submission_id: chaiml-phase2-winner-13b2_v278
developer_uid: chai_backend_admin
status: inactive
model_repo: ChaiML/phase2_winner_13b2
reward_repo: rirv938/reward_gpt2_medium_preference_24m_e2
generation_params: {'temperature': 1.0733671330918084, 'top_p': 0.6971846333941389, 'top_k': 50, 'presence_penalty': 0.0, 'frequency_penalty': 0.312882778758545, 'stopping_words': ['\n'], 'max_input_tokens': 512, 'best_of': 8, 'max_output_tokens': 128}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:'}
reward_formatter: {'memory_template': 'Memory: {memory}\n', 'prompt_template': '{prompt}\n', 'bot_template': 'Bot: {message}\n', 'user_template': 'User: {message}\n', 'response_template': 'Bot:'}
timestamp: 2024-03-31T01:48:02+00:00
model_name: phase2_winner_13b2-128
model_eval_status: success
safety_score: None
entertaining: 7.2
stay_in_character: 8.27
user_preference: 7.44
double_thumbs_up: 1419
thumbs_up: 1911
thumbs_down: 832
num_battles: 130149
num_wins: 68840
win_ratio: 0.5289322238357574
celo_rating: 1173.06
Resubmit model
Running pipeline stage MKMLizer
Starting job with name chaiml-phase2-winner-13b2-v278-mkmlizer
Waiting for job on chaiml-phase2-winner-13b2-v278-mkmlizer to finish
chaiml-phase2-winner-13b2-v278-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
chaiml-phase2-winner-13b2-v278-mkmlizer: ║ _____ __ __ ║
chaiml-phase2-winner-13b2-v278-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
chaiml-phase2-winner-13b2-v278-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
chaiml-phase2-winner-13b2-v278-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
chaiml-phase2-winner-13b2-v278-mkmlizer: ║ /___/ ║
chaiml-phase2-winner-13b2-v278-mkmlizer: ║ ║
chaiml-phase2-winner-13b2-v278-mkmlizer: ║ Version: 0.6.11 ║
chaiml-phase2-winner-13b2-v278-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
chaiml-phase2-winner-13b2-v278-mkmlizer: ║ ║
chaiml-phase2-winner-13b2-v278-mkmlizer: ║ The license key for the current software has been verified as ║
chaiml-phase2-winner-13b2-v278-mkmlizer: ║ belonging to: ║
chaiml-phase2-winner-13b2-v278-mkmlizer: ║ ║
chaiml-phase2-winner-13b2-v278-mkmlizer: ║ Chai Research Corp. ║
chaiml-phase2-winner-13b2-v278-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
chaiml-phase2-winner-13b2-v278-mkmlizer: ║ Expiration: 2024-07-15 23:59:59 ║
chaiml-phase2-winner-13b2-v278-mkmlizer: ║ ║
chaiml-phase2-winner-13b2-v278-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
chaiml-phase2-winner-13b2-v278-mkmlizer: .gitattributes: 0%| | 0.00/1.52k [00:00<?, ?B/s] .gitattributes: 100%|██████████| 1.52k/1.52k [00:00<00:00, 18.0MB/s]
chaiml-phase2-winner-13b2-v278-mkmlizer: README.md: 0%| | 0.00/1.53k [00:00<?, ?B/s] README.md: 100%|██████████| 1.53k/1.53k [00:00<00:00, 24.5MB/s]
chaiml-phase2-winner-13b2-v278-mkmlizer: config.json: 0%| | 0.00/651 [00:00<?, ?B/s] config.json: 100%|██████████| 651/651 [00:00<00:00, 10.6MB/s]
