submission_id: chaiml-phase2-winner-13b2_v271
developer_uid: chai_backend_admin
status: inactive
model_repo: ChaiML/phase2_winner_13b2
reward_repo: rirv938/gpt2_ties_merge_preference_plus_classic_e2_density_99
generation_params: {'temperature': 1.0733671330918084, 'top_p': 0.6971846333941389, 'top_k': 50, 'presence_penalty': 0.0, 'frequency_penalty': 0.312882778758545, 'stopping_words': ['\n'], 'max_input_tokens': 512, 'best_of': 8, 'max_output_tokens': 48}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:'}
reward_formatter: {'memory_template': 'Memory: {memory}\n', 'prompt_template': '{prompt}\n', 'bot_template': 'Bot: {message}\n', 'user_template': 'User: {message}\n', 'response_template': 'Bot:'}
timestamp: 2024-03-31T01:26:36+00:00
model_name: chaiml-phase2-winner-48
model_eval_status: success
safety_score: 0.95
entertaining: 6.9
stay_in_character: 8.46
user_preference: 7.2
double_thumbs_up: 1
thumbs_up: 1
thumbs_down: 0
num_battles: 127
num_wins: 65
win_ratio: 0.5118110236220472
celo_rating: None
Resubmit model
Running pipeline stage MKMLizer
Starting job with name chaiml-phase2-winner-13b2-v271-mkmlizer
Waiting for job on chaiml-phase2-winner-13b2-v271-mkmlizer to finish
chaiml-phase2-winner-13b2-v271-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
chaiml-phase2-winner-13b2-v271-mkmlizer: ║ _____ __ __ ║
chaiml-phase2-winner-13b2-v271-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
chaiml-phase2-winner-13b2-v271-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
chaiml-phase2-winner-13b2-v271-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
chaiml-phase2-winner-13b2-v271-mkmlizer: ║ /___/ ║
chaiml-phase2-winner-13b2-v271-mkmlizer: ║ ║
chaiml-phase2-winner-13b2-v271-mkmlizer: ║ Version: 0.6.11 ║
chaiml-phase2-winner-13b2-v271-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
chaiml-phase2-winner-13b2-v271-mkmlizer: ║ ║
chaiml-phase2-winner-13b2-v271-mkmlizer: ║ The license key for the current software has been verified as ║
chaiml-phase2-winner-13b2-v271-mkmlizer: ║ belonging to: ║
chaiml-phase2-winner-13b2-v271-mkmlizer: ║ ║
chaiml-phase2-winner-13b2-v271-mkmlizer: ║ Chai Research Corp. ║
chaiml-phase2-winner-13b2-v271-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
chaiml-phase2-winner-13b2-v271-mkmlizer: ║ Expiration: 2024-07-15 23:59:59 ║
chaiml-phase2-winner-13b2-v271-mkmlizer: ║ ║
chaiml-phase2-winner-13b2-v271-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
chaiml-phase2-winner-13b2-v271-mkmlizer: .gitattributes: 0%| | 0.00/1.52k [00:00<?, ?B/s] .gitattributes: 100%|██████████| 1.52k/1.52k [00:00<00:00, 16.1MB/s]
