submission_id: thanhdaonguyen-once-upon-a-t_v20
developer_uid: robert_irvine
status: inactive
model_repo: thanhdaonguyen/once-upon-a-time
reward_repo: ChaiML/reward_models_100_170000000_cp_332032
generation_params: {'temperature': 0.72, 'top_p': 0.73, 'top_k': 1000, 'presence_penalty': 0.7, 'frequency_penalty': 0.3, 'stopping_words': ['</s>', '<|user|>', '###', '\n'], 'max_input_tokens': 512, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': "### Instruction:\n\n{bot_name}'s Persona: {memory}.\n\nPlay the role of {bot_name}. Engage in a chat with {user_name} while stay in character. Do not write dialogues and narration for {user_name}. {bot_name} should response with engaging messages of medium length that encourage responses.", 'prompt_template': '{prompt}\n\n', 'bot_template': '### Response:\n\n{bot_name}: {message}\n\n', 'user_template': '### Input:\n\n{user_name}: {message}\n\n', 'response_template': '### Response:\n\n{bot_name}:'}
timestamp: 2024-02-13T20:10:50+00:00
model_name: thanhdaonguyen-once-upon-a-t_v20
model_eval_status: success
safety_score: 0.93
entertaining: 6.78
stay_in_character: 8.46
user_preference: 7.58
double_thumbs_up: 3387
thumbs_up: 5403
thumbs_down: 2381
num_battles: 122898
num_wins: 57399
win_ratio: 0.46704584289410733
celo_rating: 1133.1
Resubmit model
Running pipeline stage MKMLizer
Starting job with name thanhdaonguyen-once-upon-a-t-v20-mkmlizer
Waiting for job on thanhdaonguyen-once-upon-a-t-v20-mkmlizer to finish
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: ║ _____ __ __ ║
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: ║ /___/ ║
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: ║ ║
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: ║ Version: 0.6.11 ║
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: ║ ║
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: ║ The license key for the current software has been verified as ║
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: ║ belonging to: ║
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: ║ ║
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: ║ Chai Research Corp. ║
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: ║ Expiration: 2024-04-15 23:59:59 ║
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: ║ ║
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: .gitattributes: 0%| | 0.00/1.52k [00:00<?, ?B/s] .gitattributes: 100%|██████████| 1.52k/1.52k [00:00<00:00, 14.7MB/s]
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: added_tokens.json: 0%| | 0.00/21.0 [00:00<?, ?B/s] added_tokens.json: 100%|██████████| 21.0/21.0 [00:00<00:00, 165kB/s]
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: config.json: 0%| | 0.00/643 [00:00<?, ?B/s] config.json: 100%|██████████| 643/643 [00:00<00:00, 5.22MB/s]
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: generation_config.json: 0%| | 0.00/154 [00:00<?, ?B/s] generation_config.json: 100%|██████████| 154/154 [00:00<00:00, 2.54MB/s]