chaiml-phase2-winner-13b2-v278-mkmlizer: generation_config.json: 0%| | 0.00/170 [00:00<?, ?B/s] generation_config.json: 100%|██████████| 170/170 [00:00<00:00, 2.82MB/s]
chaiml-phase2-winner-13b2-v278-mkmlizer: pytorch_model-00001-of-00003.bin: 0%| | 0.00/9.95G [00:00<?, ?B/s] pytorch_model-00001-of-00003.bin: 0%| | 10.5M/9.95G [00:00<02:30, 66.3MB/s] pytorch_model-00001-of-00003.bin: 1%| | 94.4M/9.95G [00:00<00:25, 389MB/s] pytorch_model-00001-of-00003.bin: 2%|▏ | 231M/9.95G [00:00<00:13, 705MB/s] pytorch_model-00001-of-00003.bin: 3%|▎ | 315M/9.95G [00:00<00:14, 681MB/s] pytorch_model-00001-of-00003.bin: 4%|▍ | 440M/9.95G [00:00<00:11, 849MB/s] pytorch_model-00001-of-00003.bin: 5%|▌ | 545M/9.95G [00:00<00:12, 761MB/s] pytorch_model-00001-of-00003.bin: 7%|▋ | 671M/9.95G [00:00<00:10, 884MB/s] pytorch_model-00001-of-00003.bin: 8%|▊ | 765M/9.95G [00:01<00:10, 887MB/s] pytorch_model-00001-of-00003.bin: 9%|▊ | 870M/9.95G [00:01<00:10, 896MB/s] pytorch_model-00001-of-00003.bin: 11%|█ | 1.06G/9.95G [00:01<00:07, 1.13GB/s] pytorch_model-00001-of-00003.bin: 12%|█▏ | 1.18G/9.95G [00:01<00:07, 1.10GB/s] pytorch_model-00001-of-00003.bin: 14%|█▎ | 1.36G/9.95G [00:01<00:06, 1.28GB/s] pytorch_model-00001-of-00003.bin: 16%|█▌ | 1.55G/9.95G [00:01<00:05, 1.42GB/s] pytorch_model-00001-of-00003.bin: 17%|█▋ | 1.74G/9.95G [00:01<00:05, 1.50GB/s] pytorch_model-00001-of-00003.bin: 19%|█▉ | 1.93G/9.95G [00:01<00:05, 1.59GB/s] pytorch_model-00001-of-00003.bin: 22%|██▏ | 2.15G/9.95G [00:01<00:04, 1.70GB/s] pytorch_model-00001-of-00003.bin: 23%|██▎ | 2.33G/9.95G [00:02<00:04, 1.56GB/s] pytorch_model-00001-of-00003.bin: 25%|██▌ | 2.50G/9.95G [00:02<00:05, 1.26GB/s] pytorch_model-00001-of-00003.bin: 27%|██▋ | 2.64G/9.95G [00:02<00:06, 1.13GB/s] pytorch_model-00001-of-00003.bin: 28%|██▊ | 2.77G/9.95G [00:02<00:06, 1.08GB/s] pytorch_model-00001-of-00003.bin: 29%|██▉ | 2.88G/9.95G [00:02<00:07, 946MB/s] pytorch_model-00001-of-00003.bin: 31%|███ | 3.06G/9.95G [00:02<00:06, 1.13GB/s] pytorch_model-00001-of-00003.bin: 32%|███▏ | 3.19G/9.95G [00:02<00:06, 1.09GB/s] pytorch_model-00001-of-00003.bin: 34%|███▎ | 3.36G/9.95G [00:03<00:05, 1.19GB/s] pytorch_model-00001-of-00003.bin: 35%|███▍ | 3.48G/9.95G [00:03<00:05, 1.20GB/s] pytorch_model-00001-of-00003.bin: 37%|███▋ | 3.64G/9.95G [00:03<00:05, 1.25GB/s] pytorch_model-00001-of-00003.bin: 38%|███▊ | 3.79G/9.95G [00:03<00:04, 1.29GB/s] pytorch_model-00001-of-00003.bin: 39%|███▉ | 3.92G/9.95G [00:03<00:04, 1.29GB/s] pytorch_model-00001-of-00003.bin: 41%|████ | 4.07G/9.95G [00:03<00:04, 1.33GB/s] pytorch_model-00001-of-00003.bin: 43%|████▎ | 4.26G/9.95G [00:03<00:03, 1.48GB/s] pytorch_model-00001-of-00003.bin: 45%|████▍ | 4.45G/9.95G [00:03<00:03, 1.51GB/s] pytorch_model-00001-of-00003.bin: 46%|████▋ | 4.61G/9.95G [00:03<00:03, 1.55GB/s] pytorch_model-00001-of-00003.bin: 48%|████▊ | 4.77G/9.95G [00:04<00:03, 1.41GB/s] pytorch_model-00001-of-00003.bin: 49%|████▉ | 4.92G/9.95G [00:04<00:04, 1.23GB/s] pytorch_model-00001-of-00003.bin: 51%|█████▏ | 5.11G/9.95G [00:04<00:03, 