submission_id: cgato-thespis-7b-v0-2-sf_7840_v7
developer_uid: chai_backend_admin
status: inactive
model_repo: cgato/Thespis-7b-v0.2-SFTTest-3Epoch
reward_repo: ChaiML/reward_gpt2_medium_preference_24m_e2
generation_params: {'temperature': 0.9, 'top_p': 1.0, 'top_k': 50, 'presence_penalty': 0.5, 'frequency_penalty': 0.5, 'stopping_words': ['\n', '</s>', '<|user|>', '###'], 'max_input_tokens': 512, 'best_of': 1, 'max_output_tokens': 64}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:'}
reward_formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:'}
timestamp: 2024-04-02T07:41:41+00:00
model_name: auto_submit_ricum_ligorociva
model_eval_status: success
safety_score: 0.86
entertaining: 6.78
stay_in_character: 8.5
user_preference: 7.34
double_thumbs_up: 63
thumbs_up: 77
thumbs_down: 28
num_battles: 5549
num_wins: 2433
win_ratio: 0.4384573797080555
celo_rating: 1118.6
Resubmit model
Running pipeline stage MKMLizer
Starting job with name cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer
Waiting for job on cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer to finish
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: ║ _____ __ __ ║
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: ║ /___/ ║
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: ║ ║
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: ║ Version: 0.6.11 ║
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: ║ ║
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: ║ The license key for the current software has been verified as ║
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: ║ belonging to: ║
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: ║ ║
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: ║ Chai Research Corp. ║
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: ║ Expiration: 2024-07-15 23:59:59 ║
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: ║ ║
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: .gitattributes: 0%| | 0.00/1.52k [00:00<?, ?B/s] .gitattributes: 100%|██████████| 1.52k/1.52k [00:00<00:00, 8.70MB/s]
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: README.md: 0%| | 0.00/1.15k [00:00<?, ?B/s] README.md: 100%|██████████| 1.15k/1.15k [00:00<00:00, 7.63MB/s]
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: config.json: 0%| | 0.00/648 [00:00<?, ?B/s] config.json: 100%|██████████| 648/648 [00:00<00:00, 4.03MB/s]
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: generation_config.json: 0%| | 0.00/137 [00:00<?, ?B/s] generation_config.json: 100%|██████████| 137/137 [00:00<00:00, 1.46MB/s]
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: model-00001-of-00003.safetensors: 0%| | 0.00/4.94G [00:00<?, ?B/s] model-00001-of-00003.safetensors: 0%| | 10.5M/4.94G [00:00<03:09, 26.0MB/s] model-00001-of-00003.safetensors: 0%| | 21.0M/4.94G [00:01<06:10, 13.3MB/s] model-00001-of-00003.safetensors: 1%| | 52.4M/4.94G [00:01<02:04, 39.2MB/s] model-00001-of-00003.safetensors: 1%|▏ | 73.4M/4.94G [00:01<01:32, 52.7MB/s] model-00001-of-00003.safetensors: 2%|▏ | 105M/4.94G [00:02<01:00, 79.7MB/s] model-00001-of-00003.safetensors: 3%|▎ | 157M/4.94G [00:02<00:33, 142MB/s] model-00001-of-00003.safetensors: 6%|▌ | 283M/4.94G [00:02<00:14, 326MB/s] model-00001-of-00003.safetensors: 9%|▉ | 440M/4.94G [00:02<00:08, 563MB/s] model-00001-of-00003.safetensors: 11%|█ | 535M/4.94G [00:02<00:07, 598MB/s] model-00001-of-00003.safetensors: 13%|█▎ | 619M/4.94G [00:02<00:07, 541MB/s] model-00001-of-00003.safetensors: 20%|██ | 996M/4.94G [00:02<00:03, 1.21GB/s] model-00001-of-00003.safetensors: 25%|██▌ | 1.26G/4.94G [00:02<00:02, 1.50GB/s] model-00001-of-00003.safetensors: 29%|██▉ | 1.45G/4.94G [00:03<00:04, 828MB/s] model-00001-of-00003.safetensors: 32%|███▏ | 1.59G/4.94G [00:04<00:06, 481MB/s] model-00001-of-00003.safetensors: 35%|███▍ | 1.71G/4.94G [00:04<00:06, 472MB/s] model-00001-of-00003.safetensors: 36%|███▋ | 1.80G/4.94G [00:04<00:06, 520MB/s] model-00001-of-00003.safetensors: 39%|███▉ | 1.92G/4.94G [00:04<00:05, 602MB/s] model-00001-of-00003.safetensors: 41%|████▏ | 2.04G/4.94G [00:04<00:04, 708MB/s] model-00001-of-00003.safetensors: 49%|████▊ | 2.40G/4.94G [00:04<00:02, 1.24GB/s] model-00001-of-00003.safetensors: 52%|█████▏ | 2.59G/4.94G [00:05<00:02, 904MB/s] model-00001-of-00003.safetensors: 55%|█████▌ | 2.74G/4.94G [00:05<00:03, 654MB/s] model-00001-of-00003.safetensors: 58%|█████▊ | 2.85G/4.94G [00:05<00:03, 588MB/s] model-00001-of-00003.safetensors: 60%|█████▉ | 2.95G/4.94G [00:05<00:03, 598MB/s] model-00001-of-00003.safetensors: 61%|██████▏ | 3.03G/4.94G [00:06<00:03, 581MB/s] model-00001-of-00003.safetensors: 64%|██████▍ | 3.19G/4.94G [00:06<00:02, 742MB/s] model-00001-of-00003.safetensors: 67%|██████▋ | 3.33G/4.94G [00:06<00:01, 881MB/s] model-00001-of-00003.safetensors: 73%|███████▎ | 3.59G/4.94G [00:06<00:01, 1.18GB/s] model-00001-of-00003.safetensors: 76%|███████▌ | 3.73G/4.94G [00:06<00:01, 933MB/s] model-00001-of-00003.safetensors: 78%|███████▊ | 3.86G/4.94G [00:07<00:01, 635MB/s] model-00001-of-00003.safetensors: 80%|███████▉ | 3.95G/4.94G [00:07<00:01, 582MB/s] model-00001-of-00003.safetensors: 82%|████████▏ | 4.04G/4.94G [00:07<00:01, 569MB/s] model-00001-of-00003.safetensors: 85%|████████▍ | 4.18G/4.94G [00:07<00:01, 714MB/s] model-00001-of-00003.safetensors: 87%|████████▋ | 4.28G/4.94G [00:07<00:00, 726MB/s] model-00001-of-00003.safetensors: 89%|████████▉ | 4.41G/4.94G [00:07<00:00, 841MB/s] model-00001-of-00003.safetensors: 92%|█████████▏| 4.57G/4.94G [00:07<00:00, 980MB/s] model-00001-of-00003.safetensors: 97%|█████████▋| 4.78G/4.94G [00:07<00:00, 1.25GB/s] model-00001-of-00003.safetensors: 100%|█████████▉| 4.94G/4.94G [00:08<00:00, 616MB/s]
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: model-00003-of-00003.safetensors: 0%| | 0.00/4.54G [00:00<?, ?B/s] model-00003-of-00003.safetensors: 0%| | 10.5M/4.54G [00:01<08:07, 9.29MB/s] model-00003-of-00003.safetensors: 0%| | 21.0M/4.54G [00:01<03:48, 19.8MB/s] model-00003-of-00003.safetensors: 1%| | 31.5M/4.54G [00:01<02:31, 29.7MB/s] model-00003-of-00003.safetensors: 3%|▎ | 147M/4.54G [00:01<00:21, 203MB/s] model-00003-of-00003.safetensors: 5%|▍ | 210M/4.54G [00:01<00:17, 248MB/s] model-00003-of-00003.safetensors: 6%|▌ | 262M/4.54G [00:01<00:16, 261MB/s] model-00003-of-00003.safetensors: 8%|▊ | 367M/4.54G [00:01<00:10, 390MB/s] model-00003-of-00003.safetensors: 11%|█ | 493M/4.54G [00:02<00:08, 501MB/s] model-00003-of-00003.safetensors: 12%|█▏ | 566M/4.54G [00:02<00:07, 530MB/s] model-00003-of-00003.safetensors: 15%|█▍ | 671M/4.54G [00:02<00:06, 628MB/s] model-00003-of-00003.safetensors: 16%|█▋ | 744M/4.54G [00:02<00:06, 587MB/s] model-00003-of-00003.safetensors: 20%|█▉ | 902M/4.54G [00:02<00:04, 811MB/s] model-00003-of-00003.safetensors: 31%|███ | 1.41G/4.54G [00:02<00:01, 1.79GB/s] model-00003-of-00003.safetensors: 35%|███▌ | 1.60G/4.54G [00:02<00:02, 