submission_id: cgato-thespice-7b-invert_2666_v1
developer_uid: c.gato
best_of: 16
celo_rating: 1173.3
display_name: cgato-thespice-7b-invert_2666_v1
family_friendly_score: 0.0
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': False}
generation_params: {'temperature': 1.0, 'top_p': 1.0, 'min_p': 0.0, 'top_k': 40, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n'], 'max_input_tokens': 512, 'best_of': 16, 'max_output_tokens': 64}
is_internal_developer: False
language_model: cgato/TheSpice-7b-InvertedInstruct-v0.1.2
max_input_tokens: 512
max_output_tokens: 64
model_architecture: MistralForCausalLM
model_eval_status: success
model_group: cgato/TheSpice-7b-Invert
model_name: cgato-thespice-7b-invert_2666_v1
model_num_parameters: 7241732096.0
model_repo: cgato/TheSpice-7b-InvertedInstruct-v0.1.2
model_size: 7B
num_battles: 5851
num_wins: 3158
ranking_group: single
reward_formatter: {'bot_template': '{bot_name}: {message}\n', 'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'response_template': '{bot_name}:', 'truncate_by_message': False, 'user_template': '{user_name}: {message}\n'}
reward_repo: ChaiML/reward_gpt2_medium_preference_24m_e2
status: torndown
submission_type: basic
timestamp: 2024-04-16T19:07:04+00:00
us_pacific_date: 2024-04-16
win_ratio: 0.5397367971286959
Resubmit model
Running pipeline stage MKMLizer
Starting job with name cgato-thespice-7b-invert-2666-v1-mkmlizer
Waiting for job on cgato-thespice-7b-invert-2666-v1-mkmlizer to finish
cgato-thespice-7b-invert-2666-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
cgato-thespice-7b-invert-2666-v1-mkmlizer: ║ _____ __ __ ║
cgato-thespice-7b-invert-2666-v1-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
cgato-thespice-7b-invert-2666-v1-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
cgato-thespice-7b-invert-2666-v1-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
cgato-thespice-7b-invert-2666-v1-mkmlizer: ║ /___/ ║
cgato-thespice-7b-invert-2666-v1-mkmlizer: ║ ║
cgato-thespice-7b-invert-2666-v1-mkmlizer: ║ Version: 0.6.11 ║
cgato-thespice-7b-invert-2666-v1-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
cgato-thespice-7b-invert-2666-v1-mkmlizer: ║ ║
cgato-thespice-7b-invert-2666-v1-mkmlizer: ║ The license key for the current software has been verified as ║
cgato-thespice-7b-invert-2666-v1-mkmlizer: ║ belonging to: ║
cgato-thespice-7b-invert-2666-v1-mkmlizer: ║ ║
cgato-thespice-7b-invert-2666-v1-mkmlizer: ║ Chai Research Corp. ║
cgato-thespice-7b-invert-2666-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
cgato-thespice-7b-invert-2666-v1-mkmlizer: ║ Expiration: 2024-07-15 23:59:59 ║
cgato-thespice-7b-invert-2666-v1-mkmlizer: ║ ║
cgato-thespice-7b-invert-2666-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
cgato-thespice-7b-invert-2666-v1-mkmlizer: .gitattributes: 0%| | 0.00/1.52k [00:00<?, ?B/s] .gitattributes: 100%|██████████| 1.52k/1.52k [00:00<00:00, 18.9MB/s]
cgato-thespice-7b-invert-2666-v1-mkmlizer: README.md: 0%| | 0.00/30.0 [00:00<?, ?B/s] README.md: 100%|██████████| 30.0/30.0 [00:00<00:00, 253kB/s]
cgato-thespice-7b-invert-2666-v1-mkmlizer: config.json: 0%| | 0.00/653 [00:00<?, ?B/s] config.json: 100%|██████████| 653/653 [00:00<00:00, 9.61MB/s]