1.38GB/s] pytorch_model-00001-of-00003.bin: 53%|█████▎ | 5.28G/9.95G [00:04<00:03, 1.49GB/s] pytorch_model-00001-of-00003.bin: 55%|█████▌ | 5.52G/9.95G [00:04<00:02, 1.69GB/s] pytorch_model-00001-of-00003.bin: 58%|█████▊ | 5.80G/9.95G [00:04<00:02, 1.97GB/s] pytorch_model-00001-of-00003.bin: 60%|██████ | 6.01G/9.95G [00:04<00:02, 1.63GB/s] pytorch_model-00001-of-00003.bin: 63%|██████▎ | 6.25G/9.95G [00:04<00:02, 1.79GB/s] pytorch_model-00001-of-00003.bin: 65%|██████▍ | 6.46G/9.95G [00:05<00:01, 1.81GB/s] pytorch_model-00001-of-00003.bin: 67%|██████▋ | 6.67G/9.95G [00:05<00:01, 1.87GB/s] pytorch_model-00001-of-00003.bin: 69%|██████▉ | 6.89G/9.95G [00:05<00:01, 1.96GB/s] pytorch_model-00001-of-00003.bin: 71%|███████▏ | 7.10G/9.95G [00:05<00:01, 1.66GB/s] pytorch_model-00001-of-00003.bin: 73%|███████▎ | 7.28G/9.95G [00:05<00:01, 1.37GB/s] pytorch_model-00001-of-00003.bin: 75%|███████▍ | 7.43G/9.95G [00:05<00:01, 1.34GB/s] pytorch_model-00001-of-00003.bin: 77%|███████▋ | 7.61G/9.95G [00:05<00:01, 1.39GB/s] pytorch_model-00001-of-00003.bin: 78%|███████▊ | 7.78G/9.95G [00:05<00:01, 1.46GB/s] pytorch_model-00001-of-00003.bin: 81%|████████ | 8.04G/9.95G [00:06<00:01, 1.74GB/s] pytorch_model-00001-of-00003.bin: 83%|████████▎ | 8.24G/9.95G [00:06<00:00, 1.79GB/s] pytorch_model-00001-of-00003.bin: 85%|████████▍ | 8.43G/9.95G [00:06<00:00, 1.73GB/s] pytorch_model-00001-of-00003.bin: 87%|████████▋ | 8.63G/9.95G [00:06<00:00, 1.80GB/s] pytorch_model-00001-of-00003.bin: 89%|████████▊ | 8.82G/9.95G [00:06<00:00, 1.69GB/s] pytorch_model-00001-of-00003.bin: 90%|█████████ | 9.00G/9.95G [00:06<00:00, 1.52GB/s] pytorch_model-00001-of-00003.bin: 93%|█████████▎| 9.26G/9.95G [00:06<00:00, 1.74GB/s] pytorch_model-00001-of-00003.bin: 96%|█████████▋| 9.58G/9.95G [00:06<00:00, 2.09GB/s] pytorch_model-00001-of-00003.bin: 100%|█████████▉| 9.95G/9.95G [00:06<00:00, 1.44GB/s]
chaiml-phase2-winner-13b2-v278-mkmlizer: pytorch_model-00003-of-00003.bin: 0%| | 0.00/6.18G [00:00<?, ?B/s] pytorch_model-00003-of-00003.bin: 0%| | 10.5M/6.18G [00:00<01:46, 57.8MB/s] pytorch_model-00003-of-00003.bin: 2%|▏ | 147M/6.18G [00:00<00:09, 625MB/s] pytorch_model-00003-of-00003.bin: 4%|▎ | 231M/6.18G [00:00<00:09, 632MB/s] pytorch_model-00003-of-00003.bin: 5%|▍ | 304M/6.18G [00:00<00:09, 617MB/s] pytorch_model-00003-of-00003.bin: 6%|▌ | 377M/6.18G [00:00<00:09, 612MB/s] pytorch_model-00003-of-00003.bin: 8%|▊ | 514M/6.18G [00:00<00:06, 828MB/s] pytorch_model-00003-of-00003.bin: 11%|█ | 682M/6.18G [00:00<00:05, 1.05GB/s] pytorch_model-00003-of-00003.bin: 15%|█▌ | 954M/6.18G [00:00<00:03, 1.52GB/s] pytorch_model-00003-of-00003.bin: 21%|██ | 1.28G/6.18G [00:01<00:02, 1.98GB/s] pytorch_model-00003-of-00003.bin: 24%|██▍ | 1.49G/6.18G [00:01<00:02, 1.90GB/s] pytorch_model-00003-of-00003.bin: 27%|██▋ | 1.69G/6.18G [00:01<00:02, 1.65GB/s] pytorch_model-00003-of-00003.bin: 30%|███ | 1.87G/6.18G [00:01<00:02, 1.62GB/s] pytorch_model-00003-of-00003.bin: 33%|███▎ | 2.03G/6.18G [00:01<00:02, 