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: pytorch_model-00001-of-00003.bin: 0%| | 0.00/9.95G [00:00<?, ?B/s] pytorch_model-00001-of-00003.bin: 0%| | 10.5M/9.95G [00:01<20:18, 8.16MB/s] pytorch_model-00001-of-00003.bin: 1%| | 73.4M/9.95G [00:01<02:27, 66.9MB/s] pytorch_model-00001-of-00003.bin: 2%|▏ | 231M/9.95G [00:01<00:39, 247MB/s] pytorch_model-00001-of-00003.bin: 5%|▍ | 472M/9.95G [00:01<00:17, 553MB/s] pytorch_model-00001-of-00003.bin: 6%|▌ | 608M/9.95G [00:01<00:14, 658MB/s] pytorch_model-00001-of-00003.bin: 7%|▋ | 734M/9.95G [00:01<00:14, 655MB/s] pytorch_model-00001-of-00003.bin: 10%|▉ | 954M/9.95G [00:02<00:09, 939MB/s] pytorch_model-00001-of-00003.bin: 12%|█▏ | 1.21G/9.95G [00:02<00:06, 1.26GB/s] pytorch_model-00001-of-00003.bin: 14%|█▍ | 1.38G/9.95G [00:02<00:06, 1.34GB/s] pytorch_model-00001-of-00003.bin: 16%|█▌ | 1.56G/9.95G [00:02<00:06, 1.33GB/s] pytorch_model-00001-of-00003.bin: 17%|█▋ | 1.74G/9.95G [00:02<00:05, 1.44GB/s] pytorch_model-00001-of-00003.bin: 19%|█▉ | 1.91G/9.95G [00:02<00:05, 1.45GB/s] pytorch_model-00001-of-00003.bin: 21%|██ | 2.08G/9.95G [00:02<00:06, 1.31GB/s] pytorch_model-00001-of-00003.bin: 23%|██▎ | 2.24G/9.95G [00:02<00:05, 1.40GB/s] pytorch_model-00001-of-00003.bin: 26%|██▌ | 2.54G/9.95G [00:03<00:04, 1.77GB/s] pytorch_model-00001-of-00003.bin: 27%|██▋ | 2.73G/9.95G [00:03<00:04, 1.54GB/s] pytorch_model-00001-of-00003.bin: 29%|██▉ | 2.90G/9.95G [00:03<00:04, 1.60GB/s] pytorch_model-00001-of-00003.bin: 31%|███ | 3.08G/9.95G [00:03<00:04, 1.60GB/s] pytorch_model-00001-of-00003.bin: 33%|███▎ | 3.28G/9.95G [00:03<00:04, 1.64GB/s] pytorch_model-00001-of-00003.bin: 35%|███▌ | 3.49G/9.95G [00:03<00:03, 1.76GB/s] pytorch_model-00001-of-00003.bin: 37%|███▋ | 3.68G/9.95G [00:03<00:03, 1.75GB/s] pytorch_model-00001-of-00003.bin: 39%|███▉ | 3.87G/9.95G [00:03<00:03, 1.77GB/s] pytorch_model-00001-of-00003.bin: 41%|████ | 4.07G/9.95G [00:03<00:03, 1.77GB/s] pytorch_model-00001-of-00003.bin: 43%|████▎ | 4.26G/9.95G [00:04<00:03, 1.78GB/s] pytorch_model-00001-of-00003.bin: 45%|████▍ | 4.45G/9.95G [00:04<00:03, 1.77GB/s] pytorch_model-00001-of-00003.bin: 46%|████▋ | 4.62G/9.95G [00:04<00:03, 1.71GB/s] pytorch_model-00001-of-00003.bin: 49%|████▊ | 4.84G/9.95G [00:04<00:02, 1.82GB/s] pytorch_model-00001-of-00003.bin: 51%|█████ | 5.03G/9.95G [00:04<00:02, 1.81GB/s] pytorch_model-00001-of-00003.bin: 52%|█████▏ | 5.22G/9.95G [00:04<00:02, 1.68GB/s] pytorch_model-00001-of-00003.bin: 54%|█████▍ | 5.40G/9.95G [00:04<00:02, 1.55GB/s] pytorch_model-00001-of-00003.bin: 56%|█████▌ | 5.57G/9.95G [00:04<00:02, 1.56GB/s] pytorch_model-00001-of-00003.bin: 58%|█████▊ | 5.76G/9.95G [00:04<00:02, 1.65GB/s] pytorch_model-00001-of-00003.bin: 60%|█████▉ | 5.95G/9.95G [00:05<00:02, 1.69GB/s] pytorch_model-00001-of-00003.bin: 63%|██████▎ | 6.22G/9.95G [00:05<00:01, 1.96GB/s] pytorch_model-00001-of-00003.bin: 65%|██████▍ | 6.42G/9.95G [00:05<00:01, 1.83GB/s] pytorch_model-00001-of-00003.bin: 66%|██████▋ | 6.61G/9.95G [00:05<00:01, 1.78GB/s] pytorch_model-00001-of-00003.bin: 68%|██████▊ | 6.79G/9.95G [00:05<00:02, 1.55GB/s] pytorch_model-00001-of-00003.bin: 70%|██████▉ | 6.96G/9.95G [00:05<00:01, 1.57GB/s] pytorch_model-00001-of-00003.bin: 73%|███████▎ | 7.21G/9.95G [00:05<00:01, 1.75GB/s] pytorch_model-00001-of-00003.bin: 75%|███████▍ | 7.42G/9.95G [00:05<00:01, 1.74GB/s] pytorch_model-00001-of-00003.bin: 76%|███████▋ | 7.60G/9.95G [00:06<00:01, 1.44GB/s] pytorch_model-00001-of-00003.bin: 79%|███████▉ | 7.87G/9.95G [00:06<00:01, 1.72GB/s] pytorch_model-00001-of-00003.bin: 82%|████████▏ | 8.12G/9.95G [00:06<00:00, 1.86GB/s] pytorch_model-00001-of-00003.bin: 84%|████████▎ | 8.32G/9.95G [00:06<00:01, 1.56GB/s] pytorch_model-00001-of-00003.bin: 