cgato-thespice-7b-invert-2666-v1-mkmlizer: generation_config.json: 0%| | 0.00/137 [00:00<?, ?B/s] generation_config.json: 100%|██████████| 137/137 [00:00<00:00, 1.24MB/s]
cgato-thespice-7b-invert-2666-v1-mkmlizer: model-00001-of-00003.safetensors: 0%| | 0.00/4.94G [00:00<?, ?B/s] model-00001-of-00003.safetensors: 0%| | 10.5M/4.94G [00:01<12:21, 6.66MB/s] model-00001-of-00003.safetensors: 0%| | 21.0M/4.94G [00:02<10:32, 7.79MB/s] model-00001-of-00003.safetensors: 3%|▎ | 157M/4.94G [00:02<00:54, 87.1MB/s] model-00001-of-00003.safetensors: 6%|▋ | 315M/4.94G [00:02<00:22, 202MB/s] model-00001-of-00003.safetensors: 8%|▊ | 419M/4.94G [00:03<00:17, 260MB/s] model-00001-of-00003.safetensors: 10%|█ | 503M/4.94G [00:03<00:13, 320MB/s] model-00001-of-00003.safetensors: 22%|██▏ | 1.07G/4.94G [00:03<00:03, 1.06GB/s] model-00001-of-00003.safetensors: 27%|██▋ | 1.31G/4.94G [00:03<00:03, 918MB/s] model-00001-of-00003.safetensors: 30%|███ | 1.50G/4.94G [00:04<00:04, 712MB/s] model-00001-of-00003.safetensors: 33%|███▎ | 1.65G/4.94G [00:04<00:04, 710MB/s] model-00001-of-00003.safetensors: 36%|███▋ | 1.79G/4.94G [00:04<00:03, 806MB/s] model-00001-of-00003.safetensors: 39%|███▉ | 1.92G/4.94G [00:04<00:03, 857MB/s] model-00001-of-00003.safetensors: 43%|████▎ | 2.13G/4.94G [00:04<00:02, 1.08GB/s] model-00001-of-00003.safetensors: 49%|████▊ | 2.40G/4.94G [00:04<00:01, 1.35GB/s] model-00001-of-00003.safetensors: 52%|█████▏ | 2.58G/4.94G [00:05<00:02, 884MB/s] model-00001-of-00003.safetensors: 55%|█████▍ | 2.72G/4.94G [00:05<00:03, 680MB/s] model-00001-of-00003.safetensors: 57%|█████▋ | 2.82G/4.94G [00:05<00:03, 677MB/s] model-00001-of-00003.safetensors: 59%|█████▉ | 2.94G/4.94G [00:05<00:02, 733MB/s] model-00001-of-00003.safetensors: 62%|██████▏ | 3.05G/4.94G [00:05<00:02, 806MB/s] model-00001-of-00003.safetensors: 64%|██████▍ | 3.19G/4.94G [00:06<00:01, 907MB/s] model-00001-of-00003.safetensors: 69%|██████▊ | 3.40G/4.94G [00:06<00:01, 1.16GB/s] model-00001-of-00003.safetensors: 75%|███████▌ | 3.72G/4.94G [00:06<00:00, 1.61GB/s] model-00001-of-00003.safetensors: 79%|███████▉ | 3.91G/4.94G [00:06<00:00, 1.44GB/s] model-00001-of-00003.safetensors: 83%|████████▎ | 4.08G/4.94G [00:06<00:01, 798MB/s] model-00001-of-00003.safetensors: 85%|████████▌ | 4.20G/4.94G [00:07<00:00, 772MB/s] model-00001-of-00003.safetensors: 87%|████████▋ | 4.32G/4.94G [00:07<00:00, 807MB/s] model-00001-of-00003.safetensors: 90%|█████████ | 4.45G/4.94G [00:07<00:00, 866MB/s] model-00001-of-00003.safetensors: 92%|█████████▏| 4.57G/4.94G [00:07<00:00, 888MB/s] model-00001-of-00003.safetensors: 95%|█████████▌| 4.70G/4.94G [00:07<00:00, 988MB/s] model-00001-of-00003.safetensors: 100%|█████████▉| 4.94G/4.94G [00:07<00:00, 644MB/s]
cgato-thespice-7b-invert-2666-v1-mkmlizer: model-00002-of-00003.safetensors: 0%| | 0.00/5.00G [00:00<?, ?B/s] model-00002-of-00003.safetensors: 0%| | 10.5M/5.00G [00:02<22:21, 3.72MB/s] model-00002-of-00003.safetensors: 3%|▎ | 126M/5.00G [00:02<01:22, 58.8MB/s] model-00002-of-00003.safetensors: 5%|▌ | 273M/5.00G [00:03<00:31, 149MB/s] model-00002-of-00003.safetensors: 8%|▊ | 377M/5.00G [00:03<00:23, 198MB/s] model-00002-of-00003.safetensors: 14%|█▎ | 682M/5.00G [00:03<00:09, 468MB/s] model-00002-of-00003.safetensors: 22%|██▏ | 1.08G/5.00G [00:03<00:04, 