1.35GB/s] model-00003-of-00003.safetensors: 39%|███▉ | 1.77G/4.54G [00:03<00:03, 703MB/s] model-00003-of-00003.safetensors: 42%|████▏ | 1.90G/4.54G [00:03<00:03, 671MB/s] model-00003-of-00003.safetensors: 44%|████▍ | 2.00G/4.54G [00:03<00:03, 681MB/s] model-00003-of-00003.safetensors: 46%|████▌ | 2.10G/4.54G [00:04<00:03, 660MB/s] model-00003-of-00003.safetensors: 50%|████▉ | 2.26G/4.54G [00:04<00:02, 833MB/s] model-00003-of-00003.safetensors: 61%|██████ | 2.77G/4.54G [00:04<00:01, 1.64GB/s] model-00003-of-00003.safetensors: 66%|██████▌ | 3.00G/4.54G [00:04<00:01, 921MB/s] model-00003-of-00003.safetensors: 70%|██████▉ | 3.18G/4.54G [00:05<00:01, 693MB/s] model-00003-of-00003.safetensors: 73%|███████▎ | 3.31G/4.54G [00:05<00:01, 676MB/s] model-00003-of-00003.safetensors: 76%|███████▌ | 3.45G/4.54G [00:05<00:01, 752MB/s] model-00003-of-00003.safetensors: 80%|███████▉ | 3.63G/4.54G [00:05<00:01, 902MB/s] model-00003-of-00003.safetensors: 88%|████████▊ | 3.97G/4.54G [00:05<00:00, 1.35GB/s] model-00003-of-00003.safetensors: 92%|█████████▏| 4.17G/4.54G [00:05<00:00, 1.29GB/s] model-00003-of-00003.safetensors: 96%|█████████▌| 4.35G/4.54G [00:06<00:00, 1.28GB/s] model-00003-of-00003.safetensors: 99%|█████████▉| 4.51G/4.54G [00:06<00:00, 1.22GB/s] model-00003-of-00003.safetensors: 100%|█████████▉| 4.54G/4.54G [00:06<00:00, 683MB/s]
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: model.safetensors.index.json: 0%| | 0.00/25.1k [00:00<?, ?B/s] model.safetensors.index.json: 100%|██████████| 25.1k/25.1k [00:00<00:00, 160MB/s]
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: pytorch_model.bin.index.json: 0%| | 0.00/23.9k [00:00<?, ?B/s] pytorch_model.bin.index.json: 100%|██████████| 23.9k/23.9k [00:00<00:00, 229MB/s]
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: special_tokens_map.json: 0%| | 0.00/437 [00:00<?, ?B/s] special_tokens_map.json: 100%|██████████| 437/437 [00:00<00:00, 7.30MB/s]
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: tokenizer.model: 0%| | 0.00/493k [00:00<?, ?B/s] tokenizer.model: 100%|██████████| 493k/493k [00:00<00:00, 60.0MB/s]
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: tokenizer_config.json: 0%| | 0.00/1.02k [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 1.02k/1.02k [00:00<00:00, 9.17MB/s]
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: Downloaded to shared memory in 24.114s
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: quantizing model to /dev/shm/model_cache
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: Saving mkml model at /dev/shm/model_cache
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: Reading /tmp/tmpl9iuzm6j/model.safetensors.index.json
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: Profiling: 0%| | 0/291 [00:00<?, ?it/s] Profiling: 0%| | 1/291 [00:01<06:44, 1.40s/it] Profiling: 4%|▍ | 13/291 [00:01<00:23, 11.63it/s] Profiling: 9%|▉ | 27/291 [00:01<00:10, 26.25it/s] Profiling: 13%|█▎ | 38/291 [00:01<00:06, 37.22it/s] Profiling: 19%|█▊ | 54/291 [00:01<00:04, 56.64it/s] Profiling: 23%|██▎ | 66/291 [00:01<00:03, 66.51it/s] Profiling: 28%|██▊ | 81/291 [00:02<00:02, 83.30it/s] Profiling: 32%|███▏ | 94/291 [00:02<00:02, 90.11it/s] Profiling: 36%|███▋ | 106/291 [00:02<00:02, 62.05it/s] Profiling: 41%|████ | 120/291 [00:02<00:02, 75.28it/s] Profiling: 45%|████▌ | 131/291 [00:02<00:01, 80.27it/s] Profiling: 51%|█████ | 147/291 [00:02<00:01, 96.00it/s] Profiling: 55%|█████▍ | 159/291 [00:02<00:01, 98.72it/s] Profiling: 60%|██████ | 175/291 [00:03<00:01, 108.52it/s] Profiling: 65%|██████▍ | 188/291 [00:03<00:00, 112.55it/s] Profiling: 69%|██████▉ | 201/291 [00:03<00:00, 116.21it/s] Profiling: 74%|███████▎ | 214/291 [00:05<00:03, 22.25it/s] Profiling: 79%|███████▊ | 229/291 [00:05<00:02, 30.50it/s] Profiling: 82%|████████▏ | 240/291 [00:05<00:01, 36.16it/s] Profiling: 88%|████████▊ | 256/291 [00:05<00:00, 48.20it/s] Profiling: 92%|█████████▏| 267/291 [00:05<00:00, 54.72it/s] Profiling: 97%|█████████▋| 283/291 [00:05<00:00, 69.26it/s] Profiling: 100%|██████████| 291/291 [00:05<00:00, 49.49it/s]
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: quantized model in 17.556s
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: Processed model cgato/Thespis-7b-v0.2-SFTTest-3Epoch in 42.591s
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: creating bucket guanaco-mkml-models
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/cgato-thespis-7b-v0-2-sf-7840-v7
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/cgato-thespis-7b-v0-2-sf-7840-v7/config.json
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/cgato-thespis-7b-v0-2-sf-7840-v7/tokenizer_config.json
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/cgato-thespis-7b-v0-2-sf-7840-v7/tokenizer.json
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/cgato-thespis-7b-v0-2-sf-7840-v7/special_tokens_map.json
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: cp /dev/shm/model_cache/tokenizer.model s3://guanaco-mkml-models/cgato-thespis-7b-v0-2-sf-7840-v7/tokenizer.model
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: cp /dev/shm/model_cache/mkml_model.tensors s3://guanaco-mkml-models/cgato-thespis-7b-v0-2-sf-7840-v7/mkml_model.tensors
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: config.json: 0%| | 0.00/1.05k [00:00<?, ?B/s] config.json: 100%|██████████| 1.05k/1.05k [00:00<00:00, 10.6MB/s]
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:690: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: warnings.warn(
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: tokenizer_config.json: 0%| | 0.00/234 [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 234/234 [00:00<00:00, 2.43MB/s]
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: vocab.json: 0%| | 0.00/1.04M [00:00<?, ?B/s] vocab.json: 100%|██████████| 1.04M/1.04M [00:00<00:00, 65.2MB/s]
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: tokenizer.json: 0%| | 0.00/2.11M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 2.11M/2.11M [00:00<00:00, 11.7MB/s] tokenizer.json: 100%|██████████| 2.11M/2.11M [00:00<00:00, 11.7MB/s]
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:472: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: warnings.warn(
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: pytorch_model.bin: 0%| | 0.00/1.44G [00:00<?, ?B/s] pytorch_model.bin: 2%|▏ | 31.5M/1.44G [00:00<00:05, 252MB/s] pytorch_model.bin: 5%|▌ | 73.4M/1.44G [00:00<00:04, 289MB/s] pytorch_model.bin: 11%|█ | 157M/1.44G [00:00<00:03, 382MB/s] pytorch_model.bin: 17%|█▋ | 241M/1.44G [00:00<00:02, 517MB/s] pytorch_model.bin: 28%|██▊ | 398M/1.44G [00:00<00:01, 809MB/s] pytorch_model.bin: 34%|███▍ | 493M/1.44G [00:00<00:01, 758MB/s] pytorch_model.bin: 45%|████▌ | 650M/1.44G [00:00<00:00, 971MB/s] pytorch_model.bin: 62%|██████▏ | 889M/1.44G [00:01<00:00, 1.32GB/s] pytorch_model.bin: 73%|███████▎ | 1.06G/1.44G [00:01<00:00, 1.42GB/s] pytorch_model.bin: 96%|█████████▌| 1.38G/1.44G [00:01<00:00, 1.93GB/s] pytorch_model.bin: 100%|█████████▉| 1.44G/1.44G [00:01<00:00, 908MB/s]