1.53GB/s] pytorch_model-00003-of-00003.bin: 38%|███▊ | 2.32G/6.18G [00:01<00:02, 1.86GB/s] pytorch_model-00003-of-00003.bin: 42%|████▏ | 2.57G/6.18G [00:01<00:01, 1.95GB/s] pytorch_model-00003-of-00003.bin: 45%|████▍ | 2.78G/6.18G [00:02<00:02, 1.38GB/s] pytorch_model-00003-of-00003.bin: 48%|████▊ | 2.97G/6.18G [00:02<00:02, 1.45GB/s] pytorch_model-00003-of-00003.bin: 51%|█████ | 3.14G/6.18G [00:02<00:02, 1.28GB/s] pytorch_model-00003-of-00003.bin: 53%|█████▎ | 3.29G/6.18G [00:02<00:02, 1.34GB/s] pytorch_model-00003-of-00003.bin: 56%|█████▌ | 3.47G/6.18G [00:02<00:01, 1.42GB/s] pytorch_model-00003-of-00003.bin: 61%|██████▏ | 3.79G/6.18G [00:02<00:01, 1.84GB/s] pytorch_model-00003-of-00003.bin: 65%|██████▍ | 4.00G/6.18G [00:02<00:01, 1.64GB/s] pytorch_model-00003-of-00003.bin: 68%|██████▊ | 4.18G/6.18G [00:02<00:01, 1.58GB/s] pytorch_model-00003-of-00003.bin: 71%|███████ | 4.36G/6.18G [00:03<00:01, 1.28GB/s] pytorch_model-00003-of-00003.bin: 73%|███████▎ | 4.51G/6.18G [00:03<00:01, 1.05GB/s] pytorch_model-00003-of-00003.bin: 75%|███████▌ | 4.66G/6.18G [00:03<00:01, 1.10GB/s] pytorch_model-00003-of-00003.bin: 78%|███████▊ | 4.84G/6.18G [00:03<00:01, 1.26GB/s] pytorch_model-00003-of-00003.bin: 83%|████████▎ | 5.11G/6.18G [00:03<00:00, 1.58GB/s] pytorch_model-00003-of-00003.bin: 87%|████████▋ | 5.38G/6.18G [00:03<00:00, 1.86GB/s] pytorch_model-00003-of-00003.bin: 90%|█████████ | 5.59G/6.18G [00:04<00:00, 1.60GB/s] pytorch_model-00003-of-00003.bin: 94%|█████████▍| 5.80G/6.18G [00:04<00:00, 1.72GB/s] pytorch_model-00003-of-00003.bin: 100%|█████████▉| 6.18G/6.18G [00:04<00:00, 1.46GB/s]
chaiml-phase2-winner-13b2-v278-mkmlizer: pytorch_model.bin.index.json: 0%| | 0.00/33.4k [00:00<?, ?B/s] pytorch_model.bin.index.json: 100%|██████████| 33.4k/33.4k [00:00<00:00, 24.6MB/s]
chaiml-phase2-winner-13b2-v278-mkmlizer: special_tokens_map.json: 0%| | 0.00/414 [00:00<?, ?B/s] special_tokens_map.json: 100%|██████████| 414/414 [00:00<00:00, 2.87MB/s]
chaiml-phase2-winner-13b2-v278-mkmlizer: tokenizer.json: 0%| | 0.00/1.84M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 1.84M/1.84M [00:00<00:00, 6.53MB/s] tokenizer.json: 100%|██████████| 1.84M/1.84M [00:00<00:00, 6.51MB/s]
chaiml-phase2-winner-13b2-v278-mkmlizer: tokenizer.model: 0%| | 0.00/500k [00:00<?, ?B/s] tokenizer.model: 100%|██████████| 500k/500k [00:00<00:00, 7.60MB/s]
chaiml-phase2-winner-13b2-v278-mkmlizer: tokenizer_config.json: 0%| | 0.00/725 [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 725/725 [00:00<00:00, 5.16MB/s]
chaiml-phase2-winner-13b2-v278-mkmlizer: Downloaded to shared memory in 19.838s
chaiml-phase2-winner-13b2-v278-mkmlizer: quantizing model to /dev/shm/model_cache
chaiml-phase2-winner-13b2-v278-mkmlizer: Saving mkml model at /dev/shm/model_cache
chaiml-phase2-winner-13b2-v278-mkmlizer: Reading /tmp/tmpf1sk0d5x/pytorch_model.bin.index.json
