submission_id: sao10k-fimbulvetr-11b-v2_v5
developer_uid: chai_backend_admin
status: inactive
model_repo: Sao10K/Fimbulvetr-11B-v2
reward_repo: ChaiML/reward_gpt2_medium_preference_24m_e2
generation_params: {'temperature': 0.9, 'top_p': 1.0, 'top_k': 50, 'presence_penalty': 0.5, 'frequency_penalty': 0.5, 'stopping_words': ['\n', '</s>', '<|user|>', '###'], 'max_input_tokens': 512, 'best_of': 1, 'max_output_tokens': 64}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:'}
reward_formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:'}
timestamp: 2024-04-02T15:41:02+00:00
model_name: auto_submit_ricum_bopudinasi
model_eval_status: success
safety_score: 0.79
entertaining: 6.6
stay_in_character: 8.4
user_preference: 7.4
double_thumbs_up: 236
thumbs_up: 424
thumbs_down: 249
num_battles: 24639
num_wins: 10049
win_ratio: 0.40784934453508664
celo_rating: 1089.44
Resubmit model
Running pipeline stage MKMLizer
Starting job with name sao10k-fimbulvetr-11b-v2-v5-mkmlizer
Waiting for job on sao10k-fimbulvetr-11b-v2-v5-mkmlizer to finish
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: ║ _____ __ __ ║
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: ║ /___/ ║
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: ║ ║
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: ║ Version: 0.6.11 ║
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: ║ ║
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: ║ The license key for the current software has been verified as ║
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: ║ belonging to: ║
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: ║ ║
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: ║ Chai Research Corp. ║
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: ║ Expiration: 2024-07-15 23:59:59 ║
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: ║ ║
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: .gitattributes: 0%| | 0.00/1.52k [00:00<?, ?B/s] .gitattributes: 100%|██████████| 1.52k/1.52k [00:00<00:00, 19.2MB/s]
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: README.md: 0%| | 0.00/1.49k [00:00<?, ?B/s] README.md: 100%|██████████| 1.49k/1.49k [00:00<00:00, 24.0MB/s]
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: config.json: 0%| | 0.00/673 [00:00<?, ?B/s] config.json: 100%|██████████| 673/673 [00:00<00:00, 5.41MB/s]
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: cute1.jpg: 0%| | 0.00/193k [00:00<?, ?B/s] cute1.jpg: 100%|██████████| 193k/193k [00:00<00:00, 4.72MB/s]
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: generation_config.json: 0%| | 0.00/133 [00:00<?, ?B/s] generation_config.json: 100%|██████████| 133/133 [00:00<00:00, 1.03MB/s]
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: model-00001-of-00005.safetensors: 0%| | 0.00/4.94G [00:00<?, ?B/s] model-00001-of-00005.safetensors: 0%| | 21.0M/4.94G [00:00<00:30, 163MB/s] model-00001-of-00005.safetensors: 2%|▏ | 94.4M/4.94G [00:00<00:11, 405MB/s] model-00001-of-00005.safetensors: 3%|▎ | 136M/4.94G [00:00<00:15, 306MB/s] model-00001-of-00005.safetensors: 7%|▋ | 336M/4.94G [00:00<00:05, 781MB/s] model-00001-of-00005.safetensors: 17%|█▋ | 818M/4.94G [00:00<00:02, 1.95GB/s] model-00001-of-00005.safetensors: 