85%|████████▌ | 8.49G/9.95G [00:06<00:00, 1.56GB/s] pytorch_model-00001-of-00003.bin: 87%|████████▋ | 8.68G/9.95G [00:06<00:00, 1.62GB/s] pytorch_model-00001-of-00003.bin: 89%|████████▉ | 8.86G/9.95G [00:06<00:00, 1.54GB/s] pytorch_model-00001-of-00003.bin: 91%|█████████▏| 9.08G/9.95G [00:06<00:00, 1.61GB/s] pytorch_model-00001-of-00003.bin: 93%|█████████▎| 9.29G/9.95G [00:07<00:00, 1.73GB/s] pytorch_model-00001-of-00003.bin: 95%|█████████▌| 9.50G/9.95G [00:07<00:00, 1.78GB/s] pytorch_model-00001-of-00003.bin: 98%|█████████▊| 9.74G/9.95G [00:07<00:00, 1.94GB/s] pytorch_model-00001-of-00003.bin: 100%|█████████▉| 9.95G/9.95G [00:08<00:00, 644MB/s] pytorch_model-00001-of-00003.bin: 100%|█████████▉| 9.95G/9.95G [00:08<00:00, 1.22GB/s]
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: pytorch_model-00002-of-00003.bin: 0%| | 0.00/9.90G [00:00<?, ?B/s] pytorch_model-00002-of-00003.bin: 0%| | 10.5M/9.90G [00:00<09:49, 16.8MB/s] pytorch_model-00002-of-00003.bin: 0%| | 21.0M/9.90G [00:00<07:17, 22.6MB/s] pytorch_model-00002-of-00003.bin: 1%| | 94.4M/9.90G [00:01<01:15, 130MB/s] pytorch_model-00002-of-00003.bin: 3%|▎ | 252M/9.90G [00:01<00:25, 384MB/s] pytorch_model-00002-of-00003.bin: 4%|▍ | 419M/9.90G [00:01<00:14, 642MB/s] pytorch_model-00002-of-00003.bin: 5%|▌ | 535M/9.90G [00:01<00:19, 478MB/s] pytorch_model-00002-of-00003.bin: 7%|▋ | 661M/9.90G [00:01<00:15, 604MB/s] pytorch_model-00002-of-00003.bin: 8%|▊ | 786M/9.90G [00:01<00:13, 679MB/s] pytorch_model-00002-of-00003.bin: 9%|▉ | 881M/9.90G [00:02<00:13, 659MB/s] pytorch_model-00002-of-00003.bin: 11%|█ | 1.07G/9.90G [00:02<00:09, 895MB/s] pytorch_model-00002-of-00003.bin: 14%|█▍ | 1.42G/9.90G [00:02<00:05, 1.47GB/s] pytorch_model-00002-of-00003.bin: 17%|█▋ | 1.67G/9.90G [00:02<00:04, 1.66GB/s] pytorch_model-00002-of-00003.bin: 19%|█▉ | 1.87G/9.90G [00:02<00:07, 1.07GB/s] pytorch_model-00002-of-00003.bin: 21%|██ | 2.03G/9.90G [00:02<00:06, 1.17GB/s] pytorch_model-00002-of-00003.bin: 22%|██▏ | 2.20G/9.90G [00:02<00:06, 1.26GB/s] pytorch_model-00002-of-00003.bin: 24%|██▍ | 2.36G/9.90G [00:03<00:06, 1.13GB/s] pytorch_model-00002-of-00003.bin: 26%|██▌ | 2.53G/9.90G [00:03<00:06, 1.21GB/s] pytorch_model-00002-of-00003.bin: 27%|██▋ | 2.67G/9.90G [00:03<00:05, 1.26GB/s] pytorch_model-00002-of-00003.bin: 28%|██▊ | 2.82G/9.90G [00:03<00:05, 1.21GB/s] pytorch_model-00002-of-00003.bin: 31%|███ | 3.04G/9.90G [00:03<00:04, 1.43GB/s] pytorch_model-00002-of-00003.bin: 34%|███▎ | 3.32G/9.90G [00:03<00:03, 1.77GB/s] pytorch_model-00002-of-00003.bin: 35%|███▌ | 3.51G/9.90G [00:03<00:03, 1.71GB/s] pytorch_model-00002-of-00003.bin: 37%|███▋ | 3.70G/9.90G [00:03<00:03, 1.67GB/s] pytorch_model-00002-of-00003.bin: 39%|███▉ | 3.88G/9.90G [00:04<00:04, 1.42GB/s] pytorch_model-00002-of-00003.bin: 41%|████ | 4.04G/9.90G [00:04<00:04, 1.33GB/s] pytorch_model-00002-of-00003.bin: 42%|████▏ | 4.18G/9.90G [00:04<00:04, 1.19GB/s] pytorch_model-00002-of-00003.bin: 44%|████▍ | 4.35G/9.90G [00:04<00:04, 1.28GB/s] pytorch_model-00002-of-00003.bin: 46%|████▌ | 4.55G/9.90G [00:04<00:03, 1.43GB/s] pytorch_model-00002-of-00003.bin: 48%|████▊ | 4.79G/9.90G [00:04<00:03, 1.67GB/s] pytorch_model-00002-of-00003.bin: 51%|█████ | 5.03G/9.90G [00:04<00:02, 1.85GB/s] pytorch_model-00002-of-00003.bin: 53%|█████▎ | 5.25G/9.90G [00:04<00:02, 1.88GB/s] pytorch_model-00002-of-00003.bin: 