chaiml-phase2-winner-13b2-v278-mkmlizer: Profiling: 0%| | 0/363 [00:00<?, ?it/s] Profiling: 0%| | 1/363 [00:03<20:26, 3.39s/it] Profiling: 38%|███▊ | 139/363 [00:05<00:06, 33.85it/s] Profiling: 77%|███████▋ | 278/363 [00:06<00:01, 59.17it/s] Profiling: 100%|██████████| 363/363 [00:08<00:00, 52.42it/s] Profiling: 100%|██████████| 363/363 [00:08<00:00, 44.18it/s]
chaiml-phase2-winner-13b2-v278-mkmlizer: quantized model in 29.590s
chaiml-phase2-winner-13b2-v278-mkmlizer: Processed model ChaiML/phase2_winner_13b2 in 51.288s
chaiml-phase2-winner-13b2-v278-mkmlizer: creating bucket guanaco-mkml-models
chaiml-phase2-winner-13b2-v278-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
chaiml-phase2-winner-13b2-v278-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v278
chaiml-phase2-winner-13b2-v278-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v278/special_tokens_map.json
chaiml-phase2-winner-13b2-v278-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v278/config.json
chaiml-phase2-winner-13b2-v278-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v278/tokenizer_config.json
chaiml-phase2-winner-13b2-v278-mkmlizer: cp /dev/shm/model_cache/tokenizer.model s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v278/tokenizer.model
chaiml-phase2-winner-13b2-v278-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v278/tokenizer.json
chaiml-phase2-winner-13b2-v278-mkmlizer: cp /dev/shm/model_cache/mkml_model.tensors s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v278/mkml_model.tensors
chaiml-phase2-winner-13b2-v278-mkmlizer: loading reward model from rirv938/reward_gpt2_medium_preference_24m_e2
chaiml-phase2-winner-13b2-v278-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:1067: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
chaiml-phase2-winner-13b2-v278-mkmlizer: warnings.warn(
chaiml-phase2-winner-13b2-v278-mkmlizer: config.json: 0%| | 0.00/1.05k [00:00<?, ?B/s] config.json: 100%|██████████| 1.05k/1.05k [00:00<00:00, 11.8MB/s]
chaiml-phase2-winner-13b2-v278-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:690: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
chaiml-phase2-winner-13b2-v278-mkmlizer: warnings.warn(
chaiml-phase2-winner-13b2-v278-mkmlizer: tokenizer_config.json: 0%| | 0.00/234 [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 234/234 [00:00<00:00, 2.36MB/s]
chaiml-phase2-winner-13b2-v278-mkmlizer: vocab.json: 0%| | 0.00/1.04M [00:00<?, ?B/s] vocab.json: 100%|██████████| 1.04M/1.04M [00:00<00:00, 11.0MB/s]
chaiml-phase2-winner-13b2-v278-mkmlizer: tokenizer.json: 0%| | 0.00/2.11M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 2.11M/2.11M [00:00<00:00, 10.6MB/s] tokenizer.json: 100%|██████████| 2.11M/2.11M [00:00<00:00, 10.6MB/s]
chaiml-phase2-winner-13b2-v278-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:472: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
chaiml-phase2-winner-13b2-v278-mkmlizer: warnings.warn(