21%|██▏ | 1.06G/4.94G [00:00<00:01, 1.98GB/s] model-00001-of-00005.safetensors: 26%|██▌ | 1.29G/4.94G [00:00<00:01, 1.85GB/s] model-00001-of-00005.safetensors: 30%|███ | 1.50G/4.94G [00:01<00:01, 1.80GB/s] model-00001-of-00005.safetensors: 34%|███▍ | 1.70G/4.94G [00:01<00:01, 1.81GB/s] model-00001-of-00005.safetensors: 38%|███▊ | 1.90G/4.94G [00:01<00:01, 1.80GB/s] model-00001-of-00005.safetensors: 44%|████▍ | 2.17G/4.94G [00:01<00:01, 2.01GB/s] model-00001-of-00005.safetensors: 50%|█████ | 2.47G/4.94G [00:01<00:01, 2.22GB/s] model-00001-of-00005.safetensors: 55%|█████▌ | 2.74G/4.94G [00:01<00:00, 2.33GB/s] model-00001-of-00005.safetensors: 63%|██████▎ | 3.14G/4.94G [00:01<00:00, 2.76GB/s] model-00001-of-00005.safetensors: 69%|██████▉ | 3.42G/4.94G [00:01<00:00, 2.42GB/s] model-00001-of-00005.safetensors: 74%|███████▍ | 3.68G/4.94G [00:01<00:00, 2.41GB/s] model-00001-of-00005.safetensors: 80%|███████▉ | 3.93G/4.94G [00:02<00:00, 2.20GB/s] model-00001-of-00005.safetensors: 84%|████████▍ | 4.16G/4.94G [00:02<00:00, 1.85GB/s] model-00001-of-00005.safetensors: 88%|████████▊ | 4.37G/4.94G [00:02<00:00, 1.84GB/s] model-00001-of-00005.safetensors: 94%|█████████▍| 4.66G/4.94G [00:02<00:00, 2.10GB/s] model-00001-of-00005.safetensors: 99%|█████████▉| 4.89G/4.94G [00:05<00:00, 279MB/s] model-00001-of-00005.safetensors: 100%|█████████▉| 4.94G/4.94G [00:05<00:00, 935MB/s]
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: model-00002-of-00005.safetensors: 0%| | 0.00/5.00G [00:00<?, ?B/s] model-00002-of-00005.safetensors: 0%| | 10.5M/5.00G [00:00<00:59, 84.4MB/s] model-00002-of-00005.safetensors: 3%|▎ | 136M/5.00G [00:00<00:08, 596MB/s] model-00002-of-00005.safetensors: 6%|▌ | 283M/5.00G [00:00<00:05, 910MB/s] model-00002-of-00005.safetensors: 8%|▊ | 377M/5.00G [00:00<00:05, 919MB/s] model-00002-of-00005.safetensors: 11%|█▏ | 566M/5.00G [00:00<00:03, 1.20GB/s] model-00002-of-00005.safetensors: 18%|█▊ | 891M/5.00G [00:00<00:02, 1.84GB/s] model-00002-of-00005.safetensors: 27%|██▋ | 1.34G/5.00G [00:00<00:01, 2.65GB/s] model-00002-of-00005.safetensors: 32%|███▏ | 1.61G/5.00G [00:00<00:01, 2.67GB/s] model-00002-of-00005.safetensors: 38%|███▊ | 1.89G/5.00G [00:01<00:01, 2.04GB/s] model-00002-of-00005.safetensors: 43%|████▎ | 2.16G/5.00G [00:01<00:01, 2.19GB/s] model-00002-of-00005.safetensors: 50%|█████ | 2.51G/5.00G [00:01<00:00, 2.51GB/s] model-00002-of-00005.safetensors: 56%|█████▌ | 2.78G/5.00G [00:01<00:00, 2.25GB/s] model-00002-of-00005.safetensors: 61%|██████ | 3.03G/5.00G [00:01<00:00, 2.27GB/s] model-00002-of-00005.safetensors: 68%|██████▊ | 3.40G/5.00G [00:01<00:00, 2.53GB/s] model-00002-of-00005.safetensors: 73%|███████▎ | 3.67G/5.00G [00:01<00:00, 2.52GB/s] model-00002-of-00005.safetensors: 79%|███████▊ | 3.93G/5.00G [00:01<00:00, 2.13GB/s] model-00002-of-00005.safetensors: 83%|████████▎ | 4.16G/5.00G [00:02<00:00, 2.10GB/s] model-00002-of-00005.safetensors: 93%|█████████▎| 4.66G/5.00G [00:02<00:00, 2.60GB/s] model-00002-of-00005.safetensors: 99%|█████████▊| 4.94G/5.00G [00:05<00:00, 331MB/s] model-00002-of-00005.safetensors: 100%|█████████▉| 5.00G/5.00G [00:05<00:00, 966MB/s]