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: Saving duration: 0.304s
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: Processed model ChaiML/reward_gpt2_medium_preference_24m_e2 in 6.429s
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: creating bucket guanaco-reward-models
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: Bucket 's3://guanaco-reward-models/' created
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/cgato-thespis-7b-v0-2-sf-7840-v7_reward
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/cgato-thespis-7b-v0-2-sf-7840-v7_reward/config.json
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/cgato-thespis-7b-v0-2-sf-7840-v7_reward/special_tokens_map.json
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/cgato-thespis-7b-v0-2-sf-7840-v7_reward/tokenizer_config.json
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/cgato-thespis-7b-v0-2-sf-7840-v7_reward/merges.txt
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/cgato-thespis-7b-v0-2-sf-7840-v7_reward/vocab.json
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/cgato-thespis-7b-v0-2-sf-7840-v7_reward/tokenizer.json
cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/cgato-thespis-7b-v0-2-sf-7840-v7_reward/reward.tensors
Job cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer completed after 74.01s with status: succeeded
Stopping job with name cgato-thespis-7b-v0-2-sf-7840-v7-mkmlizer
Pipeline stage MKMLizer completed in 74.77s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.09s
Running pipeline stage ISVCDeployer
Creating inference service cgato-thespis-7b-v0-2-sf-7840-v7
Waiting for inference service cgato-thespis-7b-v0-2-sf-7840-v7 to be ready
Inference service cgato-thespis-7b-v0-2-sf-7840-v7 ready after 231.34916996955872s
Pipeline stage ISVCDeployer completed in 237.46s
Running pipeline stage StressChecker
Received healthy response to inference request in 1.5657551288604736s
Received healthy response to inference request in 0.48966050148010254s
Received healthy response to inference request in 0.7126903533935547s
Received healthy response to inference request in 0.5589146614074707s
Received healthy response to inference request in 1.0778741836547852s
5 requests
0 failed requests
5th percentile: 0.5035113334655762
10th percentile: 0.5173621654510498
20th percentile: 0.545063829421997
30th percentile: 0.5896697998046875
40th percentile: 0.6511800765991211
50th percentile: 0.7126903533935547
60th percentile: 0.8587638854980468
70th percentile: 1.004837417602539
80th percentile: 1.175450372695923
90th percentile: 1.3706027507781984
95th percentile: 1.468178939819336
99th percentile: 1.5462398910522461
mean time: 0.8809789657592774
Pipeline stage StressChecker completed in 5.48s
Running pipeline stage DaemonicModelEvalScorer
Pipeline stage DaemonicModelEvalScorer completed in 0.05s
Running pipeline stage DaemonicSafetyScorer
Pipeline stage DaemonicSafetyScorer completed in 0.05s
Running M-Eval for topic stay_in_character
M-Eval Dataset for topic stay_in_character is loaded
cgato-thespis-7b-v0-2-sf_7840_v7 status is now deployed due to DeploymentManager action
cgato-thespis-7b-v0-2-sf_7840_v7 status is now inactive due to auto deactivation removed underperforming models

Usage Metrics

Latency Metrics