submission_id: inv-exponenta-alpha-7b_v1
developer_uid: Inv
best_of: 4
celo_rating: 1156.99
display_name: inv-exponenta-alpha-7b_v1
family_friendly_score: 0.0
formatter: {'memory_template': 'This is an entertaining conversation. You are {bot_name} who has the persona: {memory}.\nPlay the role of {bot_name}. Engage in a chat with {user_name} while staying in character. You should create a fun dialogue which entertains {user_name}.\n####\n', 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': False}
generation_params: {'temperature': 1.0, 'top_p': 1.0, 'min_p': 0.0, 'top_k': 40, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n'], 'max_input_tokens': 512, 'best_of': 4, 'max_output_tokens': 64}
is_internal_developer: False
language_model: Inv/Exponenta-Alpha-7B
max_input_tokens: 512
max_output_tokens: 64
model_architecture: MistralForCausalLM
model_eval_status: success
model_group: Inv/Exponenta-Alpha-7B
model_name: inv-exponenta-alpha-7b_v1
model_num_parameters: 7241732096.0
model_repo: Inv/Exponenta-Alpha-7B
model_size: 7B
num_battles: 51479
num_wins: 25722
ranking_group: single
reward_formatter: {'bot_template': '{bot_name}: {message}\n', 'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'response_template': '{bot_name}:', 'truncate_by_message': False, 'user_template': '{user_name}: {message}\n'}
reward_repo: ChaiML/reward_gpt2_medium_preference_24m_e2
status: torndown
submission_type: basic
timestamp: 2024-03-28T19:51:08+00:00
us_pacific_date: 2024-03-28
win_ratio: 0.49966005555663473
Resubmit model
Running pipeline stage MKMLizer
Starting job with name inv-exponenta-alpha-7b-v1-mkmlizer
Waiting for job on inv-exponenta-alpha-7b-v1-mkmlizer to finish
inv-exponenta-alpha-7b-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
inv-exponenta-alpha-7b-v1-mkmlizer: ║ _____ __ __ ║
inv-exponenta-alpha-7b-v1-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
inv-exponenta-alpha-7b-v1-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
inv-exponenta-alpha-7b-v1-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
inv-exponenta-alpha-7b-v1-mkmlizer: ║ /___/ ║
inv-exponenta-alpha-7b-v1-mkmlizer: ║ ║
inv-exponenta-alpha-7b-v1-mkmlizer: ║ Version: 0.6.11 ║
inv-exponenta-alpha-7b-v1-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
inv-exponenta-alpha-7b-v1-mkmlizer: ║ ║
inv-exponenta-alpha-7b-v1-mkmlizer: ║ The license key for the current software has been verified as ║
inv-exponenta-alpha-7b-v1-mkmlizer: ║ belonging to: ║
inv-exponenta-alpha-7b-v1-mkmlizer: ║ ║
inv-exponenta-alpha-7b-v1-mkmlizer: ║ Chai Research Corp. ║
inv-exponenta-alpha-7b-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
inv-exponenta-alpha-7b-v1-mkmlizer: ║ Expiration: 2024-07-15 23:59:59 ║
inv-exponenta-alpha-7b-v1-mkmlizer: ║ ║
inv-exponenta-alpha-7b-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
inv-exponenta-alpha-7b-v1-mkmlizer: .gitattributes: 0%| | 0.00/1.52k [00:00<?, ?B/s] .gitattributes: 100%|██████████| 1.52k/1.52k [00:00<00:00, 16.8MB/s]
inv-exponenta-alpha-7b-v1-mkmlizer: README.md: 0%| | 0.00/1.16k [00:00<?, ?B/s] README.md: 100%|██████████| 1.16k/1.16k [00:00<00:00, 9.09MB/s]
inv-exponenta-alpha-7b-v1-mkmlizer: config.json: 0%| | 0.00/641 [00:00<?, ?B/s] config.json: 100%|██████████| 641/641 [00:00<00:00, 8.43MB/s]