889MB/s] model-00002-of-00003.safetensors: 26%|██▋ | 1.32G/5.00G [00:04<00:06, 563MB/s] model-00002-of-00003.safetensors: 30%|██▉ | 1.50G/5.00G [00:04<00:06, 543MB/s] model-00002-of-00003.safetensors: 34%|███▍ | 1.69G/5.00G [00:04<00:04, 674MB/s] model-00002-of-00003.safetensors: 37%|███▋ | 1.85G/5.00G [00:04<00:04, 747MB/s] model-00002-of-00003.safetensors: 44%|████▍ | 2.21G/5.00G [00:04<00:02, 1.16GB/s] model-00002-of-00003.safetensors: 48%|████▊ | 2.42G/5.00G [00:05<00:03, 740MB/s] model-00002-of-00003.safetensors: 52%|█████▏ | 2.58G/5.00G [00:05<00:04, 595MB/s] model-00002-of-00003.safetensors: 54%|█████▍ | 2.71G/5.00G [00:06<00:03, 659MB/s] model-00002-of-00003.safetensors: 56%|█████▋ | 2.82G/5.00G [00:06<00:03, 665MB/s] model-00002-of-00003.safetensors: 59%|█████▉ | 2.95G/5.00G [00:06<00:02, 741MB/s] model-00002-of-00003.safetensors: 64%|██████▎ | 3.18G/5.00G [00:06<00:01, 1.01GB/s] model-00002-of-00003.safetensors: 68%|██████▊ | 3.38G/5.00G [00:06<00:01, 1.20GB/s] model-00002-of-00003.safetensors: 71%|███████ | 3.54G/5.00G [00:07<00:02, 644MB/s] model-00002-of-00003.safetensors: 73%|███████▎ | 3.67G/5.00G [00:07<00:02, 622MB/s] model-00002-of-00003.safetensors: 76%|███████▌ | 3.77G/5.00G [00:07<00:01, 620MB/s] model-00002-of-00003.safetensors: 77%|███████▋ | 3.87G/5.00G [00:07<00:01, 634MB/s] model-00002-of-00003.safetensors: 80%|███████▉ | 3.98G/5.00G [00:07<00:01, 708MB/s] model-00002-of-00003.safetensors: 82%|████████▏ | 4.11G/5.00G [00:07<00:01, 812MB/s] model-00002-of-00003.safetensors: 87%|████████▋ | 4.33G/5.00G [00:07<00:00, 1.11GB/s] model-00002-of-00003.safetensors: 91%|█████████ | 4.53G/5.00G [00:08<00:00, 1.17GB/s] model-00002-of-00003.safetensors: 93%|█████████▎| 4.67G/5.00G [00:08<00:00, 1.06GB/s] model-00002-of-00003.safetensors: 97%|█████████▋| 4.87G/5.00G [00:08<00:00, 1.24GB/s] model-00002-of-00003.safetensors: 100%|█████████▉| 5.00G/5.00G [00:08<00:00, 579MB/s]
cgato-thespice-7b-invert-2666-v1-mkmlizer: model.safetensors.index.json: 0%| | 0.00/23.9k [00:00<?, ?B/s] model.safetensors.index.json: 100%|██████████| 23.9k/23.9k [00:00<00:00, 5.36MB/s]
cgato-thespice-7b-invert-2666-v1-mkmlizer: special_tokens_map.json: 0%| | 0.00/437 [00:00<?, ?B/s] special_tokens_map.json: 100%|██████████| 437/437 [00:00<00:00, 4.23MB/s]
cgato-thespice-7b-invert-2666-v1-mkmlizer: tokenizer.model: 0%| | 0.00/493k [00:00<?, ?B/s] tokenizer.model: 100%|██████████| 493k/493k [00:00<00:00, 2.35MB/s] tokenizer.model: 100%|██████████| 493k/493k [00:00<00:00, 2.35MB/s]
cgato-thespice-7b-invert-2666-v1-mkmlizer: tokenizer_config.json: 0%| | 0.00/982 [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 982/982 [00:00<00:00, 13.2MB/s]
cgato-thespice-7b-invert-2666-v1-mkmlizer: Downloaded to shared memory in 29.329s
cgato-thespice-7b-invert-2666-v1-mkmlizer: quantizing model to /dev/shm/model_cache
cgato-thespice-7b-invert-2666-v1-mkmlizer: Saving mkml model at /dev/shm/model_cache
cgato-thespice-7b-invert-2666-v1-mkmlizer: Reading /tmp/tmp67oc9_hl/model.safetensors.index.json