chaiml-phase2-winner-13b2-v271-mkmlizer: README.md: 0%| | 0.00/1.53k [00:00<?, ?B/s] README.md: 100%|██████████| 1.53k/1.53k [00:00<00:00, 19.5MB/s]
chaiml-phase2-winner-13b2-v271-mkmlizer: config.json: 0%| | 0.00/651 [00:00<?, ?B/s] config.json: 100%|██████████| 651/651 [00:00<00:00, 10.4MB/s]
chaiml-phase2-winner-13b2-v271-mkmlizer: generation_config.json: 0%| | 0.00/170 [00:00<?, ?B/s] generation_config.json: 100%|██████████| 170/170 [00:00<00:00, 2.10MB/s]
chaiml-phase2-winner-13b2-v271-mkmlizer: pytorch_model-00001-of-00003.bin: 0%| | 0.00/9.95G [00:00<?, ?B/s] pytorch_model-00001-of-00003.bin: 0%| | 10.5M/9.95G [00:00<07:07, 23.2MB/s] pytorch_model-00001-of-00003.bin: 0%| | 21.0M/9.95G [00:00<04:56, 33.5MB/s] pytorch_model-00001-of-00003.bin: 1%| | 62.9M/9.95G [00:00<01:31, 108MB/s] pytorch_model-00001-of-00003.bin: 1%| | 83.9M/9.95G [00:00<01:26, 114MB/s] pytorch_model-00001-of-00003.bin: 1%|▏ | 136M/9.95G [00:01<00:53, 184MB/s] pytorch_model-00001-of-00003.bin: 2%|▏ | 168M/9.95G [00:01<01:03, 155MB/s] pytorch_model-00001-of-00003.bin: 2%|▏ | 189M/9.95G [00:01<01:07, 144MB/s] pytorch_model-00001-of-00003.bin: 2%|▏ | 220M/9.95G [00:01<00:55, 174MB/s] pytorch_model-00001-of-00003.bin: 3%|▎ | 252M/9.95G [00:01<00:50, 193MB/s] pytorch_model-00001-of-00003.bin: 3%|▎ | 315M/9.95G [00:01<00:35, 269MB/s] pytorch_model-00001-of-00003.bin: 3%|▎ | 346M/9.95G [00:02<00:41, 231MB/s] pytorch_model-00001-of-00003.bin: 4%|▍ | 388M/9.95G [00:02<00:42, 223MB/s] pytorch_model-00001-of-00003.bin: 4%|▍ | 419M/9.95G [00:02<00:45, 208MB/s] pytorch_model-00001-of-00003.bin: 5%|▍ | 472M/9.95G [00:02<00:37, 255MB/s] pytorch_model-00001-of-00003.bin: 5%|▌ | 503M/9.95G [00:02<00:42, 225MB/s] pytorch_model-00001-of-00003.bin: 5%|▌ | 535M/9.95G [00:02<00:43, 219MB/s] pytorch_model-00001-of-00003.bin: 6%|▌ | 608M/9.95G [00:03<00:32, 285MB/s] pytorch_model-00001-of-00003.bin: 7%|▋ | 744M/9.95G [00:03<00:18, 503MB/s] pytorch_model-00001-of-00003.bin: 9%|▉ | 902M/9.95G [00:03<00:12, 738MB/s] pytorch_model-00001-of-00003.bin: 10%|█ | 996M/9.95G [00:03<00:12, 738MB/s] pytorch_model-00001-of-00003.bin: 13%|█▎ | 1.28G/9.95G [00:03<00:06, 1.25GB/s] pytorch_model-00001-of-00003.bin: 17%|█▋ | 1.65G/9.95G [00:03<00:04, 1.81GB/s] pytorch_model-00001-of-00003.bin: 19%|█▊ | 1.85G/9.95G [00:04<00:10, 784MB/s] pytorch_model-00001-of-00003.bin: 20%|██ | 1.99G/9.95G [00:04<00:11, 674MB/s] pytorch_model-00001-of-00003.bin: 21%|██▏ | 2.12G/9.95G [00:04<00:12, 631MB/s] pytorch_model-00001-of-00003.bin: 22%|██▏ | 2.22G/9.95G [00:05<00:12, 596MB/s] pytorch_model-00001-of-00003.bin: 23%|██▎ | 2.31G/9.95G [00:05<00:15, 488MB/s] pytorch_model-00001-of-00003.bin: 