inv-exponenta-alpha-7b-v1-mkmlizer: mergekit_config.yml: 0%| | 0.00/552 [00:00<?, ?B/s] mergekit_config.yml: 100%|██████████| 552/552 [00:00<00:00, 4.43MB/s]
inv-exponenta-alpha-7b-v1-mkmlizer: model-00002-of-00008.safetensors: 0%| | 0.00/1.95G [00:00<?, ?B/s] model-00002-of-00008.safetensors: 1%| | 10.5M/1.95G [00:01<05:36, 5.76MB/s] model-00002-of-00008.safetensors: 1%| | 21.0M/1.95G [00:01<02:30, 12.8MB/s] model-00002-of-00008.safetensors: 2%|▏ | 41.9M/1.95G [00:02<01:15, 25.4MB/s] model-00002-of-00008.safetensors: 3%|▎ | 62.9M/1.95G [00:02<00:44, 42.0MB/s] model-00002-of-00008.safetensors: 5%|▍ | 94.4M/1.95G [00:02<00:25, 73.3MB/s] model-00002-of-00008.safetensors: 8%|▊ | 157M/1.95G [00:02<00:11, 151MB/s] model-00002-of-00008.safetensors: 17%|█▋ | 325M/1.95G [00:02<00:04, 378MB/s] model-00002-of-00008.safetensors: 20%|█▉ | 388M/1.95G [00:02<00:04, 370MB/s] model-00002-of-00008.safetensors: 30%|██▉ | 577M/1.95G [00:03<00:02, 649MB/s] model-00002-of-00008.safetensors: 54%|█████▍ | 1.06G/1.95G [00:03<00:00, 1.48GB/s] model-00002-of-00008.safetensors: 65%|██████▍ | 1.26G/1.95G [00:03<00:00, 793MB/s] model-00002-of-00008.safetensors: 72%|███████▏ | 1.41G/1.95G [00:04<00:00, 633MB/s] model-00002-of-00008.safetensors: 78%|███████▊ | 1.53G/1.95G [00:04<00:00, 621MB/s] model-00002-of-00008.safetensors: 84%|████████▍ | 1.63G/1.95G [00:04<00:00, 572MB/s] model-00002-of-00008.safetensors: 88%|████████▊ | 1.72G/1.95G [00:04<00:00, 597MB/s] model-00002-of-00008.safetensors: 100%|█████████▉| 1.95G/1.95G [00:04<00:00, 407MB/s]
inv-exponenta-alpha-7b-v1-mkmlizer: model-00003-of-00008.safetensors: 0%| | 0.00/1.95G [00:00<?, ?B/s] model-00003-of-00008.safetensors: 1%| | 10.5M/1.95G [00:00<00:53, 36.1MB/s] model-00003-of-00008.safetensors: 2%|▏ | 31.5M/1.95G [00:02<02:20, 13.7MB/s] model-00003-of-00008.safetensors: 3%|▎ | 52.4M/1.95G [00:02<01:15, 25.2MB/s] model-00003-of-00008.safetensors: 4%|▍ | 73.4M/1.95G [00:02<00:49, 38.1MB/s] model-00003-of-00008.safetensors: 6%|▌ | 115M/1.95G [00:02<00:25, 71.6MB/s] model-00003-of-00008.safetensors: 10%|▉ | 189M/1.95G [00:02<00:11, 149MB/s] model-00003-of-00008.safetensors: 16%|█▌ | 304M/1.95G [00:02<00:05, 290MB/s] model-00003-of-00008.safetensors: 19%|█▉ | 367M/1.95G [00:03<00:05, 273MB/s] model-00003-of-00008.safetensors: 29%|██▊ | 556M/1.95G [00:03<00:02, 529MB/s] model-00003-of-00008.safetensors: 57%|█████▋ | 1.10G/1.95G [00:03<00:00, 1.37GB/s] model-00003-of-00008.safetensors: 67%|██████▋ | 1.30G/1.95G [00:03<00:00, 832MB/s] model-00003-of-00008.safetensors: 74%|███████▍ | 1.45G/1.95G [00:04<00:00, 853MB/s] model-00003-of-00008.safetensors: 81%|████████ | 1.58G/1.95G [00:04<00:00, 602MB/s] model-00003-of-00008.safetensors: 87%|████████▋ | 1.68G/1.95G [00:04<00:00, 656MB/s] model-00003-of-00008.safetensors: 100%|█████████▉| 1.95G/1.95G [00:04<00:00, 414MB/s]