cgato-thespice-7b-invert-2666-v1-mkmlizer: Profiling: 0%| | 0/291 [00:00<?, ?it/s] Profiling: 0%| | 1/291 [00:01<06:00, 1.24s/it] Profiling: 5%|▍ | 14/291 [00:01<00:19, 13.89it/s] Profiling: 10%|▉ | 29/291 [00:01<00:08, 30.72it/s] Profiling: 16%|█▌ | 46/291 [00:01<00:04, 50.92it/s] Profiling: 22%|██▏ | 63/291 [00:01<00:03, 70.50it/s] Profiling: 26%|██▋ | 77/291 [00:01<00:02, 83.19it/s] Profiling: 31%|███▏ | 91/291 [00:01<00:02, 94.90it/s] Profiling: 36%|███▌ | 105/291 [00:02<00:02, 65.38it/s] Profiling: 42%|████▏ | 121/291 [00:02<00:02, 81.37it/s] Profiling: 47%|████▋ | 138/291 [00:02<00:01, 98.10it/s] Profiling: 53%|█████▎ | 153/291 [00:02<00:01, 108.42it/s] Profiling: 57%|█████▋ | 167/291 [00:02<00:01, 113.68it/s] Profiling: 63%|██████▎ | 184/291 [00:02<00:00, 126.33it/s] Profiling: 69%|██████▉ | 202/291 [00:02<00:00, 140.18it/s] Profiling: 75%|███████▍ | 218/291 [00:04<00:02, 28.38it/s] Profiling: 79%|███████▉ | 231/291 [00:04<00:01, 35.14it/s] Profiling: 85%|████████▌ | 248/291 [00:04<00:00, 46.78it/s] Profiling: 91%|█████████ | 265/291 [00:04<00:00, 59.89it/s] Profiling: 96%|█████████▌| 279/291 [00:04<00:00, 70.19it/s] Profiling: 100%|██████████| 291/291 [00:05<00:00, 55.27it/s]
cgato-thespice-7b-invert-2666-v1-mkmlizer: quantized model in 17.359s
cgato-thespice-7b-invert-2666-v1-mkmlizer: Processed model cgato/TheSpice-7b-InvertedInstruct-v0.1.2 in 47.657s
cgato-thespice-7b-invert-2666-v1-mkmlizer: creating bucket guanaco-mkml-models
cgato-thespice-7b-invert-2666-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/cgato-thespice-7b-invert-2666-v1/special_tokens_map.json
cgato-thespice-7b-invert-2666-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/cgato-thespice-7b-invert-2666-v1/config.json
cgato-thespice-7b-invert-2666-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/cgato-thespice-7b-invert-2666-v1/tokenizer_config.json
cgato-thespice-7b-invert-2666-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.model s3://guanaco-mkml-models/cgato-thespice-7b-invert-2666-v1/tokenizer.model
cgato-thespice-7b-invert-2666-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/cgato-thespice-7b-invert-2666-v1/tokenizer.json
cgato-thespice-7b-invert-2666-v1-mkmlizer: cp /dev/shm/model_cache/mkml_model.tensors s3://guanaco-mkml-models/cgato-thespice-7b-invert-2666-v1/mkml_model.tensors
cgato-thespice-7b-invert-2666-v1-mkmlizer: loading reward model from ChaiML/reward_gpt2_medium_preference_24m_e2
cgato-thespice-7b-invert-2666-v1-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:1067: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
cgato-thespice-7b-invert-2666-v1-mkmlizer: warnings.warn(
cgato-thespice-7b-invert-2666-v1-mkmlizer: config.json: 0%| | 0.00/1.05k [00:00<?, ?B/s] config.json: 100%|██████████| 1.05k/1.05k [00:00<00:00, 9.97MB/s]
cgato-thespice-7b-invert-2666-v1-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:690: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
cgato-thespice-7b-invert-2666-v1-mkmlizer: warnings.warn(
cgato-thespice-7b-invert-2666-v1-mkmlizer: tokenizer_config.json: 0%| | 0.00/234 [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 234/234 [00:00<00:00, 1.70MB/s]
cgato-thespice-7b-invert-2666-v1-mkmlizer: vocab.json: 0%| | 0.00/1.04M [00:00<?, ?B/s] vocab.json: 100%|██████████| 1.04M/1.04M [00:00<00:00, 1.61MB/s] vocab.json: 100%|██████████| 1.04M/1.04M [00:00<00:00, 1.61MB/s]