55%|█████▌ | 5.45G/9.90G [00:05<00:02, 1.49GB/s] pytorch_model-00002-of-00003.bin: 57%|█████▋ | 5.62G/9.90G [00:05<00:02, 1.53GB/s] pytorch_model-00002-of-00003.bin: 59%|█████▉ | 5.85G/9.90G [00:05<00:02, 1.70GB/s] pytorch_model-00002-of-00003.bin: 61%|██████ | 6.05G/9.90G [00:05<00:02, 1.69GB/s] pytorch_model-00002-of-00003.bin: 64%|██████▎ | 6.29G/9.90G [00:05<00:02, 1.78GB/s] pytorch_model-00002-of-00003.bin: 65%|██████▌ | 6.48G/9.90G [00:05<00:02, 1.53GB/s] pytorch_model-00002-of-00003.bin: 67%|██████▋ | 6.65G/9.90G [00:05<00:02, 1.44GB/s] pytorch_model-00002-of-00003.bin: 69%|██████▊ | 6.81G/9.90G [00:06<00:02, 1.40GB/s] pytorch_model-00002-of-00003.bin: 71%|███████ | 7.05G/9.90G [00:06<00:01, 1.53GB/s] pytorch_model-00002-of-00003.bin: 74%|███████▍ | 7.31G/9.90G [00:06<00:01, 1.76GB/s] pytorch_model-00002-of-00003.bin: 76%|███████▌ | 7.50G/9.90G [00:06<00:01, 1.68GB/s] pytorch_model-00002-of-00003.bin: 77%|███████▋ | 7.68G/9.90G [00:06<00:01, 1.66GB/s] pytorch_model-00002-of-00003.bin: 79%|███████▉ | 7.85G/9.90G [00:06<00:01, 1.60GB/s] pytorch_model-00002-of-00003.bin: 81%|████████ | 8.04G/9.90G [00:06<00:01, 1.67GB/s] pytorch_model-00002-of-00003.bin: 83%|████████▎ | 8.22G/9.90G [00:06<00:01, 1.56GB/s] pytorch_model-00002-of-00003.bin: 85%|████████▌ | 8.45G/9.90G [00:06<00:00, 1.66GB/s] pytorch_model-00002-of-00003.bin: 87%|████████▋ | 8.63G/9.90G [00:07<00:00, 1.51GB/s] pytorch_model-00002-of-00003.bin: 89%|████████▊ | 8.79G/9.90G [00:07<00:00, 1.44GB/s] pytorch_model-00002-of-00003.bin: 90%|█████████ | 8.95G/9.90G [00:07<00:00, 1.49GB/s] pytorch_model-00002-of-00003.bin: 92%|█████████▏| 9.13G/9.90G [00:07<00:00, 1.55GB/s] pytorch_model-00002-of-00003.bin: 94%|█████████▍| 9.33G/9.90G [00:07<00:00, 1.67GB/s] pytorch_model-00002-of-00003.bin: 96%|█████████▋| 9.54G/9.90G [00:07<00:00, 1.75GB/s] pytorch_model-00002-of-00003.bin: 98%|█████████▊| 9.72G/9.90G [00:07<00:00, 1.53GB/s] pytorch_model-00002-of-00003.bin: 100%|█████████▉| 9.88G/9.90G [00:08<00:00, 982MB/s] pytorch_model-00002-of-00003.bin: 100%|█████████▉| 9.90G/9.90G [00:08<00:00, 1.19GB/s]
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: special_tokens_map.json: 0%| | 0.00/438 [00:00<?, ?B/s] special_tokens_map.json: 100%|██████████| 438/438 [00:00<00:00, 5.52MB/s]
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: tokenizer.json: 0%| | 0.00/1.84M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 1.84M/1.84M [00:00<00:00, 17.4MB/s] tokenizer.json: 100%|██████████| 1.84M/1.84M [00:00<00:00, 17.2MB/s]
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: tokenizer.model: 0%| | 0.00/500k [00:00<?, ?B/s] tokenizer.model: 100%|██████████| 500k/500k [00:00<00:00, 5.53MB/s]
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: tokenizer_config.json: 0%| | 0.00/828 [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 828/828 [00:00<00:00, 6.63MB/s]
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: Downloaded to shared memory in 25.261s
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: quantizing model to /dev/shm/model_cache
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: Saving mkml model at /dev/shm/model_cache
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: Reading /tmp/tmpxx4n85zf/pytorch_model.bin.index.json