inv-exponenta-alpha-7b-v1-mkmlizer: model-00004-of-00008.safetensors: 0%| | 0.00/1.98G [00:00<?, ?B/s] model-00004-of-00008.safetensors: 1%| | 10.5M/1.98G [00:02<06:35, 4.98MB/s] model-00004-of-00008.safetensors: 1%| | 21.0M/1.98G [00:02<03:12, 10.2MB/s] model-00004-of-00008.safetensors: 2%|▏ | 41.9M/1.98G [00:02<01:16, 25.2MB/s] model-00004-of-00008.safetensors: 3%|▎ | 62.9M/1.98G [00:02<00:48, 39.2MB/s] model-00004-of-00008.safetensors: 9%|▉ | 178M/1.98G [00:02<00:11, 162MB/s] model-00004-of-00008.safetensors: 14%|█▍ | 283M/1.98G [00:02<00:06, 280MB/s] model-00004-of-00008.safetensors: 17%|█▋ | 346M/1.98G [00:03<00:05, 327MB/s] model-00004-of-00008.safetensors: 24%|██▍ | 472M/1.98G [00:03<00:03, 495MB/s] model-00004-of-00008.safetensors: 54%|█████▍ | 1.07G/1.98G [00:03<00:00, 1.61GB/s] model-00004-of-00008.safetensors: 66%|██████▌ | 1.30G/1.98G [00:04<00:01, 585MB/s] model-00004-of-00008.safetensors: 74%|███████▍ | 1.47G/1.98G [00:04<00:00, 593MB/s] model-00004-of-00008.safetensors: 81%|████████ | 1.60G/1.98G [00:04<00:00, 572MB/s] model-00004-of-00008.safetensors: 87%|████████▋ | 1.72G/1.98G [00:04<00:00, 637MB/s] model-00004-of-00008.safetensors: 100%|█████████▉| 1.98G/1.98G [00:04<00:00, 400MB/s]
inv-exponenta-alpha-7b-v1-mkmlizer: model-00005-of-00008.safetensors: 0%| | 0.00/1.89G [00:00<?, ?B/s] model-00005-of-00008.safetensors: 1%| | 10.5M/1.89G [00:01<04:22, 7.15MB/s] model-00005-of-00008.safetensors: 1%| | 21.0M/1.89G [00:01<02:25, 12.8MB/s] model-00005-of-00008.safetensors: 2%|▏ | 31.5M/1.89G [00:02<02:09, 14.3MB/s] model-00005-of-00008.safetensors: 3%|▎ | 62.9M/1.89G [00:02<00:47, 38.1MB/s] model-00005-of-00008.safetensors: 7%|▋ | 126M/1.89G [00:02<00:18, 97.2MB/s] model-00005-of-00008.safetensors: 9%|▉ | 178M/1.89G [00:02<00:11, 151MB/s] model-00005-of-00008.safetensors: 13%|█▎ | 241M/1.89G [00:02<00:07, 209MB/s] model-00005-of-00008.safetensors: 16%|█▌ | 304M/1.89G [00:03<00:06, 262MB/s] model-00005-of-00008.safetensors: 22%|██▏ | 409M/1.89G [00:03<00:03, 405MB/s] model-00005-of-00008.safetensors: 44%|████▍ | 828M/1.89G [00:03<00:00, 1.19GB/s] model-00005-of-00008.safetensors: 67%|██████▋ | 1.26G/1.89G [00:03<00:00, 1.87GB/s] model-00005-of-00008.safetensors: 79%|███████▉ | 1.50G/1.89G [00:03<00:00, 996MB/s] model-00005-of-00008.safetensors: 89%|████████▉ | 1.69G/1.89G [00:04<00:00, 788MB/s] model-00005-of-00008.safetensors: 100%|█████████▉| 1.89G/1.89G [00:04<00:00, 769MB/s] model-00005-of-00008.safetensors: 100%|█████████▉| 1.89G/1.89G [00:04<00:00, 404MB/s]
inv-exponenta-alpha-7b-v1-mkmlizer: model-00006-of-00008.safetensors: 0%| | 0.00/1.92G [00:00<?, ?B/s] model-00006-of-00008.safetensors: 1%| | 10.5M/1.92G [00:00<01:01, 31.2MB/s] model-00006-of-00008.safetensors: 1%| | 21.0M/1.92G [00:01<02:03, 15.4MB/s] model-00006-of-00008.safetensors: 2%|▏ | 31.5M/1.92G [00:01<01:45, 18.0MB/s] model-00006-of-00008.safetensors: 2%|▏ | 41.9M/1.92G [00:01<01:19, 23.7MB/s] model-00006-of-00008.safetensors: 3%|▎ | 52.4M/1.92G [00:02<01:36, 19.4MB/s] model-00006-of-00008.safetensors: 9%|▉ | 178M/1.92G [00:02<00:13, 127MB/s] model-00006-of-00008.safetensors: 14%|█▍ | 273M/1.92G [00:03<00:08, 189MB/s] model-00006-of-00008.safetensors: 20%|█▉ | 377M/1.92G [00:03<00:05, 291MB/s] model-00006-of-00008.safetensors: 29%|██▉ | 566M/1.92G [00:03<00:02, 524MB/s] model-00006-of-00008.safetensors: 61%|██████ | 1.16G/1.92G [00:03<00:00, 1.46GB/s] model-00006-of-00008.safetensors: 74%|███████▎ | 1.42G/1.92G [00:03<00:00, 894MB/s] model-00006-of-00008.safetensors: 84%|████████▎ | 1.61G/1.92G [00:04<00:00, 837MB/s] model-00006-of-00008.safetensors: 92%|█████████▏| 1.77G/1.92G [00:04<00:00, 915MB/s] model-00006-of-00008.safetensors: 100%|█████████▉| 1.92G/1.92G [00:04<00:00, 436MB/s]
