Running pipeline stage MKMLizer
Starting job with name anhnv125-mistral-v3-v14-mkmlizer
Waiting for job on anhnv125-mistral-v3-v14-mkmlizer to finish
anhnv125-mistral-v3-v14-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
anhnv125-mistral-v3-v14-mkmlizer: ║ _____ __ __ ║
anhnv125-mistral-v3-v14-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
anhnv125-mistral-v3-v14-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
anhnv125-mistral-v3-v14-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
anhnv125-mistral-v3-v14-mkmlizer: ║ /___/ ║
anhnv125-mistral-v3-v14-mkmlizer: ║ ║
anhnv125-mistral-v3-v14-mkmlizer: ║ Version: 0.6.11 ║
anhnv125-mistral-v3-v14-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
anhnv125-mistral-v3-v14-mkmlizer: ║ ║
anhnv125-mistral-v3-v14-mkmlizer: ║ The license key for the current software has been verified as ║
anhnv125-mistral-v3-v14-mkmlizer: ║ belonging to: ║
anhnv125-mistral-v3-v14-mkmlizer: ║ ║
anhnv125-mistral-v3-v14-mkmlizer: ║ Chai Research Corp. ║
anhnv125-mistral-v3-v14-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
anhnv125-mistral-v3-v14-mkmlizer: ║ Expiration: 2024-07-15 23:59:59 ║
anhnv125-mistral-v3-v14-mkmlizer: ║ ║
anhnv125-mistral-v3-v14-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
anhnv125-mistral-v3-v14-mkmlizer:
.gitattributes: 0%| | 0.00/1.52k [00:00<?, ?B/s]
.gitattributes: 100%|██████████| 1.52k/1.52k [00:00<00:00, 18.9MB/s]
anhnv125-mistral-v3-v14-mkmlizer:
added_tokens.json: 0%| | 0.00/51.0 [00:00<?, ?B/s]
added_tokens.json: 100%|██████████| 51.0/51.0 [00:00<00:00, 842kB/s]
anhnv125-mistral-v3-v14-mkmlizer:
config.json: 0%| | 0.00/652 [00:00<?, ?B/s]
config.json: 100%|██████████| 652/652 [00:00<00:00, 10.6MB/s]
anhnv125-mistral-v3-v14-mkmlizer:
generation_config.json: 0%| | 0.00/132 [00:00<?, ?B/s]
generation_config.json: 100%|██████████| 132/132 [00:00<00:00, 1.53MB/s]
anhnv125-mistral-v3-v14-mkmlizer:
pytorch_model-00001-of-00003.bin: 0%| | 0.00/4.94G [00:00<?, ?B/s]
pytorch_model-00001-of-00003.bin: 0%| | 10.5M/4.94G [00:00<02:53, 28.5MB/s]
pytorch_model-00001-of-00003.bin: 1%|▏ | 73.4M/4.94G [00:00<00:25, 192MB/s]
pytorch_model-00001-of-00003.bin: 4%|▍ | 199M/4.94G [00:00<00:09, 483MB/s]
pytorch_model-00001-of-00003.bin: 8%|▊ | 409M/4.94G [00:00<00:04, 935MB/s]
pytorch_model-00001-of-00003.bin: 15%|█▍ | 724M/4.94G [00:00<00:02, 1.47GB/s]
pytorch_model-00001-of-00003.bin: 18%|█▊ | 902M/4.94G [00:00<00:02, 1.36GB/s]
pytorch_model-00001-of-00003.bin: 23%|██▎ | 1.13G/4.94G [00:01<00:02, 1.60GB/s]
pytorch_model-00001-of-00003.bin: 27%|██▋ | 1.31G/4.94G [00:01<00:02, 1.64GB/s]
pytorch_model-00001-of-00003.bin: 30%|███ | 1.49G/4.94G [00:01<00:02, 1.39GB/s]
pytorch_model-00001-of-00003.bin: 33%|███▎ | 1.65G/4.94G [00:01<00:02, 1.44GB/s]
pytorch_model-00001-of-00003.bin: 37%|███▋ | 1.81G/4.94G [00:01<00:02, 1.50GB/s]
pytorch_model-00001-of-00003.bin: 40%|████ | 1.98G/4.94G [00:01<00:01, 1.55GB/s]
pytorch_model-00001-of-00003.bin: 43%|████▎ | 2.15G/4.94G [00:01<00:01, 1.50GB/s]
pytorch_model-00001-of-00003.bin: 47%|████▋ | 2.31G/4.94G [00:01<00:01, 1.49GB/s]