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: model-00003-of-00005.safetensors: 0%| | 0.00/4.92G [00:00<?, ?B/s] model-00003-of-00005.safetensors: 0%| | 10.5M/4.92G [00:00<01:03, 77.7MB/s] model-00003-of-00005.safetensors: 1%|▏ | 62.9M/4.92G [00:00<00:17, 275MB/s] model-00003-of-00005.safetensors: 4%|▎ | 178M/4.92G [00:00<00:08, 584MB/s] model-00003-of-00005.safetensors: 6%|▋ | 315M/4.92G [00:00<00:05, 854MB/s] model-00003-of-00005.safetensors: 10%|█ | 503M/4.92G [00:00<00:03, 1.18GB/s] model-00003-of-00005.safetensors: 16%|█▌ | 786M/4.92G [00:00<00:02, 1.67GB/s] model-00003-of-00005.safetensors: 23%|██▎ | 1.13G/4.92G [00:00<00:01, 2.15GB/s] model-00003-of-00005.safetensors: 28%|██▊ | 1.37G/4.92G [00:00<00:01, 2.22GB/s] model-00003-of-00005.safetensors: 33%|███▎ | 1.60G/4.92G [00:01<00:01, 1.93GB/s] model-00003-of-00005.safetensors: 37%|███▋ | 1.84G/4.92G [00:01<00:01, 2.00GB/s] model-00003-of-00005.safetensors: 42%|████▏ | 2.09G/4.92G [00:01<00:01, 2.13GB/s] model-00003-of-00005.safetensors: 48%|████▊ | 2.36G/4.92G [00:01<00:01, 2.27GB/s] model-00003-of-00005.safetensors: 54%|█████▍ | 2.66G/4.92G [00:01<00:00, 2.49GB/s] model-00003-of-00005.safetensors: 63%|██████▎ | 3.10G/4.92G [00:01<00:00, 3.02GB/s] model-00003-of-00005.safetensors: 70%|██████▉ | 3.42G/4.92G [00:01<00:00, 2.47GB/s] model-00003-of-00005.safetensors: 75%|███████▌ | 3.69G/4.92G [00:01<00:00, 2.01GB/s] model-00003-of-00005.safetensors: 80%|███████▉ | 3.92G/4.92G [00:02<00:00, 1.81GB/s] model-00003-of-00005.safetensors: 84%|████████▍ | 4.13G/4.92G [00:02<00:00, 1.54GB/s] model-00003-of-00005.safetensors: 88%|████████▊ | 4.31G/4.92G [00:02<00:00, 897MB/s] model-00003-of-00005.safetensors: 90%|█████████ | 4.44G/4.92G [00:02<00:00, 857MB/s] model-00003-of-00005.safetensors: 96%|█████████▌| 4.72G/4.92G [00:03<00:00, 1.14GB/s] model-00003-of-00005.safetensors: 99%|█████████▉| 4.88G/4.92G [00:05<00:00, 276MB/s] model-00003-of-00005.safetensors: 100%|█████████▉| 4.92G/4.92G [00:05<00:00, 948MB/s]
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: model-00004-of-00005.safetensors: 0%| | 0.00/4.92G [00:00<?, ?B/s] model-00004-of-00005.safetensors: 0%| | 10.5M/4.92G [00:00<01:03, 77.1MB/s] model-00004-of-00005.safetensors: 1%| | 52.4M/4.92G [00:00<00:19, 250MB/s] model-00004-of-00005.safetensors: 4%|▍ | 220M/4.92G [00:00<00:05, 827MB/s] model-00004-of-00005.safetensors: 9%|▉ | 461M/4.92G [00:00<00:03, 1.36GB/s] model-00004-of-00005.safetensors: 14%|█▍ | 682M/4.92G [00:00<00:02, 1.59GB/s] model-00004-of-00005.safetensors: 18%|█▊ | 870M/4.92G [00:00<00:02, 1.68GB/s] model-00004-of-00005.safetensors: 21%|██▏ | 1.05G/4.92G [00:00<00:02, 1.69GB/s] model-00004-of-00005.safetensors: 25%|██▍ | 1.23G/4.92G [00:00<00:02, 1.48GB/s] model-00004-of-00005.safetensors: 30%|███ | 1.48G/4.92G [00:01<00:02, 1.70GB/s] model-00004-of-00005.safetensors: 35%|███▍ | 1.72G/4.92G [00:01<00:01, 1.83GB/s] model-00004-of-00005.safetensors: 42%|████▏ | 2.08G/4.92G [00:01<00:01, 2.29GB/s] model-00004-of-00005.safetensors: 47%|████▋ | 2.32G/4.92G [00:01<00:01, 2.27GB/s] model-00004-of-00005.safetensors: 54%|█████▍ | 2.64G/4.92G [00:01<00:00, 2.49GB/s] model-00004-of-00005.safetensors: 59%|█████▉ | 2.90G/4.92G [00:01<00:00, 2.04GB/s] model-00004-of-00005.safetensors: 64%|██████▍ | 3.14G/4.92G [00:01<00:00, 2.06GB/s] model-00004-of-00005.safetensors: 68%|██████▊ | 3.36G/4.92G [00:01<00:00, 2.06GB/s] model-00004-of-00005.safetensors: 73%|███████▎ | 3.61G/4.92G [00:01<00:00, 2.17GB/s] model-00004-of-00005.safetensors: 79%|███████▉ | 3.88G/4.92G [00:02<00:00, 2.26GB/s] model-00004-of-00005.safetensors: 84%|████████▍ | 4.12G/4.92G [00:02<00:00, 2.25GB/s] model-00004-of-00005.safetensors: 90%|█████████ | 4.44G/4.92G [00:02<00:00, 2.49GB/s] model-00004-of-00005.safetensors: 98%|█████████▊| 4.80G/4.92G [00:02<00:00, 2.66GB/s] model-00004-of-00005.safetensors: 100%|█████████▉| 4.92G/4.92G [00:05<00:00, 953MB/s]
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: model-00005-of-00005.safetensors: 0%| | 0.00/1.69G [00:00<?, ?B/s] model-00005-of-00005.safetensors: 1%| | 10.5M/1.69G [00:00<00:39, 42.6MB/s] model-00005-of-00005.safetensors: 4%|▍ | 73.4M/1.69G [00:00<00:06, 253MB/s] model-00005-of-00005.safetensors: 7%|▋ | 115M/1.69G [00:00<00:05, 307MB/s] model-00005-of-00005.safetensors: 11%|█ | 189M/1.69G [00:00<00:03, 427MB/s] model-00005-of-00005.safetensors: 14%|█▍ | 241M/1.69G [00:00<00:04, 331MB/s] model-00005-of-00005.safetensors: 30%|███ | 514M/1.69G [00:00<00:01, 905MB/s] model-00005-of-00005.safetensors: 73%|███████▎ | 1.23G/1.69G [00:00<00:00, 2.48GB/s] model-00005-of-00005.safetensors: 91%|█████████▏| 1.54G/1.69G [00:01<00:00, 1.76GB/s] model-00005-of-00005.safetensors: 100%|█████████▉| 1.69G/1.69G [00:05<00:00, 323MB/s]
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: model.safetensors.index.json: 0%| | 0.00/35.8k [00:00<?, ?B/s] model.safetensors.index.json: 100%|██████████| 35.8k/35.8k [00:00<00:00, 165MB/s]
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: special_tokens_map.json: 0%| | 0.00/414 [00:00<?, ?B/s] special_tokens_map.json: 100%|██████████| 414/414 [00:00<00:00, 3.85MB/s]
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: tokenizer.json: 0%| | 0.00/1.80M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 1.80M/1.80M [00:00<00:00, 40.3MB/s]
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: tokenizer.model: 0%| | 0.00/493k [00:00<?, ?B/s] tokenizer.model: 100%|██████████| 493k/493k [00:00<00:00, 53.9MB/s]
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: tokenizer_config.json: 0%| | 0.00/966 [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 966/966 [00:00<00:00, 8.71MB/s]
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: Downloaded to shared memory in 27.598s
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: quantizing model to /dev/shm/model_cache
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: Saving mkml model at /dev/shm/model_cache
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: Reading /tmp/tmpvpabmybz/model.safetensors.index.json