24%|██▍ | 2.40G/9.95G [00:05<00:13, 550MB/s] pytorch_model-00001-of-00003.bin: 25%|██▍ | 2.49G/9.95G [00:05<00:13, 534MB/s] pytorch_model-00001-of-00003.bin: 26%|██▌ | 2.58G/9.95G [00:05<00:12, 587MB/s] pytorch_model-00001-of-00003.bin: 27%|██▋ | 2.65G/9.95G [00:05<00:12, 567MB/s] pytorch_model-00001-of-00003.bin: 28%|██▊ | 2.81G/9.95G [00:06<00:09, 749MB/s] pytorch_model-00001-of-00003.bin: 30%|██▉ | 2.98G/9.95G [00:06<00:07, 943MB/s] pytorch_model-00001-of-00003.bin: 32%|███▏ | 3.14G/9.95G [00:06<00:06, 1.02GB/s] pytorch_model-00001-of-00003.bin: 33%|███▎ | 3.32G/9.95G [00:06<00:05, 1.22GB/s] pytorch_model-00001-of-00003.bin: 38%|███▊ | 3.73G/9.95G [00:06<00:03, 1.95GB/s] pytorch_model-00001-of-00003.bin: 40%|███▉ | 3.95G/9.95G [00:06<00:03, 1.72GB/s] pytorch_model-00001-of-00003.bin: 42%|████▏ | 4.15G/9.95G [00:06<00:04, 1.25GB/s] pytorch_model-00001-of-00003.bin: 44%|████▎ | 4.35G/9.95G [00:07<00:04, 1.39GB/s] pytorch_model-00001-of-00003.bin: 45%|████▌ | 4.52G/9.95G [00:07<00:03, 1.36GB/s] pytorch_model-00001-of-00003.bin: 47%|████▋ | 4.71G/9.95G [00:07<00:03, 1.48GB/s] pytorch_model-00001-of-00003.bin: 49%|████▉ | 4.88G/9.95G [00:07<00:03, 1.45GB/s] pytorch_model-00001-of-00003.bin: 51%|█████ | 5.03G/9.95G [00:07<00:03, 1.47GB/s] pytorch_model-00001-of-00003.bin: 54%|█████▎ | 5.34G/9.95G [00:07<00:02, 1.77GB/s] pytorch_model-00001-of-00003.bin: 56%|█████▌ | 5.53G/9.95G [00:07<00:02, 1.60GB/s] pytorch_model-00001-of-00003.bin: 57%|█████▋ | 5.69G/9.95G [00:07<00:02, 1.48GB/s] pytorch_model-00001-of-00003.bin: 59%|█████▉ | 5.85G/9.95G [00:08<00:03, 1.32GB/s] pytorch_model-00001-of-00003.bin: 60%|██████ | 6.00G/9.95G [00:08<00:02, 1.35GB/s] pytorch_model-00001-of-00003.bin: 62%|██████▏ | 6.14G/9.95G [00:08<00:02, 1.34GB/s] pytorch_model-00001-of-00003.bin: 63%|██████▎ | 6.29G/9.95G [00:08<00:02, 1.35GB/s] pytorch_model-00001-of-00003.bin: 65%|██████▌ | 6.47G/9.95G [00:08<00:02, 1.38GB/s] pytorch_model-00001-of-00003.bin: 67%|██████▋ | 6.63G/9.95G [00:08<00:02, 1.41GB/s] pytorch_model-00001-of-00003.bin: 68%|██████▊ | 6.77G/9.95G [00:08<00:02, 1.43GB/s] pytorch_model-00001-of-00003.bin: 70%|██████▉ | 6.95G/9.95G [00:08<00:01, 1.53GB/s] pytorch_model-00001-of-00003.bin: 72%|███████▏ | 7.15G/9.95G [00:08<00:01, 1.65GB/s] pytorch_model-00001-of-00003.bin: 74%|███████▎ | 7.32G/9.95G [00:09<00:01, 1.56GB/s] pytorch_model-00001-of-00003.bin: 75%|███████▌ | 7.49G/9.95G [00:09<00:01, 1.53GB/s] pytorch_model-00001-of-00003.bin: 77%|███████▋ | 7.64G/9.95G [00:09<00:01, 1.30GB/s] pytorch_model-00001-of-00003.bin: 79%|███████▊ | 7.83G/9.95G [00:09<00:01, 1.44GB/s] pytorch_model-00001-of-00003.bin: 