [00:11<00:02, 546MB/s] pytorch_model-00002-of-00003.bin: 85%|████████▌ | 8.46G/9.90G [00:11<00:02, 599MB/s] pytorch_model-00002-of-00003.bin: 86%|████████▌ | 8.54G/9.90G [00:11<00:02, 515MB/s] pytorch_model-00002-of-00003.bin: 87%|████████▋ | 8.60G/9.90G [00:11<00:02, 507MB/s] pytorch_model-00002-of-00003.bin: 89%|████████▉ | 8.80G/9.90G [00:11<00:01, 728MB/s] pytorch_model-00002-of-00003.bin: 90%|████████▉ | 8.88G/9.90G [00:12<00:02, 420MB/s] pytorch_model-00002-of-00003.bin: 90%|█████████ | 8.94G/9.90G [00:12<00:02, 439MB/s] pytorch_model-00002-of-00003.bin: 92%|█████████▏| 9.11G/9.90G [00:12<00:01, 644MB/s] pytorch_model-00002-of-00003.bin: 93%|█████████▎| 9.21G/9.90G [00:12<00:01, 697MB/s] pytorch_model-00002-of-00003.bin: 94%|█████████▍| 9.31G/9.90G [00:12<00:00, 767MB/s] pytorch_model-00002-of-00003.bin: 95%|█████████▌| 9.41G/9.90G [00:12<00:00, 623MB/s] pytorch_model-00002-of-00003.bin: 96%|█████████▌| 9.50G/9.90G [00:12<00:00, 648MB/s] pytorch_model-00002-of-00003.bin: 97%|█████████▋| 9.58G/9.90G [00:13<00:00, 535MB/s] pytorch_model-00002-of-00003.bin: 97%|█████████▋| 9.65G/9.90G [00:13<00:00, 537MB/s] pytorch_model-00002-of-00003.bin: 98%|█████████▊| 9.72G/9.90G [00:13<00:00, 504MB/s] pytorch_model-00002-of-00003.bin: 99%|█████████▊| 9.78G/9.90G [00:13<00:00, 468MB/s] pytorch_model-00002-of-00003.bin: 99%|█████████▉| 9.83G/9.90G [00:13<00:00, 344MB/s] pytorch_model-00002-of-00003.bin: 100%|█████████▉| 9.87G/9.90G [00:14<00:00, 284MB/s] pytorch_model-00002-of-00003.bin: 100%|█████████▉| 9.90G/9.90G [00:20<00:00, 482MB/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: pytorch_model-00003-of-00003.bin: 0%| | 0.00/6.18G [00:00<?, ?B/s] pytorch_model-00003-of-00003.bin: 0%| | 10.5M/6.18G [00:00<08:28, 12.1MB/s] pytorch_model-00003-of-00003.bin: 0%| | 21.0M/6.18G [00:00<04:07, 24.9MB/s] pytorch_model-00003-of-00003.bin: 1%| | 62.9M/6.18G [00:01<01:13, 83.2MB/s] pytorch_model-00003-of-00003.bin: 1%|▏ | 83.9M/6.18G [00:01<00:57, 106MB/s] pytorch_model-00003-of-00003.bin: 2%|▏ | 136M/6.18G [00:01<00:37, 162MB/s] pytorch_model-00003-of-00003.bin: 3%|▎ | 168M/6.18G [00:01<00:32, 183MB/s] pytorch_model-00003-of-00003.bin: 3%|▎ | 199M/6.18G [00:01<00:30, 197MB/s] pytorch_model-00003-of-00003.bin: 5%|▍ | 283M/6.18G [00:01<00:18, 320MB/s] pytorch_model-00003-of-00003.bin: 6%|▌ | 377M/6.18G [00:01<00:13, 439MB/s] pytorch_model-00003-of-00003.bin: 8%|▊ | 503M/6.18G [00:02<00:09, 625MB/s] pytorch_model-00003-of-00003.bin: 10%|▉ | 608M/6.18G [00:02<00:07, 704MB/s] pytorch_model-00003-of-00003.bin: 11%|█ | 692M/6.18G [00:02<00:08, 664MB/s] pytorch_model-00003-of-00003.bin: 13%|█▎ | 776M/6.18G [00:02<00:08, 675MB/s] pytorch_model-00003-of-00003.bin: 14%|█▍ | 891M/6.18G [00:02<00:06, 794MB/s] pytorch_model-00003-of-00003.bin: 16%|█▌ | 986M/6.18G [00:02<00:06, 778MB/s] pytorch_model-00003-of-00003.bin: 18%|█▊ | 1.09G/6.18G [00:02<00:06, 834MB/s] pytorch_model-00003-of-00003.bin: 20%|██ | 1.26G/6.18G [00:02<00:04, 