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: Profiling: 0%| | 0/435 [00:00<?, ?it/s] Profiling: 0%| | 1/435 [00:01<08:40, 1.20s/it] Profiling: 3%|▎ | 14/435 [00:01<00:28, 14.52it/s] Profiling: 9%|▊ | 37/435 [00:01<00:09, 42.36it/s] Profiling: 14%|█▎ | 59/435 [00:01<00:05, 70.02it/s] Profiling: 19%|█▉ | 82/435 [00:01<00:03, 97.50it/s] Profiling: 23%|██▎ | 101/435 [00:01<00:03, 83.53it/s] Profiling: 28%|██▊ | 120/435 [00:02<00:03, 101.12it/s] Profiling: 32%|███▏ | 139/435 [00:02<00:02, 117.94it/s] Profiling: 36%|███▋ | 158/435 [00:02<00:02, 131.83it/s] Profiling: 41%|████ | 179/435 [00:02<00:01, 149.15it/s] Profiling: 46%|████▌ | 199/435 [00:02<00:01, 161.83it/s] Profiling: 50%|█████ | 218/435 [00:02<00:01, 111.84it/s] Profiling: 54%|█████▍ | 237/435 [00:02<00:01, 125.60it/s] Profiling: 59%|█████▉ | 257/435 [00:02<00:01, 139.40it/s] Profiling: 65%|██████▍ | 282/435 [00:03<00:00, 164.98it/s] Profiling: 70%|██████▉ | 304/435 [00:03<00:01, 122.11it/s] Profiling: 74%|███████▎ | 320/435 [00:03<00:00, 127.65it/s] Profiling: 79%|███████▉ | 345/435 [00:03<00:00, 153.33it/s] Profiling: 84%|████████▍ | 365/435 [00:03<00:00, 162.30it/s] Profiling: 90%|████████▉ | 390/435 [00:03<00:00, 182.14it/s] Profiling: 94%|█████████▍| 411/435 [00:05<00:00, 41.53it/s] Profiling: 100%|█████████▉| 433/435 [00:05<00:00, 54.90it/s] Profiling: 100%|██████████| 435/435 [00:05<00:00, 80.74it/s]
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: quantized model in 19.818s
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: Processed model Sao10K/Fimbulvetr-11B-v2 in 48.676s
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: creating bucket guanaco-mkml-models
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/sao10k-fimbulvetr-11b-v2-v5
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/sao10k-fimbulvetr-11b-v2-v5/tokenizer_config.json
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/sao10k-fimbulvetr-11b-v2-v5/config.json
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/sao10k-fimbulvetr-11b-v2-v5/special_tokens_map.json
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: cp /dev/shm/model_cache/tokenizer.model s3://guanaco-mkml-models/sao10k-fimbulvetr-11b-v2-v5/tokenizer.model
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/sao10k-fimbulvetr-11b-v2-v5/tokenizer.json
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: cp /dev/shm/model_cache/mkml_model.tensors s3://guanaco-mkml-models/sao10k-fimbulvetr-11b-v2-v5/mkml_model.tensors
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: loading reward model from ChaiML/reward_gpt2_medium_preference_24m_e2
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:1067: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: warnings.warn(
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: config.json: 0%| | 0.00/1.05k [00:00<?, ?B/s] config.json: 100%|██████████| 1.05k/1.05k [00:00<00:00, 12.3MB/s]
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:690: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: warnings.warn(
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: tokenizer_config.json: 0%| | 0.00/234 [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 234/234 [00:00<00:00, 3.17MB/s]
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: vocab.json: 0%| | 0.00/1.04M [00:00<?, ?B/s] vocab.json: 100%|██████████| 1.04M/1.04M [00:00<00:00, 37.9MB/s]
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: tokenizer.json: 0%| | 0.00/2.11M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 2.11M/2.11M [00:00<00:00, 23.4MB/s]
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:472: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: warnings.warn(