cgato-thespice-7b-invert-2666-v1-mkmlizer: tokenizer.json: 0%| | 0.00/2.11M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 2.11M/2.11M [00:00<00:00, 9.75MB/s] tokenizer.json: 100%|██████████| 2.11M/2.11M [00:00<00:00, 9.71MB/s]
cgato-thespice-7b-invert-2666-v1-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:472: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
cgato-thespice-7b-invert-2666-v1-mkmlizer: warnings.warn(
cgato-thespice-7b-invert-2666-v1-mkmlizer: pytorch_model.bin: 0%| | 0.00/1.44G [00:00<?, ?B/s] pytorch_model.bin: 1%| | 10.5M/1.44G [00:00<02:06, 11.4MB/s] pytorch_model.bin: 1%|▏ | 21.0M/1.44G [00:01<01:01, 23.3MB/s] pytorch_model.bin: 3%|▎ | 41.9M/1.44G [00:01<00:30, 46.7MB/s] pytorch_model.bin: 4%|▎ | 52.4M/1.44G [00:01<00:44, 31.0MB/s] pytorch_model.bin: 5%|▌ | 73.4M/1.44G [00:01<00:27, 49.2MB/s] pytorch_model.bin: 12%|█▏ | 178M/1.44G [00:02<00:06, 184MB/s] pytorch_model.bin: 33%|███▎ | 472M/1.44G [00:02<00:01, 630MB/s] pytorch_model.bin: 76%|███████▌ | 1.10G/1.44G [00:02<00:00, 1.65GB/s] pytorch_model.bin: 94%|█████████▍| 1.36G/1.44G [00:02<00:00, 1.80GB/s] pytorch_model.bin: 100%|█████████▉| 1.44G/1.44G [00:02<00:00, 586MB/s]
cgato-thespice-7b-invert-2666-v1-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
cgato-thespice-7b-invert-2666-v1-mkmlizer: Saving duration: 0.304s
cgato-thespice-7b-invert-2666-v1-mkmlizer: Processed model ChaiML/reward_gpt2_medium_preference_24m_e2 in 8.470s
cgato-thespice-7b-invert-2666-v1-mkmlizer: creating bucket guanaco-reward-models
cgato-thespice-7b-invert-2666-v1-mkmlizer: Bucket 's3://guanaco-reward-models/' created
cgato-thespice-7b-invert-2666-v1-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/cgato-thespice-7b-invert-2666-v1_reward
cgato-thespice-7b-invert-2666-v1-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/cgato-thespice-7b-invert-2666-v1_reward/config.json
cgato-thespice-7b-invert-2666-v1-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/cgato-thespice-7b-invert-2666-v1_reward/special_tokens_map.json
cgato-thespice-7b-invert-2666-v1-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/cgato-thespice-7b-invert-2666-v1_reward/tokenizer_config.json
cgato-thespice-7b-invert-2666-v1-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/cgato-thespice-7b-invert-2666-v1_reward/merges.txt
cgato-thespice-7b-invert-2666-v1-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/cgato-thespice-7b-invert-2666-v1_reward/vocab.json
cgato-thespice-7b-invert-2666-v1-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/cgato-thespice-7b-invert-2666-v1_reward/tokenizer.json
cgato-thespice-7b-invert-2666-v1-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/cgato-thespice-7b-invert-2666-v1_reward/reward.tensors
Job cgato-thespice-7b-invert-2666-v1-mkmlizer completed after 157.88s with status: succeeded
Stopping job with name cgato-thespice-7b-invert-2666-v1-mkmlizer
Pipeline stage MKMLizer completed in 162.26s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.10s
Running pipeline stage ISVCDeployer
Creating inference service cgato-thespice-7b-invert-2666-v1
Waiting for inference service cgato-thespice-7b-invert-2666-v1 to be ready
Inference service cgato-thespice-7b-invert-2666-v1 ready after 40.24441361427307s
Pipeline stage ISVCDeployer completed in 47.45s
Running pipeline stage StressChecker