80%|████████ | 7.99G/9.95G [00:09<00:01, 1.42GB/s] pytorch_model-00001-of-00003.bin: 82%|████████▏ | 8.15G/9.95G [00:09<00:01, 1.42GB/s] pytorch_model-00001-of-00003.bin: 84%|████████▎ | 8.32G/9.95G [00:09<00:01, 1.48GB/s] pytorch_model-00001-of-00003.bin: 85%|████████▌ | 8.47G/9.95G [00:09<00:01, 1.36GB/s] pytorch_model-00001-of-00003.bin: 87%|████████▋ | 8.62G/9.95G [00:10<00:01, 1.23GB/s] pytorch_model-00001-of-00003.bin: 88%|████████▊ | 8.80G/9.95G [00:10<00:00, 1.36GB/s] pytorch_model-00001-of-00003.bin: 91%|█████████ | 9.01G/9.95G [00:10<00:00, 1.45GB/s] pytorch_model-00001-of-00003.bin: 92%|█████████▏| 9.16G/9.95G [00:10<00:00, 1.42GB/s] pytorch_model-00001-of-00003.bin: 94%|█████████▎| 9.31G/9.95G [00:10<00:00, 1.38GB/s] pytorch_model-00001-of-00003.bin: 95%|█████████▌| 9.48G/9.95G [00:10<00:00, 1.46GB/s] pytorch_model-00001-of-00003.bin: 97%|█████████▋| 9.69G/9.95G [00:10<00:00, 1.61GB/s] pytorch_model-00001-of-00003.bin: 99%|█████████▉| 9.86G/9.95G [00:10<00:00, 1.59GB/s] pytorch_model-00001-of-00003.bin: 100%|█████████▉| 9.95G/9.95G [00:11<00:00, 900MB/s]
chaiml-phase2-winner-13b2-v271-mkmlizer: pytorch_model-00002-of-00003.bin: 0%| | 0.00/9.90G [00:00<?, ?B/s] pytorch_model-00002-of-00003.bin: 0%| | 10.5M/9.90G [00:00<10:16, 16.0MB/s] pytorch_model-00002-of-00003.bin: 1%| | 73.4M/9.90G [00:01<01:58, 82.8MB/s] pytorch_model-00002-of-00003.bin: 1%| | 94.4M/9.90G [00:01<01:43, 94.8MB/s] pytorch_model-00002-of-00003.bin: 1%| | 115M/9.90G [00:01<01:26, 113MB/s] pytorch_model-00002-of-00003.bin: 1%|▏ | 147M/9.90G [00:01<01:07, 145MB/s] pytorch_model-00002-of-00003.bin: 2%|▏ | 178M/9.90G [00:01<01:01, 157MB/s] pytorch_model-00002-of-00003.bin: 2%|▏ | 220M/9.90G [00:01<00:58, 165MB/s] pytorch_model-00002-of-00003.bin: 2%|▏ | 241M/9.90G [00:01<00:56, 172MB/s] pytorch_model-00002-of-00003.bin: 3%|▎ | 273M/9.90G [00:02<00:50, 190MB/s] pytorch_model-00002-of-00003.bin: 3%|▎ | 304M/9.90G [00:02<00:46, 208MB/s] pytorch_model-00002-of-00003.bin: 3%|▎ | 336M/9.90G [00:02<00:52, 182MB/s] pytorch_model-00002-of-00003.bin: 4%|▎ | 367M/9.90G [00:02<00:51, 186MB/s] pytorch_model-00002-of-00003.bin: 4%|▍ | 388M/9.90G [00:02<01:03, 150MB/s] pytorch_model-00002-of-00003.bin: 4%|▍ | 419M/9.90G [00:02<00:54, 173MB/s] pytorch_model-00002-of-00003.bin: 5%|▍ | 461M/9.90G [00:03<00:47, 199MB/s] pytorch_model-00002-of-00003.bin: 5%|▍ | 493M/9.90G [00:03<00:49, 188MB/s] pytorch_model-00002-of-00003.bin: 5%|▌ | 514M/9.90G [00:03<00:49, 190MB/s] pytorch_model-00002-of-00003.bin: 6%|▌ | 598M/9.90G [00:03<00:29, 321MB/s] pytorch_model-00002-of-00003.bin: 8%|▊ | 765M/9.90G [00:03<00:15, 582MB/s] pytorch_model-00002-of-00003.bin: 