inv-exponenta-alpha-7b-v1-mkmlizer: model-00007-of-00008.safetensors: 0%| | 0.00/1.95G [00:00<?, ?B/s] model-00007-of-00008.safetensors: 1%| | 10.5M/1.95G [00:02<06:38, 4.85MB/s] model-00007-of-00008.safetensors: 3%|▎ | 52.4M/1.95G [00:02<01:02, 30.2MB/s] model-00007-of-00008.safetensors: 4%|▍ | 83.9M/1.95G [00:02<00:35, 52.2MB/s] model-00007-of-00008.safetensors: 8%|▊ | 147M/1.95G [00:02<00:16, 106MB/s] model-00007-of-00008.safetensors: 16%|█▌ | 315M/1.95G [00:02<00:06, 272MB/s] model-00007-of-00008.safetensors: 20%|█▉ | 388M/1.95G [00:02<00:04, 332MB/s] model-00007-of-00008.safetensors: 32%|███▏ | 619M/1.95G [00:02<00:02, 651MB/s] model-00007-of-00008.safetensors: 56%|█████▌ | 1.09G/1.95G [00:03<00:00, 1.40GB/s] model-00007-of-00008.safetensors: 68%|██████▊ | 1.32G/1.95G [00:03<00:00, 814MB/s] model-00007-of-00008.safetensors: 77%|███████▋ | 1.51G/1.95G [00:03<00:00, 933MB/s] model-00007-of-00008.safetensors: 86%|████████▌ | 1.67G/1.95G [00:04<00:00, 696MB/s] model-00007-of-00008.safetensors: 100%|█████████▉| 1.95G/1.95G [00:04<00:00, 463MB/s]
inv-exponenta-alpha-7b-v1-mkmlizer: model-00008-of-00008.safetensors: 0%| | 0.00/872M [00:00<?, ?B/s] model-00008-of-00008.safetensors: 0%| | 2.13M/872M [00:01<07:57, 1.82MB/s] model-00008-of-00008.safetensors: 1%|▏ | 12.6M/872M [00:01<01:21, 10.6MB/s] model-00008-of-00008.safetensors: 3%|▎ | 23.1M/872M [00:01<00:52, 16.1MB/s] model-00008-of-00008.safetensors: 4%|▍ | 33.6M/872M [00:02<00:35, 23.5MB/s] model-00008-of-00008.safetensors: 6%|▋ | 54.6M/872M [00:02<00:19, 42.4MB/s] model-00008-of-00008.safetensors: 13%|█▎ | 117M/872M [00:02<00:06, 124MB/s] model-00008-of-00008.safetensors: 28%|██▊ | 243M/872M [00:02<00:02, 282MB/s] model-00008-of-00008.safetensors: 34%|███▍ | 296M/872M [00:02<00:01, 317MB/s] model-00008-of-00008.safetensors: 50%|████▉ | 432M/872M [00:02<00:00, 523MB/s] model-00008-of-00008.safetensors: 100%|█████████▉| 872M/872M [00:02<00:00, 312MB/s]
inv-exponenta-alpha-7b-v1-mkmlizer: model.safetensors.index.json: 0%| | 0.00/22.8k [00:00<?, ?B/s] model.safetensors.index.json: 100%|██████████| 22.8k/22.8k [00:00<00:00, 110MB/s]
inv-exponenta-alpha-7b-v1-mkmlizer: special_tokens_map.json: 0%| | 0.00/414 [00:00<?, ?B/s] special_tokens_map.json: 100%|██████████| 414/414 [00:00<00:00, 5.33MB/s]
inv-exponenta-alpha-7b-v1-mkmlizer: tokenizer.json: 0%| | 0.00/1.80M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 1.80M/1.80M [00:00<00:00, 47.6MB/s]
inv-exponenta-alpha-7b-v1-mkmlizer: tokenizer.model: 0%| | 0.00/493k [00:00<?, ?B/s] tokenizer.model: 100%|██████████| 493k/493k [00:00<00:00, 22.1MB/s]
inv-exponenta-alpha-7b-v1-mkmlizer: tokenizer_config.json: 0%| | 0.00/967 [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 967/967 [00:00<00:00, 6.98MB/s]
inv-exponenta-alpha-7b-v1-mkmlizer: Downloaded to shared memory in 38.875s
inv-exponenta-alpha-7b-v1-mkmlizer: quantizing model to /dev/shm/model_cache
inv-exponenta-alpha-7b-v1-mkmlizer: Saving mkml model at /dev/shm/model_cache
inv-exponenta-alpha-7b-v1-mkmlizer: Reading /tmp/tmpnxl17tf1/model.safetensors.index.json