1.06GB/s] pytorch_model-00003-of-00003.bin: 23%|██▎ | 1.44G/6.18G [00:02<00:03, 1.25GB/s] pytorch_model-00003-of-00003.bin: 26%|██▌ | 1.58G/6.18G [00:03<00:03, 1.31GB/s] pytorch_model-00003-of-00003.bin: 28%|██▊ | 1.72G/6.18G [00:03<00:03, 1.28GB/s] pytorch_model-00003-of-00003.bin: 31%|███ | 1.90G/6.18G [00:03<00:03, 1.38GB/s] pytorch_model-00003-of-00003.bin: 33%|███▎ | 2.07G/6.18G [00:03<00:02, 1.43GB/s] pytorch_model-00003-of-00003.bin: 36%|███▌ | 2.21G/6.18G [00:03<00:04, 958MB/s] pytorch_model-00003-of-00003.bin: 38%|███▊ | 2.34G/6.18G [00:03<00:04, 770MB/s] pytorch_model-00003-of-00003.bin: 40%|███▉ | 2.44G/6.18G [00:04<00:04, 784MB/s] pytorch_model-00003-of-00003.bin: 41%|████ | 2.54G/6.18G [00:04<00:05, 667MB/s] pytorch_model-00003-of-00003.bin: 42%|████▏ | 2.62G/6.18G [00:04<00:05, 636MB/s] pytorch_model-00003-of-00003.bin: 44%|████▎ | 2.69G/6.18G [00:04<00:06, 580MB/s] pytorch_model-00003-of-00003.bin: 46%|████▌ | 2.83G/6.18G [00:04<00:04, 736MB/s] pytorch_model-00003-of-00003.bin: 47%|████▋ | 2.93G/6.18G [00:04<00:04, 751MB/s] pytorch_model-00003-of-00003.bin: 49%|████▊ | 3.01G/6.18G [00:04<00:05, 621MB/s] pytorch_model-00003-of-00003.bin: 50%|█████ | 3.09G/6.18G [00:05<00:04, 667MB/s] pytorch_model-00003-of-00003.bin: 51%|█████▏ | 3.18G/6.18G [00:05<00:06, 436MB/s] pytorch_model-00003-of-00003.bin: 52%|█████▏ | 3.24G/6.18G [00:05<00:07, 383MB/s] pytorch_model-00003-of-00003.bin: 54%|█████▍ | 3.33G/6.18G [00:05<00:06, 461MB/s] pytorch_model-00003-of-00003.bin: 56%|█████▌ | 3.46G/6.18G [00:05<00:04, 605MB/s] pytorch_model-00003-of-00003.bin: 57%|█████▋ | 3.54G/6.18G [00:06<00:04, 588MB/s] pytorch_model-00003-of-00003.bin: 59%|█████▊ | 3.62G/6.18G [00:06<00:05, 499MB/s] pytorch_model-00003-of-00003.bin: 60%|█████▉ | 3.68G/6.18G [00:06<00:05, 477MB/s] pytorch_model-00003-of-00003.bin: 61%|██████ | 3.74G/6.18G [00:06<00:05, 444MB/s] pytorch_model-00003-of-00003.bin: 61%|██████▏ | 3.80G/6.18G [00:06<00:05, 445MB/s] pytorch_model-00003-of-00003.bin: 62%|██████▏ | 3.86G/6.18G [00:06<00:04, 472MB/s] pytorch_model-00003-of-00003.bin: 64%|██████▎ | 3.93G/6.18G [00:06<00:04, 483MB/s] pytorch_model-00003-of-00003.bin: 64%|██████▍ | 3.98G/6.18G [00:07<00:05, 432MB/s] pytorch_model-00003-of-00003.bin: 65%|██████▌ | 4.04G/6.18G [00:07<00:05, 420MB/s] pytorch_model-00003-of-00003.bin: 67%|██████▋ | 4.14G/6.18G [00:07<00:03, 551MB/s] pytorch_model-00003-of-00003.bin: 68%|██████▊ | 4.20G/6.18G [00:07<00:03, 508MB/s] pytorch_model-00003-of-00003.bin: 69%|██████▉ | 4.27G/6.18G [00:07<00:03, 518MB/s] pytorch_model-00003-of-00003.bin: 70%|███████ | 4.33G/6.18G [00:07<00:03, 490MB/s] pytorch_model-00003-of-00003.bin: 71%|███████ | 4.38G/6.18G [00:07<00:03, 492MB/s] pytorch_model-00003-of-00003.bin: 72%|███████▏ | 4.44G/6.18G [00:08<00:03, 479MB/s] pytorch_model-00003-of-00003.bin: 73%|███████▎ | 4.49G/6.18G [00:08<00:03, 479MB/s] pytorch_model-00003-of-00003.bin: 74%|███████▍ | 4.58G/6.18G [00:08<00:02, 579MB/s] pytorch_model-00003-of-00003.bin: 76%|███████▌ | 4.71G/6.18G [00:08<00:01, 759MB/s] pytorch_model-00003-of-00003.bin: 78%|███████▊ | 4.80G/6.18G [00:08<00:01, 805MB/s] pytorch_model-00003-of-00003.bin: 79%|███████▉ | 4.89G/6.18G [00:08<00:01, 786MB/s] pytorch_model-00003-of-00003.bin: 80%|████████ | 4.97G/6.18G [00:08<00:01, 767MB/s] pytorch_model-00003-of-00003.bin: 82%|████████▏ | 5.05G/6.18G [00:08<00:01, 767MB/s] pytorch_model-00003-of-00003.bin: 83%|████████▎ | 5.14G/6.18G [00:09<00:01, 533MB/s] pytorch_model-00003-of-00003.bin: 84%|████████▍ | 5.21G/6.18G [00:09<00:01, 529MB/s] pytorch_model-00003-of-00003.bin: 86%|████████▌ | 5.32G/6.18G [00:09<00:01, 626MB/s] pytorch_model-00003-of-00003.bin: 88%|████████▊ | 5.46G/6.18G [00:09<00:00, 776MB/s] pytorch_model-00003-of-00003.bin: 90%|████████▉ | 5.55G/6.18G [00:09<00:00, 733MB/s] pytorch_model-00003-of-00003.bin: 91%|█████████ | 5.63G/6.18G [00:09<00:00, 724MB/s] pytorch_model-00003-of-00003.bin: 93%|█████████▎| 5.72G/6.18G [00:09<00:00, 744MB/s] pytorch_model-00003-of-00003.bin: 94%|█████████▍| 5.80G/6.18G [00:09<00:00, 764MB/s] pytorch_model-00003-of-00003.bin: 95%|█████████▌| 5.89G/6.18G [00:10<00:00, 700MB/s] pytorch_model-00003-of-00003.bin: 96%|█████████▋| 5.96G/6.18G [00:10<00:00, 599MB/s] pytorch_model-00003-of-00003.bin: 98%|█████████▊| 6.03G/6.18G [00:10<00:00, 404MB/s] pytorch_model-00003-of-00003.bin: 98%|█████████▊| 6.08G/6.18G [00:11<00:00, 241MB/s] pytorch_model-00003-of-00003.bin: 99%|█████████▉| 6.13G/6.18G [00:11<00:00, 242MB/s] pytorch_model-00003-of-00003.bin: 100%|█████████▉| 6.17G/6.18G [00:11<00:00, 195MB/s] pytorch_model-00003-of-00003.bin: 100%|█████████▉| 6.18G/6.18G [00:12<00:00, 503MB/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: pytorch_model.bin.index.json: 0%| | 0.00/33.4k [00:00<?, ?B/s] pytorch_model.bin.index.json: 100%|██████████| 33.4k/33.4k [00:00<00:00, 8.54MB/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: special_tokens_map.json: 0%| | 0.00/414 [00:00<?, ?B/s] special_tokens_map.json: 100%|██████████| 414/414 [00:00<00:00, 5.44MB/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: tokenizer.json: 0%| | 0.00/1.84M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 1.84M/1.84M [00:00<00:00, 16.3MB/s] tokenizer.json: 100%|██████████| 1.84M/1.84M [00:00<00:00, 16.2MB/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: tokenizer.model: 0%| | 0.00/500k [00:00<?, ?B/s] tokenizer.model: 100%|██████████| 500k/500k [00:00<00:00, 5.59MB/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: tokenizer_config.json: 0%| | 0.00/725 [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 725/725 [00:00<00:00, 5.84MB/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: Downloaded to shared memory in 55.116s
chaiml-phase2-winner-13b2-v225-mkmlizer: quantizing model to /dev/shm/model_cache
chaiml-phase2-winner-13b2-v225-mkmlizer: Saving mkml model at /dev/shm/model_cache
chaiml-phase2-winner-13b2-v225-mkmlizer: Reading /tmp/tmphys0ffor/pytorch_model.bin.index.json