8%|▊ | 839M/9.90G [00:03<00:15, 596MB/s] pytorch_model-00002-of-00003.bin: 10%|▉ | 965M/9.90G [00:03<00:11, 754MB/s] pytorch_model-00002-of-00003.bin: 16%|█▌ | 1.58G/9.90G [00:03<00:04, 1.90GB/s] pytorch_model-00002-of-00003.bin: 18%|█▊ | 1.77G/9.90G [00:04<00:09, 901MB/s] pytorch_model-00002-of-00003.bin: 19%|█▉ | 1.91G/9.90G [00:04<00:08, 947MB/s] pytorch_model-00002-of-00003.bin: 21%|██ | 2.04G/9.90G [00:04<00:10, 743MB/s] pytorch_model-00002-of-00003.bin: 22%|██▏ | 2.15G/9.90G [00:05<00:10, 741MB/s] pytorch_model-00002-of-00003.bin: 23%|██▎ | 2.25G/9.90G [00:05<00:10, 740MB/s] pytorch_model-00002-of-00003.bin: 24%|██▎ | 2.35G/9.90G [00:05<00:11, 684MB/s] pytorch_model-00002-of-00003.bin: 25%|██▍ | 2.43G/9.90G [00:05<00:11, 659MB/s] pytorch_model-00002-of-00003.bin: 25%|██▌ | 2.51G/9.90G [00:05<00:12, 606MB/s] pytorch_model-00002-of-00003.bin: 27%|██▋ | 2.65G/9.90G [00:05<00:09, 758MB/s] pytorch_model-00002-of-00003.bin: 28%|██▊ | 2.77G/9.90G [00:05<00:09, 780MB/s] pytorch_model-00002-of-00003.bin: 29%|██▉ | 2.85G/9.90G [00:06<00:09, 756MB/s] pytorch_model-00002-of-00003.bin: 30%|███ | 3.00G/9.90G [00:06<00:07, 898MB/s] pytorch_model-00002-of-00003.bin: 32%|███▏ | 3.15G/9.90G [00:06<00:06, 1.03GB/s] pytorch_model-00002-of-00003.bin: 35%|███▌ | 3.49G/9.90G [00:06<00:03, 1.65GB/s] pytorch_model-00002-of-00003.bin: 38%|███▊ | 3.72G/9.90G [00:06<00:03, 1.81GB/s] pytorch_model-00002-of-00003.bin: 40%|███▉ | 3.92G/9.90G [00:06<00:03, 1.68GB/s] pytorch_model-00002-of-00003.bin: 41%|████▏ | 4.10G/9.90G [00:06<00:04, 1.25GB/s] pytorch_model-00002-of-00003.bin: 43%|████▎ | 4.25G/9.90G [00:07<00:05, 1.10GB/s] pytorch_model-00002-of-00003.bin: 44%|████▍ | 4.39G/9.90G [00:07<00:04, 1.17GB/s] pytorch_model-00002-of-00003.bin: 46%|████▌ | 4.53G/9.90G [00:07<00:05, 1.06GB/s] pytorch_model-00002-of-00003.bin: 48%|████▊ | 4.74G/9.90G [00:07<00:04, 1.26GB/s] pytorch_model-00002-of-00003.bin: 50%|████▉ | 4.95G/9.90G [00:07<00:03, 1.41GB/s] pytorch_model-00002-of-00003.bin: 52%|█████▏ | 5.16G/9.90G [00:07<00:03, 1.55GB/s] pytorch_model-00002-of-00003.bin: 54%|█████▍ | 5.33G/9.90G [00:07<00:03, 1.49GB/s] pytorch_model-00002-of-00003.bin: 55%|█████▌ | 5.48G/9.90G [00:07<00:03, 1.35GB/s] pytorch_model-00002-of-00003.bin: 57%|█████▋ | 5.63G/9.90G [00:08<00:03, 1.08GB/s] pytorch_model-00002-of-00003.bin: 58%|█████▊ | 5.79G/9.90G [00:08<00:03, 1.17GB/s] pytorch_model-00002-of-00003.bin: 60%|█████▉ | 5.92G/9.90G [00:08<00:03, 1.04GB/s] pytorch_model-00002-of-00003.bin: 61%|██████ | 6.04G/9.90G [00:08<00:04, 963MB/s] pytorch_model-00002-of-00003.bin: 62%|██████▏ | 6.18G/9.90G [00:08<00:03, 