inv-exponenta-alpha-7b-v1-mkmlizer: Profiling: 0%| | 0/291 [00:00<?, ?it/s] Profiling: 0%| | 1/291 [00:00<00:43, 6.69it/s] Profiling: 2%|▏ | 6/291 [00:00<00:10, 26.80it/s] Profiling: 8%|▊ | 22/291 [00:00<00:03, 76.07it/s] Profiling: 11%|█▏ | 33/291 [00:00<00:03, 83.84it/s] Profiling: 14%|█▍ | 42/291 [00:00<00:03, 72.14it/s] Profiling: 19%|█▉ | 55/291 [00:00<00:02, 88.21it/s] Profiling: 24%|██▍ | 70/291 [00:00<00:02, 103.53it/s] Profiling: 28%|██▊ | 81/291 [00:01<00:02, 80.34it/s] Profiling: 33%|███▎ | 97/291 [00:01<00:01, 97.94it/s] Profiling: 37%|███▋ | 108/291 [00:01<00:01, 98.55it/s] Profiling: 42%|████▏ | 122/291 [00:01<00:01, 89.35it/s] Profiling: 46%|████▌ | 134/291 [00:01<00:01, 93.87it/s] Profiling: 50%|████▉ | 145/291 [00:01<00:01, 95.07it/s] Profiling: 55%|█████▍ | 160/291 [00:03<00:05, 23.35it/s] Profiling: 59%|█████▉ | 172/291 [00:03<00:03, 30.01it/s] Profiling: 64%|██████▎ | 185/291 [00:03<00:02, 39.17it/s] Profiling: 68%|██████▊ | 197/291 [00:04<00:04, 19.60it/s] Profiling: 71%|███████ | 206/291 [00:04<00:03, 23.96it/s] Profiling: 74%|███████▍ | 216/291 [00:05<00:02, 30.03it/s] Profiling: 79%|███████▉ | 230/291 [00:05<00:01, 41.44it/s] Profiling: 82%|████████▏ | 240/291 [00:05<00:01, 44.63it/s] Profiling: 86%|████████▌ | 250/291 [00:05<00:00, 52.60it/s] Profiling: 89%|████████▉ | 260/291 [00:05<00:00, 58.95it/s] Profiling: 94%|█████████▍| 274/291 [00:05<00:00, 64.63it/s] Profiling: 98%|█████████▊| 284/291 [00:05<00:00, 69.55it/s] Profiling: 100%|██████████| 291/291 [00:05<00:00, 49.01it/s]
inv-exponenta-alpha-7b-v1-mkmlizer: quantized model in 16.399s
inv-exponenta-alpha-7b-v1-mkmlizer: Processed model Inv/Exponenta-Alpha-7B in 56.239s
inv-exponenta-alpha-7b-v1-mkmlizer: creating bucket guanaco-mkml-models
inv-exponenta-alpha-7b-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
inv-exponenta-alpha-7b-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/inv-exponenta-alpha-7b-v1
inv-exponenta-alpha-7b-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/inv-exponenta-alpha-7b-v1/config.json
inv-exponenta-alpha-7b-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.model s3://guanaco-mkml-models/inv-exponenta-alpha-7b-v1/tokenizer.model
inv-exponenta-alpha-7b-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/inv-exponenta-alpha-7b-v1/tokenizer_config.json
inv-exponenta-alpha-7b-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/inv-exponenta-alpha-7b-v1/special_tokens_map.json
inv-exponenta-alpha-7b-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/inv-exponenta-alpha-7b-v1/tokenizer.json
inv-exponenta-alpha-7b-v1-mkmlizer: cp /dev/shm/model_cache/mkml_model.tensors s3://guanaco-mkml-models/inv-exponenta-alpha-7b-v1/mkml_model.tensors
inv-exponenta-alpha-7b-v1-mkmlizer: loading reward model from ChaiML/reward_gpt2_medium_preference_24m_e2
inv-exponenta-alpha-7b-v1-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:1067: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
inv-exponenta-alpha-7b-v1-mkmlizer: warnings.warn(
inv-exponenta-alpha-7b-v1-mkmlizer: config.json: 0%| | 0.00/1.05k [00:00<?, ?B/s] config.json: 100%|██████████| 1.05k/1.05k [00:00<00:00, 10.1MB/s]