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: pytorch_model.bin: 0%| | 0.00/1.44G [00:00<?, ?B/s] pytorch_model.bin: 1%| | 10.5M/1.44G [00:00<00:16, 87.4MB/s] pytorch_model.bin: 1%|▏ | 21.0M/1.44G [00:00<00:23, 60.5MB/s] pytorch_model.bin: 3%|▎ | 41.9M/1.44G [00:00<00:14, 99.8MB/s] pytorch_model.bin: 8%|▊ | 115M/1.44G [00:00<00:04, 288MB/s] pytorch_model.bin: 11%|█ | 157M/1.44G [00:00<00:04, 270MB/s] pytorch_model.bin: 15%|█▌ | 220M/1.44G [00:00<00:03, 360MB/s] pytorch_model.bin: 20%|██ | 294M/1.44G [00:00<00:02, 453MB/s] pytorch_model.bin: 25%|██▍ | 357M/1.44G [00:01<00:02, 496MB/s] pytorch_model.bin: 29%|██▉ | 419M/1.44G [00:01<00:02, 507MB/s] pytorch_model.bin: 49%|████▉ | 713M/1.44G [00:01<00:00, 1.17GB/s] pytorch_model.bin: 93%|█████████▎| 1.35G/1.44G [00:05<00:00, 230MB/s] pytorch_model.bin: 100%|█████████▉| 1.44G/1.44G [00:05<00:00, 252MB/s] pytorch_model.bin: 100%|█████████▉| 1.44G/1.44G [00:05<00:00, 276MB/s]
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: Saving duration: 0.214s
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: Processed model ChaiML/reward_gpt2_medium_preference_24m_e2 in 8.314s
sao10k-fimbulvetr-11b-v2-v5-mkmlizer: creating bucket guanaco-reward-models
Job sao10k-fimbulvetr-11b-v2-v5-mkmlizer completed after 85.1s with status: succeeded
Stopping job with name sao10k-fimbulvetr-11b-v2-v5-mkmlizer
Pipeline stage MKMLizer completed in 89.54s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.14s
Running pipeline stage ISVCDeployer
Creating inference service sao10k-fimbulvetr-11b-v2-v5
Waiting for inference service sao10k-fimbulvetr-11b-v2-v5 to be ready
Inference service sao10k-fimbulvetr-11b-v2-v5 ready after 50.34768629074097s
Pipeline stage ISVCDeployer completed in 57.70s
Running pipeline stage StressChecker
Received healthy response to inference request in 1.7099275588989258s
Received healthy response to inference request in 0.5931799411773682s
Received healthy response to inference request in 0.6029138565063477s
Received healthy response to inference request in 0.8553740978240967s
Received healthy response to inference request in 0.5292563438415527s
5 requests
0 failed requests
5th percentile: 0.5420410633087158
10th percentile: 0.5548257827758789
20th percentile: 0.5803952217102051
30th percentile: 0.595126724243164
40th percentile: 0.5990202903747559
50th percentile: 0.6029138565063477
60th percentile: 0.7038979530334473
70th percentile: 0.8048820495605469
80th percentile: 1.0262847900390626
90th percentile: 1.3681061744689942
95th percentile: 1.5390168666839599
99th percentile: 1.6757454204559326
mean time: 0.8581303596496582
Pipeline stage StressChecker completed in 5.14s
Running pipeline stage DaemonicModelEvalScorer
Pipeline stage DaemonicModelEvalScorer completed in 0.04s
Running pipeline stage DaemonicSafetyScorer
Running M-Eval for topic stay_in_character
Pipeline stage DaemonicSafetyScorer completed in 0.07s
M-Eval Dataset for topic stay_in_character is loaded
sao10k-fimbulvetr-11b-v2_v5 status is now deployed due to DeploymentManager action
sao10k-fimbulvetr-11b-v2_v5 status is now inactive due to auto deactivation removed underperforming models

Usage Metrics

Latency Metrics