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: Profiling: 0%| | 0/363 [00:00<?, ?it/s] Profiling: 0%| | 1/363 [00:04<28:27, 4.72s/it] Profiling: 38%|███▊ | 139/363 [00:07<00:09, 23.98it/s] Profiling: 77%|███████▋ | 278/363 [00:08<00:02, 41.53it/s] Profiling: 100%|██████████| 363/363 [00:10<00:00, 42.30it/s] Profiling: 100%|██████████| 363/363 [00:10<00:00, 33.70it/s]
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: quantized model in 32.479s
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: Processed model thanhdaonguyen/once-upon-a-time in 59.902s
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: creating bucket guanaco-mkml-models
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/thanhdaonguyen-once-upon-a-t-v20
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/thanhdaonguyen-once-upon-a-t-v20/config.json
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/thanhdaonguyen-once-upon-a-t-v20/special_tokens_map.json
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/thanhdaonguyen-once-upon-a-t-v20/tokenizer_config.json
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: cp /dev/shm/model_cache/added_tokens.json s3://guanaco-mkml-models/thanhdaonguyen-once-upon-a-t-v20/added_tokens.json
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: cp /dev/shm/model_cache/tokenizer.model s3://guanaco-mkml-models/thanhdaonguyen-once-upon-a-t-v20/tokenizer.model
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/thanhdaonguyen-once-upon-a-t-v20/tokenizer.json
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: cp /dev/shm/model_cache/mkml_model.tensors s3://guanaco-mkml-models/thanhdaonguyen-once-upon-a-t-v20/mkml_model.tensors
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: loading reward model from ChaiML/reward_models_100_170000000_cp_332032
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:1067: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: warnings.warn(
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: config.json: 0%| | 0.00/1.06k [00:00<?, ?B/s] config.json: 100%|██████████| 1.06k/1.06k [00:00<00:00, 12.4MB/s]
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:690: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: warnings.warn(
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: tokenizer_config.json: 0%| | 0.00/234 [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 234/234 [00:00<00:00, 1.79MB/s]
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: vocab.json: 0%| | 0.00/798k [00:00<?, ?B/s] vocab.json: 100%|██████████| 798k/798k [00:00<00:00, 8.49MB/s]
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: tokenizer.json: 0%| | 0.00/2.11M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 2.11M/2.11M [00:00<00:00, 28.0MB/s]
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:472: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: warnings.warn(
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: pytorch_model.bin: 0%| | 0.00/510M [00:00<?, ?B/s] pytorch_model.bin: 2%|▏ | 10.5M/510M [00:00<00:22, 22.6MB/s] pytorch_model.bin: 8%|▊ | 41.9M/510M [00:00<00:05, 86.2MB/s] pytorch_model.bin: 43%|████▎ | 220M/510M [00:00<00:00, 492MB/s] pytorch_model.bin: 62%|██████▏ | 315M/510M [00:00<00:00, 402MB/s] pytorch_model.bin: 86%|████████▌ | 437M/510M [00:01<00:00, 561MB/s] pytorch_model.bin: 100%|█████████▉| 510M/510M [00:01<00:00, 345MB/s]