chaiml-phase2-winner-13b2-v278-mkmlizer: pytorch_model.bin: 0%| | 0.00/1.44G [00:00<?, ?B/s] pytorch_model.bin: 1%| | 10.5M/1.44G [00:00<00:14, 97.8MB/s] pytorch_model.bin: 3%|▎ | 41.9M/1.44G [00:00<00:07, 184MB/s] pytorch_model.bin: 5%|▌ | 73.4M/1.44G [00:00<00:07, 194MB/s] pytorch_model.bin: 13%|█▎ | 189M/1.44G [00:00<00:02, 489MB/s] pytorch_model.bin: 24%|██▍ | 346M/1.44G [00:00<00:01, 800MB/s] pytorch_model.bin: 36%|███▋ | 524M/1.44G [00:00<00:00, 1.08GB/s] pytorch_model.bin: 54%|█████▍ | 786M/1.44G [00:00<00:00, 1.52GB/s] pytorch_model.bin: 68%|██████▊ | 975M/1.44G [00:00<00:00, 1.61GB/s] pytorch_model.bin: 80%|███████▉ | 1.15G/1.44G [00:01<00:00, 1.49GB/s] pytorch_model.bin: 100%|█████████▉| 1.44G/1.44G [00:01<00:00, 1.23GB/s]
chaiml-phase2-winner-13b2-v278-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
chaiml-phase2-winner-13b2-v278-mkmlizer: Saving duration: 0.304s
chaiml-phase2-winner-13b2-v278-mkmlizer: Processed model rirv938/reward_gpt2_medium_preference_24m_e2 in 4.522s
Job chaiml-phase2-winner-13b2-v278-mkmlizer completed after 84.74s with status: succeeded
Stopping job with name chaiml-phase2-winner-13b2-v278-mkmlizer
Pipeline stage MKMLizer completed in 89.84s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.29s
Running pipeline stage ISVCDeployer
Creating inference service chaiml-phase2-winner-13b2-v278
Waiting for inference service chaiml-phase2-winner-13b2-v278 to be ready
Inference service chaiml-phase2-winner-13b2-v278 ready after 40.22259855270386s
Pipeline stage ISVCDeployer completed in 48.18s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.132784366607666s
Received healthy response to inference request in 2.186603307723999s
Received healthy response to inference request in 2.0673294067382812s
Received healthy response to inference request in 1.812293291091919s
Received healthy response to inference request in 2.6246590614318848s
5 requests
0 failed requests
5th percentile: 1.8633005142211914
10th percentile: 1.9143077373504638
20th percentile: 2.0163221836090086
30th percentile: 2.080420398712158
40th percentile: 2.1066023826599123
50th percentile: 2.132784366607666
60th percentile: 2.154311943054199
70th percentile: 2.1758395195007325
80th percentile: 2.2742144584655763
90th percentile: 2.4494367599487306
95th percentile: 2.5370479106903074
99th percentile: 2.607136831283569
mean time: 2.16473388671875
Pipeline stage StressChecker completed in 11.76s
Running pipeline stage DaemonicModelEvalScorer
Pipeline stage DaemonicModelEvalScorer completed in 0.04s
Running M-Eval for topic stay_in_character
Running pipeline stage DaemonicSafetyScorer
M-Eval Dataset for topic stay_in_character is loaded
Pipeline stage DaemonicSafetyScorer completed in 0.09s
chaiml-phase2-winner-13b2_v278 status is now deployed due to DeploymentManager action
chaiml-phase2-winner-13b2_v278 status is now inactive due to auto deactivation removed underperforming models
chaiml-phase2-winner-13b2_v278 status is now deployed due to admin request
chaiml-phase2-winner-13b2_v278 status is now inactive due to auto deactivation removed underperforming models

Usage Metrics

Latency Metrics