inv-exponenta-alpha-7b-v1-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:690: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
inv-exponenta-alpha-7b-v1-mkmlizer: warnings.warn(
inv-exponenta-alpha-7b-v1-mkmlizer: tokenizer_config.json: 0%| | 0.00/234 [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 234/234 [00:00<00:00, 2.42MB/s]
inv-exponenta-alpha-7b-v1-mkmlizer: vocab.json: 0%| | 0.00/1.04M [00:00<?, ?B/s] vocab.json: 100%|██████████| 1.04M/1.04M [00:00<00:00, 21.7MB/s]
inv-exponenta-alpha-7b-v1-mkmlizer: tokenizer.json: 0%| | 0.00/2.11M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 2.11M/2.11M [00:00<00:00, 75.0MB/s]
inv-exponenta-alpha-7b-v1-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:472: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
inv-exponenta-alpha-7b-v1-mkmlizer: warnings.warn(
inv-exponenta-alpha-7b-v1-mkmlizer: pytorch_model.bin: 0%| | 0.00/1.44G [00:00<?, ?B/s] pytorch_model.bin: 1%| | 10.5M/1.44G [00:00<00:24, 59.2MB/s] pytorch_model.bin: 2%|▏ | 31.5M/1.44G [00:00<00:17, 81.0MB/s] pytorch_model.bin: 7%|▋ | 105M/1.44G [00:00<00:05, 242MB/s] pytorch_model.bin: 11%|█ | 157M/1.44G [00:01<00:08, 152MB/s] pytorch_model.bin: 13%|█▎ | 189M/1.44G [00:01<00:10, 124MB/s] pytorch_model.bin: 17%|█▋ | 252M/1.44G [00:01<00:06, 192MB/s] pytorch_model.bin: 28%|██▊ | 398M/1.44G [00:01<00:02, 391MB/s] pytorch_model.bin: 78%|███████▊ | 1.12G/1.44G [00:01<00:00, 1.65GB/s] pytorch_model.bin: 100%|█████████▉| 1.44G/1.44G [00:01<00:00, 766MB/s]
inv-exponenta-alpha-7b-v1-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
inv-exponenta-alpha-7b-v1-mkmlizer: Saving duration: 0.259s
inv-exponenta-alpha-7b-v1-mkmlizer: Processed model ChaiML/reward_gpt2_medium_preference_24m_e2 in 6.115s
inv-exponenta-alpha-7b-v1-mkmlizer: creating bucket guanaco-reward-models
inv-exponenta-alpha-7b-v1-mkmlizer: Bucket 's3://guanaco-reward-models/' created
inv-exponenta-alpha-7b-v1-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/inv-exponenta-alpha-7b-v1_reward
inv-exponenta-alpha-7b-v1-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/inv-exponenta-alpha-7b-v1_reward/config.json
inv-exponenta-alpha-7b-v1-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/inv-exponenta-alpha-7b-v1_reward/tokenizer_config.json
inv-exponenta-alpha-7b-v1-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/inv-exponenta-alpha-7b-v1_reward/special_tokens_map.json
inv-exponenta-alpha-7b-v1-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/inv-exponenta-alpha-7b-v1_reward/merges.txt
inv-exponenta-alpha-7b-v1-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/inv-exponenta-alpha-7b-v1_reward/vocab.json
inv-exponenta-alpha-7b-v1-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/inv-exponenta-alpha-7b-v1_reward/tokenizer.json
Job inv-exponenta-alpha-7b-v1-mkmlizer completed after 87.43s with status: succeeded
Stopping job with name inv-exponenta-alpha-7b-v1-mkmlizer
Pipeline stage MKMLizer completed in 92.84s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 1.32s
Running pipeline stage ISVCDeployer
Creating inference service inv-exponenta-alpha-7b-v1
Waiting for inference service inv-exponenta-alpha-7b-v1 to be ready
Inference service inv-exponenta-alpha-7b-v1 ready after 40.28816294670105s