chaiml-phase2-winner-13b2-v225-mkmlizer: Profiling: 0%| | 0/363 [00:00<?, ?it/s] Profiling: 0%| | 1/363 [00:04<25:01, 4.15s/it] Profiling: 38%|███▊ | 139/363 [00:06<00:07, 28.23it/s] Profiling: 77%|███████▋ | 278/363 [00:07<00:01, 49.63it/s] Profiling: 100%|██████████| 363/363 [00:09<00:00, 49.43it/s] Profiling: 100%|██████████| 363/363 [00:09<00:00, 39.42it/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: quantized model in 28.247s
chaiml-phase2-winner-13b2-v225-mkmlizer: Processed model ChaiML/phase2_winner_13b2 in 84.962s
chaiml-phase2-winner-13b2-v225-mkmlizer: creating bucket guanaco-mkml-models
chaiml-phase2-winner-13b2-v225-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
chaiml-phase2-winner-13b2-v225-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v225
chaiml-phase2-winner-13b2-v225-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v225/tokenizer_config.json
chaiml-phase2-winner-13b2-v225-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v225/config.json
chaiml-phase2-winner-13b2-v225-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v225/special_tokens_map.json
chaiml-phase2-winner-13b2-v225-mkmlizer: cp /dev/shm/model_cache/tokenizer.model s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v225/tokenizer.model
chaiml-phase2-winner-13b2-v225-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v225/tokenizer.json
chaiml-phase2-winner-13b2-v225-mkmlizer: cp /dev/shm/model_cache/mkml_model.tensors s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v225/mkml_model.tensors
chaiml-phase2-winner-13b2-v225-mkmlizer: loading reward model from rirv938/reward_gpt2_preference_24m_e2
chaiml-phase2-winner-13b2-v225-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:1067: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
chaiml-phase2-winner-13b2-v225-mkmlizer: warnings.warn(
chaiml-phase2-winner-13b2-v225-mkmlizer: config.json: 0%| | 0.00/995 [00:00<?, ?B/s] config.json: 100%|██████████| 995/995 [00:00<00:00, 12.3MB/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:690: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
chaiml-phase2-winner-13b2-v225-mkmlizer: warnings.warn(
chaiml-phase2-winner-13b2-v225-mkmlizer: tokenizer_config.json: 0%| | 0.00/234 [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 234/234 [00:00<00:00, 3.13MB/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: vocab.json: 0%| | 0.00/1.04M [00:00<?, ?B/s] vocab.json: 100%|██████████| 1.04M/1.04M [00:00<00:00, 10.2MB/s] vocab.json: 100%|██████████| 1.04M/1.04M [00:00<00:00, 10.2MB/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: tokenizer.json: 0%| | 0.00/2.11M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 2.11M/2.11M [00:00<00:00, 12.6MB/s] tokenizer.json: 100%|██████████| 2.11M/2.11M [00:00<00:00, 12.5MB/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:472: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
chaiml-phase2-winner-13b2-v225-mkmlizer: warnings.warn(