Received healthy response to inference request in 1.7530624866485596s
Received healthy response to inference request in 1.1961283683776855s
Received healthy response to inference request in 1.3370723724365234s
Received healthy response to inference request in 1.1784815788269043s
Received healthy response to inference request in 1.1947124004364014s
5 requests
0 failed requests
5th percentile: 1.1817277431488038
10th percentile: 1.184973907470703
20th percentile: 1.1914662361145019
30th percentile: 1.1949955940246582
40th percentile: 1.195561981201172
50th percentile: 1.1961283683776855
60th percentile: 1.2525059700012207
70th percentile: 1.3088835716247558
80th percentile: 1.4202703952789308
90th percentile: 1.5866664409637452
95th percentile: 1.6698644638061522
99th percentile: 1.736422882080078
mean time: 1.3318914413452148
Pipeline stage StressChecker completed in 7.42s
Running pipeline stage DaemonicModelEvalScorer
Pipeline stage DaemonicModelEvalScorer completed in 0.03s
Running pipeline stage DaemonicSafetyScorer
Running M-Eval for topic stay_in_character
Pipeline stage DaemonicSafetyScorer completed in 0.06s
M-Eval Dataset for topic stay_in_character is loaded
cgato-thespice-7b-invert_2666_v1 status is now deployed due to DeploymentManager action
cgato-thespice-7b-invert_2666_v1 status is now inactive due to auto deactivation removed underperforming models
admin requested tearing down of cgato-thespice-7b-invert_2666_v1
Running pipeline stage ISVCDeleter
Checking if service cgato-thespice-7b-invert-2666-v1 is running
Tearing down inference service cgato-thespice-7b-invert-2666-v1
Toredown service cgato-thespice-7b-invert-2666-v1
Pipeline stage ISVCDeleter completed in 5.73s
Running pipeline stage MKMLModelDeleter
Cleaning model data from S3
Cleaning model data from model cache
Deleting key cgato-thespice-7b-invert-2666-v1/config.json from bucket guanaco-mkml-models
Deleting key cgato-thespice-7b-invert-2666-v1/mkml_model.tensors from bucket guanaco-mkml-models
Deleting key cgato-thespice-7b-invert-2666-v1/special_tokens_map.json from bucket guanaco-mkml-models
Deleting key cgato-thespice-7b-invert-2666-v1/tokenizer.json from bucket guanaco-mkml-models
Deleting key cgato-thespice-7b-invert-2666-v1/tokenizer.model from bucket guanaco-mkml-models
Deleting key cgato-thespice-7b-invert-2666-v1/tokenizer_config.json from bucket guanaco-mkml-models
Cleaning model data from model cache
Deleting key cgato-thespice-7b-invert-2666-v1_reward/config.json from bucket guanaco-reward-models
Deleting key cgato-thespice-7b-invert-2666-v1_reward/merges.txt from bucket guanaco-reward-models
Deleting key cgato-thespice-7b-invert-2666-v1_reward/reward.tensors from bucket guanaco-reward-models
Deleting key cgato-thespice-7b-invert-2666-v1_reward/special_tokens_map.json from bucket guanaco-reward-models
Deleting key cgato-thespice-7b-invert-2666-v1_reward/tokenizer.json from bucket guanaco-reward-models
Deleting key cgato-thespice-7b-invert-2666-v1_reward/tokenizer_config.json from bucket guanaco-reward-models
Deleting key cgato-thespice-7b-invert-2666-v1_reward/vocab.json from bucket guanaco-reward-models
Pipeline stage MKMLModelDeleter completed in 3.11s
cgato-thespice-7b-invert_2666_v1 status is now torndown due to DeploymentManager action