Pipeline stage ISVCDeployer completed in 47.62s
Running pipeline stage StressChecker
Received healthy response to inference request in 1.3722996711730957s
Received healthy response to inference request in 1.0786817073822021s
Received healthy response to inference request in 1.1418213844299316s
Received healthy response to inference request in 0.9711644649505615s
Received healthy response to inference request in 1.0846045017242432s
5 requests
0 failed requests
5th percentile: 0.9926679134368896
10th percentile: 1.0141713619232178
20th percentile: 1.057178258895874
30th percentile: 1.0798662662506104
40th percentile: 1.0822353839874268
50th percentile: 1.0846045017242432
60th percentile: 1.1074912548065186
70th percentile: 1.130378007888794
80th percentile: 1.1879170417785645
90th percentile: 1.28010835647583
95th percentile: 1.3262040138244628
99th percentile: 1.3630805397033692
mean time: 1.129714345932007
Pipeline stage StressChecker completed in 7.60s
Running pipeline stage DaemonicModelEvalScorer
Pipeline stage DaemonicModelEvalScorer completed in 0.05s
Running pipeline stage DaemonicSafetyScorer
Running M-Eval for topic stay_in_character
Pipeline stage DaemonicSafetyScorer completed in 0.05s
M-Eval Dataset for topic stay_in_character is loaded
inv-exponenta-alpha-7b_v1 status is now deployed due to DeploymentManager action
inv-exponenta-alpha-7b_v1 status is now inactive due to auto deactivation removed underperforming models
admin requested tearing down of inv-exponenta-alpha-7b_v1
Running pipeline stage ISVCDeleter
Checking if service inv-exponenta-alpha-7b-v1 is running
Tearing down inference service inv-exponenta-alpha-7b-v1
Toredown service inv-exponenta-alpha-7b-v1
Pipeline stage ISVCDeleter completed in 3.82s
Running pipeline stage MKMLModelDeleter
Cleaning model data from S3
Cleaning model data from model cache
Deleting key inv-exponenta-alpha-7b-v1/config.json from bucket guanaco-mkml-models
Deleting key inv-exponenta-alpha-7b-v1/mkml_model.tensors from bucket guanaco-mkml-models
Deleting key inv-exponenta-alpha-7b-v1/special_tokens_map.json from bucket guanaco-mkml-models
Deleting key inv-exponenta-alpha-7b-v1/tokenizer.json from bucket guanaco-mkml-models
Deleting key inv-exponenta-alpha-7b-v1/tokenizer.model from bucket guanaco-mkml-models
Deleting key inv-exponenta-alpha-7b-v1/tokenizer_config.json from bucket guanaco-mkml-models
Cleaning model data from model cache
Deleting key inv-exponenta-alpha-7b-v1_reward/config.json from bucket guanaco-reward-models
Deleting key inv-exponenta-alpha-7b-v1_reward/merges.txt from bucket guanaco-reward-models
Deleting key inv-exponenta-alpha-7b-v1_reward/reward.tensors from bucket guanaco-reward-models
Deleting key inv-exponenta-alpha-7b-v1_reward/special_tokens_map.json from bucket guanaco-reward-models
Deleting key inv-exponenta-alpha-7b-v1_reward/tokenizer.json from bucket guanaco-reward-models
Deleting key inv-exponenta-alpha-7b-v1_reward/tokenizer_config.json from bucket guanaco-reward-models
Deleting key inv-exponenta-alpha-7b-v1_reward/vocab.json from bucket guanaco-reward-models
Pipeline stage MKMLModelDeleter completed in 2.60s
inv-exponenta-alpha-7b_v1 status is now torndown due to DeploymentManager action