pytorch_model-00001-of-00003.bin: 51%|█████ | 2.53G/4.94G [00:01<00:01, 1.67GB/s]
pytorch_model-00001-of-00003.bin: 55%|█████▌ | 2.73G/4.94G [00:02<00:01, 1.68GB/s]
pytorch_model-00001-of-00003.bin: 59%|█████▉ | 2.90G/4.94G [00:02<00:01, 1.41GB/s]
pytorch_model-00001-of-00003.bin: 62%|██████▏ | 3.06G/4.94G [00:02<00:01, 1.32GB/s]
pytorch_model-00001-of-00003.bin: 71%|███████ | 3.49G/4.94G [00:02<00:00, 2.02GB/s]
pytorch_model-00001-of-00003.bin: 76%|███████▌ | 3.75G/4.94G [00:02<00:00, 2.12GB/s]
pytorch_model-00001-of-00003.bin: 81%|████████ | 3.98G/4.94G [00:02<00:00, 1.82GB/s]
pytorch_model-00001-of-00003.bin: 85%|████████▍ | 4.18G/4.94G [00:02<00:00, 1.77GB/s]
pytorch_model-00001-of-00003.bin: 89%|████████▉ | 4.39G/4.94G [00:03<00:00, 1.81GB/s]
pytorch_model-00001-of-00003.bin: 94%|█████████▍| 4.64G/4.94G [00:03<00:00, 1.96GB/s]
pytorch_model-00001-of-00003.bin: 100%|█████████▉| 4.94G/4.94G [00:03<00:00, 1.87GB/s]
pytorch_model-00001-of-00003.bin: 100%|█████████▉| 4.94G/4.94G [00:03<00:00, 1.49GB/s]
anhnv125-mistral-v3-v14-mkmlizer:
pytorch_model-00002-of-00003.bin: 0%| | 0.00/5.00G [00:00<?, ?B/s]
pytorch_model-00002-of-00003.bin: 0%| | 10.5M/5.00G [00:00<03:05, 26.9MB/s]
pytorch_model-00002-of-00003.bin: 2%|▏ | 83.9M/5.00G [00:00<00:25, 193MB/s]
pytorch_model-00002-of-00003.bin: 4%|▎ | 178M/5.00G [00:00<00:23, 203MB/s]
pytorch_model-00002-of-00003.bin: 5%|▍ | 231M/5.00G [00:01<00:19, 248MB/s]
pytorch_model-00002-of-00003.bin: 5%|▌ | 273M/5.00G [00:01<00:21, 218MB/s]
pytorch_model-00002-of-00003.bin: 6%|▌ | 304M/5.00G [00:01<00:22, 208MB/s]
pytorch_model-00002-of-00003.bin: 7%|▋ | 336M/5.00G [00:01<00:28, 164MB/s]
pytorch_model-00002-of-00003.bin: 7%|▋ | 357M/5.00G [00:01<00:27, 169MB/s]
pytorch_model-00002-of-00003.bin: 8%|▊ | 377M/5.00G [00:02<00:30, 151MB/s]
pytorch_model-00002-of-00003.bin: 8%|▊ | 409M/5.00G [00:02<00:26, 176MB/s]
pytorch_model-00002-of-00003.bin: 9%|▊ | 430M/5.00G [00:02<00:32, 142MB/s]
pytorch_model-00002-of-00003.bin: 9%|▉ | 472M/5.00G [00:02<00:32, 140MB/s]
pytorch_model-00002-of-00003.bin: 14%|█▍ | 703M/5.00G [00:02<00:08, 479MB/s]
pytorch_model-00002-of-00003.bin: 30%|███ | 1.51G/5.00G [00:03<00:01, 1.80GB/s]
pytorch_model-00002-of-00003.bin: 35%|███▌ | 1.77G/5.00G [00:03<00:01, 1.75GB/s]
pytorch_model-00002-of-00003.bin: 40%|████ | 2.00G/5.00G [00:03<00:01, 1.68GB/s]
pytorch_model-00002-of-00003.bin: 44%|████▍ | 2.22G/5.00G [00:03<00:01, 1.74GB/s]
pytorch_model-00002-of-00003.bin: 49%|████▊ | 2.43G/5.00G [00:03<00:01, 1.65GB/s]
pytorch_model-00002-of-00003.bin: 52%|█████▏ | 2.62G/5.00G [00:03<00:01, 1.66GB/s]
pytorch_model-00002-of-00003.bin: 56%|█████▌ | 2.81G/5.00G [00:03<00:01, 1.70GB/s]
pytorch_model-00002-of-00003.bin: 63%|██████▎ | 3.15G/5.00G [00:03<00:00, 2.12GB/s]
pytorch_model-00002-of-00003.bin: 68%|██████▊ | 3.42G/5.00G [00:04<00:00, 2.27GB/s]
pytorch_model-00002-of-00003.bin: 75%|███████▌ | 3.75G/5.00G [00:04<00:00, 2.54GB/s]
pytorch_model-00002-of-00003.bin: 81%|████████ | 4.03G/5.00G [00:04<00:00, 2.19GB/s]