chaiml-phase2-winner-13b2-v225-mkmlizer: pytorch_model.bin: 0%| | 0.00/510M [00:00<?, ?B/s] pytorch_model.bin: 2%|▏ | 10.5M/510M [00:00<00:15, 32.0MB/s] pytorch_model.bin: 4%|▍ | 21.0M/510M [00:00<00:21, 22.6MB/s] pytorch_model.bin: 12%|█▏ | 62.9M/510M [00:00<00:05, 83.3MB/s] pytorch_model.bin: 36%|███▋ | 185M/510M [00:01<00:01, 288MB/s] pytorch_model.bin: 67%|██████▋ | 343M/510M [00:01<00:00, 487MB/s] pytorch_model.bin: 84%|████████▎ | 427M/510M [00:01<00:00, 454MB/s] pytorch_model.bin: 96%|█████████▌| 489M/510M [00:02<00:00, 204MB/s] pytorch_model.bin: 100%|█████████▉| 510M/510M [00:02<00:00, 210MB/s]
chaiml-phase2-winner-13b2-v225-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
chaiml-phase2-winner-13b2-v225-mkmlizer: Saving duration: 0.092s
chaiml-phase2-winner-13b2-v225-mkmlizer: Processed model rirv938/reward_gpt2_preference_24m_e2 in 5.394s
chaiml-phase2-winner-13b2-v225-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/chaiml-phase2-winner-13b2-v225_reward/reward.tensors
Job chaiml-phase2-winner-13b2-v225-mkmlizer completed after 116.12s with status: succeeded
Stopping job with name chaiml-phase2-winner-13b2-v225-mkmlizer
Pipeline stage MKMLizer completed in 116.79s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.12s
Running pipeline stage ISVCDeployer
Creating inference service chaiml-phase2-winner-13b2-v225
Waiting for inference service chaiml-phase2-winner-13b2-v225 to be ready
Inference service chaiml-phase2-winner-13b2-v225 ready after 120.7554669380188s
Pipeline stage ISVCDeployer completed in 128.45s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.657670259475708s
Received healthy response to inference request in 1.7896597385406494s
Received healthy response to inference request in 1.7607007026672363s
Received healthy response to inference request in 1.731259822845459s
Received healthy response to inference request in 1.7567803859710693s
5 requests
0 failed requests
5th percentile: 1.736363935470581
10th percentile: 1.7414680480957032
20th percentile: 1.7516762733459472
30th percentile: 1.7575644493103026
40th percentile: 1.7591325759887695
50th percentile: 1.7607007026672363
60th percentile: 1.7722843170166016
70th percentile: 1.7838679313659669
80th percentile: 1.9632618427276614
90th percentile: 2.3104660511016846
95th percentile: 2.4840681552886963
99th percentile: 2.6229498386383057
mean time: 1.9392141819000244
Pipeline stage StressChecker completed in 10.64s
Running pipeline stage DaemonicModelEvalScorer
Pipeline stage DaemonicModelEvalScorer completed in 0.05s
Running pipeline stage DaemonicSafetyScorer
Pipeline stage DaemonicSafetyScorer completed in 0.05s
Running M-Eval for topic stay_in_character
M-Eval Dataset for topic stay_in_character is loaded
AUTO_DEACTIVATION: submission %s deactivated %s
chaiml-phase2-winner-13b2_v225 status is now inactive due to auto deactivation removed underperforming models
chaiml-phase2-winner-13b2_v225 status is now deployed due to admin request

Usage Metrics

Latency Metrics