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: Saving duration: 0.099s
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: Processed model ChaiML/reward_models_100_170000000_cp_332032 in 4.710s
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: creating bucket guanaco-reward-models
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: Bucket 's3://guanaco-reward-models/' created
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/thanhdaonguyen-once-upon-a-t-v20_reward
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/thanhdaonguyen-once-upon-a-t-v20_reward/special_tokens_map.json
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/thanhdaonguyen-once-upon-a-t-v20_reward/tokenizer_config.json
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/thanhdaonguyen-once-upon-a-t-v20_reward/config.json
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/thanhdaonguyen-once-upon-a-t-v20_reward/merges.txt
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/thanhdaonguyen-once-upon-a-t-v20_reward/vocab.json
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/thanhdaonguyen-once-upon-a-t-v20_reward/tokenizer.json
thanhdaonguyen-once-upon-a-t-v20-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/thanhdaonguyen-once-upon-a-t-v20_reward/reward.tensors
Job thanhdaonguyen-once-upon-a-t-v20-mkmlizer completed after 95.93s with status: succeeded
Stopping job with name thanhdaonguyen-once-upon-a-t-v20-mkmlizer
Pipeline stage MKMLizer completed in 101.34s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.12s
Running pipeline stage ISVCDeployer
Creating inference service thanhdaonguyen-once-upon-a-t-v20
Waiting for inference service thanhdaonguyen-once-upon-a-t-v20 to be ready
Inference service thanhdaonguyen-once-upon-a-t-v20 ready after 50.34551739692688s
Pipeline stage ISVCDeployer completed in 58.39s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.7152111530303955s
Received healthy response to inference request in 1.7446832656860352s
Received healthy response to inference request in 1.7474548816680908s
Received healthy response to inference request in 1.7634780406951904s
Received healthy response to inference request in 1.759171724319458s
5 requests
0 failed requests
5th percentile: 1.7452375888824463
10th percentile: 1.7457919120788574
20th percentile: 1.7469005584716797
30th percentile: 1.7497982501983642
40th percentile: 1.7544849872589112
50th percentile: 1.759171724319458
60th percentile: 1.760894250869751
70th percentile: 1.7626167774200439
80th percentile: 1.9538246631622316
90th percentile: 2.3345179080963137
95th percentile: 2.524864530563354
99th percentile: 2.6771418285369872
mean time: 1.945999813079834
Pipeline stage StressChecker completed in 10.69s
Running pipeline stage DaemonicModelEvalScorer
Pipeline stage DaemonicModelEvalScorer completed in 0.05s
Running pipeline stage DaemonicSafetyScorer
Running M-Eval for topic stay_in_character
Pipeline stage DaemonicSafetyScorer completed in 0.05s
M-Eval Dataset for topic stay_in_character is loaded
thanhdaonguyen-once-upon-a-t_v20 status is now inactive due to auto deactivation removed underperforming models
thanhdaonguyen-once-upon-a-t_v20 status is now deployed due to admin request
thanhdaonguyen-once-upon-a-t_v20 status is now inactive due to auto deactivation removed underperforming models

Usage Metrics

Latency Metrics