pytorch_model-00002-of-00003.bin: 85%|████████▌ | 4.27G/5.00G [00:04<00:00, 2.00GB/s]
pytorch_model-00002-of-00003.bin: 93%|█████████▎| 4.67G/5.00G [00:04<00:00, 2.50GB/s]
pytorch_model-00002-of-00003.bin: 100%|█████████▉| 5.00G/5.00G [00:04<00:00, 1.07GB/s]
anhnv125-mistral-v3-v14-mkmlizer:
pytorch_model-00003-of-00003.bin: 0%| | 0.00/4.54G [00:00<?, ?B/s]
pytorch_model-00003-of-00003.bin: 0%| | 10.5M/4.54G [00:00<01:27, 51.9MB/s]
pytorch_model-00003-of-00003.bin: 0%| | 21.0M/4.54G [00:00<01:24, 53.6MB/s]
pytorch_model-00003-of-00003.bin: 2%|▏ | 94.4M/4.54G [00:00<00:18, 246MB/s]
pytorch_model-00003-of-00003.bin: 5%|▍ | 210M/4.54G [00:00<00:08, 505MB/s]
pytorch_model-00003-of-00003.bin: 15%|█▌ | 703M/4.54G [00:00<00:02, 1.78GB/s]
pytorch_model-00003-of-00003.bin: 20%|██ | 923M/4.54G [00:00<00:02, 1.33GB/s]
pytorch_model-00003-of-00003.bin: 24%|██▍ | 1.10G/4.54G [00:01<00:02, 1.33GB/s]
pytorch_model-00003-of-00003.bin: 28%|██▊ | 1.27G/4.54G [00:01<00:02, 1.11GB/s]
pytorch_model-00003-of-00003.bin: 31%|███ | 1.41G/4.54G [00:01<00:04, 767MB/s]
pytorch_model-00003-of-00003.bin: 33%|███▎ | 1.51G/4.54G [00:01<00:04, 722MB/s]
pytorch_model-00003-of-00003.bin: 35%|███▌ | 1.60G/4.54G [00:02<00:04, 691MB/s]
pytorch_model-00003-of-00003.bin: 37%|███▋ | 1.69G/4.54G [00:02<00:04, 604MB/s]
pytorch_model-00003-of-00003.bin: 47%|████▋ | 2.14G/4.54G [00:02<00:01, 1.21GB/s]
pytorch_model-00003-of-00003.bin: 51%|█████ | 2.31G/4.54G [00:02<00:01, 1.30GB/s]
pytorch_model-00003-of-00003.bin: 54%|█████▍ | 2.46G/4.54G [00:02<00:01, 1.29GB/s]
pytorch_model-00003-of-00003.bin: 59%|█████▉ | 2.67G/4.54G [00:02<00:01, 1.46GB/s]
pytorch_model-00003-of-00003.bin: 64%|██████▍ | 2.90G/4.54G [00:02<00:00, 1.64GB/s]
pytorch_model-00003-of-00003.bin: 68%|██████▊ | 3.08G/4.54G [00:02<00:00, 1.61GB/s]
pytorch_model-00003-of-00003.bin: 74%|███████▎ | 3.34G/4.54G [00:02<00:00, 1.87GB/s]
pytorch_model-00003-of-00003.bin: 78%|███████▊ | 3.54G/4.54G [00:03<00:00, 1.86GB/s]
pytorch_model-00003-of-00003.bin: 85%|████████▍ | 3.84G/4.54G [00:03<00:00, 2.14GB/s]
pytorch_model-00003-of-00003.bin: 90%|████████▉ | 4.07G/4.54G [00:03<00:00, 1.97GB/s]
pytorch_model-00003-of-00003.bin: 97%|█████████▋| 4.40G/4.54G [00:03<00:00, 2.31GB/s]
pytorch_model-00003-of-00003.bin: 100%|█████████▉| 4.54G/4.54G [00:04<00:00, 1.08GB/s]
anhnv125-mistral-v3-v14-mkmlizer:
pytorch_model.bin.index.json: 0%| | 0.00/23.9k [00:00<?, ?B/s]
pytorch_model.bin.index.json: 100%|██████████| 23.9k/23.9k [00:00<00:00, 22.1MB/s]
anhnv125-mistral-v3-v14-mkmlizer:
special_tokens_map.json: 0%| | 0.00/551 [00:00<?, ?B/s]
special_tokens_map.json: 100%|██████████| 551/551 [00:00<00:00, 7.50MB/s]
anhnv125-mistral-v3-v14-mkmlizer:
tokenizer.model: 0%| | 0.00/493k [00:00<?, ?B/s]
tokenizer.model: 100%|██████████| 493k/493k [00:00<00:00, 54.4MB/s]
anhnv125-mistral-v3-v14-mkmlizer:
tokenizer_config.json: 0%| | 0.00/1.02k [00:00<?, ?B/s]
tokenizer_config.json: 100%|██████████| 1.02k/1.02k [00:00<00:00, 16.2MB/s]
anhnv125-mistral-v3-v14-mkmlizer: Downloaded to shared memory in 14.308s