1.05GB/s] pytorch_model-00002-of-00003.bin: 64%|██████▍ | 6.36G/9.90G [00:08<00:02, 1.25GB/s] pytorch_model-00002-of-00003.bin: 66%|██████▌ | 6.50G/9.90G [00:08<00:02, 1.20GB/s] pytorch_model-00002-of-00003.bin: 68%|██████▊ | 6.75G/9.90G [00:09<00:02, 1.47GB/s] pytorch_model-00002-of-00003.bin: 70%|██████▉ | 6.93G/9.90G [00:09<00:01, 1.54GB/s] pytorch_model-00002-of-00003.bin: 72%|███████▏ | 7.10G/9.90G [00:09<00:01, 1.54GB/s] pytorch_model-00002-of-00003.bin: 73%|███████▎ | 7.27G/9.90G [00:09<00:01, 1.51GB/s] pytorch_model-00002-of-00003.bin: 75%|███████▍ | 7.42G/9.90G [00:09<00:01, 1.33GB/s] pytorch_model-00002-of-00003.bin: 77%|███████▋ | 7.60G/9.90G [00:09<00:01, 1.36GB/s] pytorch_model-00002-of-00003.bin: 78%|███████▊ | 7.77G/9.90G [00:09<00:01, 1.41GB/s] pytorch_model-00002-of-00003.bin: 80%|███████▉ | 7.92G/9.90G [00:09<00:01, 1.35GB/s] pytorch_model-00002-of-00003.bin: 81%|████████▏ | 8.06G/9.90G [00:10<00:01, 1.12GB/s] pytorch_model-00002-of-00003.bin: 83%|████████▎ | 8.19G/9.90G [00:10<00:01, 1.11GB/s] pytorch_model-00002-of-00003.bin: 84%|████████▍ | 8.34G/9.90G [00:10<00:01, 1.18GB/s] pytorch_model-00002-of-00003.bin: 85%|████████▌ | 8.46G/9.90G [00:10<00:01, 975MB/s] pytorch_model-00002-of-00003.bin: 88%|████████▊ | 8.69G/9.90G [00:10<00:00, 1.27GB/s] pytorch_model-00002-of-00003.bin: 89%|████████▉ | 8.86G/9.90G [00:10<00:00, 1.37GB/s] pytorch_model-00002-of-00003.bin: 91%|█████████ | 9.02G/9.90G [00:10<00:00, 1.23GB/s] pytorch_model-00002-of-00003.bin: 92%|█████████▏| 9.15G/9.90G [00:10<00:00, 1.14GB/s] pytorch_model-00002-of-00003.bin: 94%|█████████▎| 9.28G/9.90G [00:11<00:00, 1.10GB/s] pytorch_model-00002-of-00003.bin: 96%|█████████▌| 9.46G/9.90G [00:11<00:00, 1.25GB/s] pytorch_model-00002-of-00003.bin: 97%|█████████▋| 9.64G/9.90G [00:11<00:00, 1.38GB/s] pytorch_model-00002-of-00003.bin: 99%|█████████▉| 9.79G/9.90G [00:11<00:00, 1.32GB/s] pytorch_model-00002-of-00003.bin: 100%|█████████▉| 9.90G/9.90G [00:11<00:00, 853MB/s]
chaiml-phase2-winner-13b2-v271-mkmlizer: pytorch_model-00003-of-00003.bin: 0%| | 0.00/6.18G [00:00<?, ?B/s] pytorch_model-00003-of-00003.bin: 0%| | 10.5M/6.18G [00:00<06:03, 17.0MB/s] pytorch_model-00003-of-00003.bin: 1%| | 31.5M/6.18G [00:00<02:43, 37.6MB/s] pytorch_model-00003-of-00003.bin: 1%| | 41.9M/6.18G [00:01<02:14, 45.5MB/s] pytorch_model-00003-of-00003.bin: 1%| | 52.4M/6.18G [00:01<01:49, 55.8MB/s] pytorch_model-00003-of-00003.bin: 1%| | 62.9M/6.18G [00:01<01:46, 57.5MB/s] pytorch_model-00003-of-00003.bin: 2%|▏ | 115M/6.18G [00:01<00:47, 127MB/s] pytorch_model-00003-of-00003.bin: 2%|▏ | 136M/6.18G [00:01<00:54, 112MB/s] pytorch_model-00003-of-00003.bin: 3%|▎ | 