anhnv125-mistral-v3-v14-mkmlizer: quantizing model to /dev/shm/model_cache
anhnv125-mistral-v3-v14-mkmlizer: Saving mkml model at /dev/shm/model_cache
anhnv125-mistral-v3-v14-mkmlizer: Reading /tmp/tmpqhaf_5s9/pytorch_model.bin.index.json
anhnv125-mistral-v3-v14-mkmlizer:
Profiling: 0%| | 0/291 [00:00<?, ?it/s]
Profiling: 0%| | 1/291 [00:02<12:46, 2.64s/it]
Profiling: 34%|███▎ | 98/291 [00:03<00:05, 36.64it/s]
Profiling: 70%|███████ | 204/291 [00:04<00:01, 67.84it/s]
Profiling: 100%|██████████| 291/291 [00:05<00:00, 69.31it/s]
Profiling: 100%|██████████| 291/291 [00:05<00:00, 54.08it/s]
anhnv125-mistral-v3-v14-mkmlizer: quantized model in 15.485s
anhnv125-mistral-v3-v14-mkmlizer: Processed model anhnv125/mistral-v3 in 30.680s
anhnv125-mistral-v3-v14-mkmlizer: creating bucket guanaco-mkml-models
anhnv125-mistral-v3-v14-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
anhnv125-mistral-v3-v14-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/anhnv125-mistral-v3-v14
anhnv125-mistral-v3-v14-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/anhnv125-mistral-v3-v14/config.json
anhnv125-mistral-v3-v14-mkmlizer: cp /dev/shm/model_cache/tokenizer.model s3://guanaco-mkml-models/anhnv125-mistral-v3-v14/tokenizer.model
anhnv125-mistral-v3-v14-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/anhnv125-mistral-v3-v14/special_tokens_map.json
anhnv125-mistral-v3-v14-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/anhnv125-mistral-v3-v14/tokenizer_config.json
anhnv125-mistral-v3-v14-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/anhnv125-mistral-v3-v14/tokenizer.json
anhnv125-mistral-v3-v14-mkmlizer: cp /dev/shm/model_cache/mkml_model.tensors s3://guanaco-mkml-models/anhnv125-mistral-v3-v14/mkml_model.tensors
anhnv125-mistral-v3-v14-mkmlizer: loading reward model from rirv938/reward_gpt2_medium_preference_24m_e2
anhnv125-mistral-v3-v14-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:1067: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
anhnv125-mistral-v3-v14-mkmlizer: warnings.warn(
anhnv125-mistral-v3-v14-mkmlizer:
config.json: 0%| | 0.00/1.05k [00:00<?, ?B/s]
config.json: 100%|██████████| 1.05k/1.05k [00:00<00:00, 10.1MB/s]
anhnv125-mistral-v3-v14-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:690: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
anhnv125-mistral-v3-v14-mkmlizer: warnings.warn(
anhnv125-mistral-v3-v14-mkmlizer:
tokenizer_config.json: 0%| | 0.00/234 [00:00<?, ?B/s]
tokenizer_config.json: 100%|██████████| 234/234 [00:00<00:00, 2.78MB/s]
anhnv125-mistral-v3-v14-mkmlizer:
vocab.json: 0%| | 0.00/1.04M [00:00<?, ?B/s]
vocab.json: 100%|██████████| 1.04M/1.04M [00:00<00:00, 43.8MB/s]
anhnv125-mistral-v3-v14-mkmlizer:
tokenizer.json: 0%| | 0.00/2.11M [00:00<?, ?B/s]
tokenizer.json: 100%|██████████| 2.11M/2.11M [00:00<00:00, 37.1MB/s]
anhnv125-mistral-v3-v14-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:472: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
anhnv125-mistral-v3-v14-mkmlizer: warnings.warn(
anhnv125-mistral-v3-v14-mkmlizer:
pytorch_model.bin: 0%| | 0.00/1.44G [00:00<?, ?B/s]
pytorch_model.bin: 1%| | 10.5M/1.44G [00:00<00:17, 84.2MB/s]
pytorch_model.bin: 4%|▎ | 52.4M/1.44G [00:00<00:06, 219MB/s]
pytorch_model.bin: 6%|▌ | 83.9M/1.44G [00:00<00:11, 118MB/s]
pytorch_model.bin: 8%|▊ | 115M/1.44G [00:00<00:08, 154MB/s]
pytorch_model.bin: 10%|█ | 147M/1.44G [00:00<00:08, 155MB/s]
pytorch_model.bin: 13%|█▎ | 189M/1.44G [00:01<00:06, 204MB/s]
pytorch_model.bin: 20%|██ | 294M/1.44G [00:01<00:02, 391MB/s]
pytorch_model.bin: 38%|███▊ | 545M/1.44G [00:01<00:00, 901MB/s]
pytorch_model.bin: 81%|████████▏ | 1.17G/1.44G [00:01<00:00, 2.26GB/s]
pytorch_model.bin: 100%|█████████▉| 1.44G/1.44G [00:01<00:00, 1.71GB/s]
pytorch_model.bin: 100%|█████████▉| 1.44G/1.44G [00:01<00:00, 858MB/s]
anhnv125-mistral-v3-v14-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
anhnv125-mistral-v3-v14-mkmlizer: Saving duration: 0.238s
anhnv125-mistral-v3-v14-mkmlizer: Processed model rirv938/reward_gpt2_medium_preference_24m_e2 in 5.994s
anhnv125-mistral-v3-v14-mkmlizer: creating bucket guanaco-reward-models
anhnv125-mistral-v3-v14-mkmlizer: Bucket 's3://guanaco-reward-models/' created
anhnv125-mistral-v3-v14-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/anhnv125-mistral-v3-v14_reward
anhnv125-mistral-v3-v14-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/anhnv125-mistral-v3-v14_reward/special_tokens_map.json
anhnv125-mistral-v3-v14-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/anhnv125-mistral-v3-v14_reward/tokenizer_config.json
anhnv125-mistral-v3-v14-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/anhnv125-mistral-v3-v14_reward/merges.txt
anhnv125-mistral-v3-v14-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/anhnv125-mistral-v3-v14_reward/config.json
anhnv125-mistral-v3-v14-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/anhnv125-mistral-v3-v14_reward/vocab.json
anhnv125-mistral-v3-v14-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/anhnv125-mistral-v3-v14_reward/tokenizer.json
anhnv125-mistral-v3-v14-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/anhnv125-mistral-v3-v14_reward/reward.tensors
Job anhnv125-mistral-v3-v14-mkmlizer completed after 54.38s with status: succeeded
Stopping job with name anhnv125-mistral-v3-v14-mkmlizer
Pipeline stage MKMLizer completed in 59.27s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.10s
Running pipeline stage ISVCDeployer
Creating inference service anhnv125-mistral-v3-v14
Waiting for inference service anhnv125-mistral-v3-v14 to be ready
Inference service anhnv125-mistral-v3-v14 ready after 50.28381872177124s
Pipeline stage ISVCDeployer completed in 58.21s
Running pipeline stage StressChecker
Received healthy response to inference request in 1.7627503871917725s
Received healthy response to inference request in 1.2519230842590332s
Received healthy response to inference request in 1.273294448852539s
Received healthy response to inference request in 1.2766976356506348s
Received healthy response to inference request in 1.249873399734497s
5 requests
0 failed requests
5th percentile: 1.2502833366394044
10th percentile: 1.2506932735443115
20th percentile: 1.2515131473541259
30th percentile: 1.2561973571777343
40th percentile: 1.2647459030151367
50th percentile: 1.273294448852539
60th percentile: 1.2746557235717773
70th percentile: 1.2760169982910157
80th percentile: 1.3739081859588624
90th percentile: 1.5683292865753173
95th percentile: 1.6655398368835448
99th percentile: 1.743308277130127
mean time: 1.3629077911376952
Pipeline stage StressChecker completed in 7.63s
Running pipeline stage DaemonicModelEvalScorer
Pipeline stage DaemonicModelEvalScorer completed in 0.04s
Running pipeline stage DaemonicSafetyScorer
Running M-Eval for topic stay_in_character
Pipeline stage DaemonicSafetyScorer completed in 0.04s
M-Eval Dataset for topic stay_in_character is loaded
anhnv125-mistral-v3_v14 status is now deployed due to DeploymentManager action
anhnv125-mistral-v3_v14 status is now inactive due to auto deactivation removed underperforming models
admin requested tearing down of anhnv125-mistral-v3_v14
Running pipeline stage ISVCDeleter
Checking if service anhnv125-mistral-v3-v14 is running
Tearing down inference service anhnv125-mistral-v3-v14
Toredown service anhnv125-mistral-v3-v14
Pipeline stage ISVCDeleter completed in 6.33s
Running pipeline stage MKMLModelDeleter
Cleaning model data from S3
Cleaning model data from model cache
Deleting key anhnv125-mistral-v3-v14/config.json from bucket guanaco-mkml-models
Deleting key anhnv125-mistral-v3-v14/mkml_model.tensors from bucket guanaco-mkml-models
Deleting key anhnv125-mistral-v3-v14/special_tokens_map.json from bucket guanaco-mkml-models
Deleting key anhnv125-mistral-v3-v14/tokenizer.json from bucket guanaco-mkml-models
Deleting key anhnv125-mistral-v3-v14/tokenizer.model from bucket guanaco-mkml-models
Deleting key anhnv125-mistral-v3-v14/tokenizer_config.json from bucket guanaco-mkml-models
Cleaning model data from model cache
Deleting key anhnv125-mistral-v3-v14_reward/config.json from bucket guanaco-reward-models
Deleting key anhnv125-mistral-v3-v14_reward/merges.txt from bucket guanaco-reward-models
Deleting key anhnv125-mistral-v3-v14_reward/reward.tensors from bucket guanaco-reward-models
Deleting key anhnv125-mistral-v3-v14_reward/special_tokens_map.json from bucket guanaco-reward-models
Deleting key anhnv125-mistral-v3-v14_reward/tokenizer.json from bucket guanaco-reward-models
Deleting key anhnv125-mistral-v3-v14_reward/tokenizer_config.json from bucket guanaco-reward-models
Deleting key anhnv125-mistral-v3-v14_reward/vocab.json from bucket guanaco-reward-models
Pipeline stage MKMLModelDeleter completed in 2.34s
anhnv125-mistral-v3_v14 status is now torndown due to DeploymentManager action
admin requested tearing down of anhnv125-mistral-v3_v14
Running pipeline stage ISVCDeleter
Pipeline stage %s skipped, reason=%s
Pipeline stage ISVCDeleter completed in 0.09s
Running pipeline stage MKMLModelDeleter
Pipeline stage %s skipped, reason=%s
Pipeline stage MKMLModelDeleter completed in 0.07s
anhnv125-mistral-v3_v14 status is now torndown due to DeploymentManager action