168M/6.18G [00:01<00:47, 127MB/s] pytorch_model-00003-of-00003.bin: 3%|▎ | 189M/6.18G [00:02<00:42, 141MB/s] pytorch_model-00003-of-00003.bin: 4%|▎ | 220M/6.18G [00:02<00:34, 173MB/s] pytorch_model-00003-of-00003.bin: 4%|▍ | 252M/6.18G [00:02<00:38, 153MB/s] pytorch_model-00003-of-00003.bin: 4%|▍ | 273M/6.18G [00:02<00:39, 150MB/s] pytorch_model-00003-of-00003.bin: 5%|▍ | 304M/6.18G [00:02<00:32, 183MB/s] pytorch_model-00003-of-00003.bin: 5%|▌ | 336M/6.18G [00:02<00:28, 207MB/s] pytorch_model-00003-of-00003.bin: 6%|▌ | 367M/6.18G [00:02<00:27, 214MB/s] pytorch_model-00003-of-00003.bin: 7%|▋ | 451M/6.18G [00:03<00:15, 358MB/s] pytorch_model-00003-of-00003.bin: 8%|▊ | 514M/6.18G [00:03<00:13, 422MB/s] pytorch_model-00003-of-00003.bin: 11%|█ | 692M/6.18G [00:03<00:07, 747MB/s] pytorch_model-00003-of-00003.bin: 13%|█▎ | 786M/6.18G [00:03<00:06, 798MB/s] pytorch_model-00003-of-00003.bin: 20%|█▉ | 1.22G/6.18G [00:03<00:02, 1.76GB/s] pytorch_model-00003-of-00003.bin: 23%|██▎ | 1.41G/6.18G [00:04<00:05, 802MB/s] pytorch_model-00003-of-00003.bin: 25%|██▌ | 1.55G/6.18G [00:04<00:07, 631MB/s] pytorch_model-00003-of-00003.bin: 27%|██▋ | 1.67G/6.18G [00:04<00:07, 602MB/s] pytorch_model-00003-of-00003.bin: 29%|██▊ | 1.76G/6.18G [00:04<00:09, 485MB/s] pytorch_model-00003-of-00003.bin: 30%|██▉ | 1.84G/6.18G [00:05<00:08, 492MB/s] pytorch_model-00003-of-00003.bin: 31%|███ | 1.91G/6.18G [00:05<00:09, 441MB/s] pytorch_model-00003-of-00003.bin: 32%|███▏ | 1.97G/6.18G [00:05<00:10, 407MB/s] pytorch_model-00003-of-00003.bin: 33%|███▎ | 2.02G/6.18G [00:05<00:10, 383MB/s] pytorch_model-00003-of-00003.bin: 35%|███▍ | 2.15G/6.18G [00:05<00:07, 506MB/s] pytorch_model-00003-of-00003.bin: 36%|███▌ | 2.23G/6.18G [00:05<00:07, 554MB/s] pytorch_model-00003-of-00003.bin: 38%|███▊ | 2.34G/6.18G [00:06<00:06, 622MB/s] pytorch_model-00003-of-00003.bin: 42%|████▏ | 2.59G/6.18G [00:06<00:03, 1.02GB/s] pytorch_model-00003-of-00003.bin: 44%|████▍ | 2.72G/6.18G [00:06<00:03, 1.03GB/s] pytorch_model-00003-of-00003.bin: 51%|█████ | 3.12G/6.18G [00:06<00:01, 1.76GB/s] pytorch_model-00003-of-00003.bin: 54%|█████▍ | 3.32G/6.18G [00:06<00:01, 1.61GB/s] pytorch_model-00003-of-00003.bin: 57%|█████▋ | 3.51G/6.18G [00:06<00:02, 1.05GB/s] pytorch_model-00003-of-00003.bin: 59%|█████▉ | 3.66G/6.18G [00:07<00:02, 1.08GB/s] pytorch_model-00003-of-00003.bin: 61%|██████▏ | 3.80G/6.18G [00:07<00:02, 1.10GB/s] pytorch_model-00003-of-00003.bin: 64%|██████▎ | 3.93G/6.18G [00:07<00:02, 1.08GB/s] pytorch_model-00003-of-00003.bin: 66%|██████▌ | 4.06G/6.18G [00:07<00:01, 1.12GB/s] pytorch_model-00003-of-00003.bin: 68%|██████▊ | 4.20G/6.18G [00:07<00:01, 1.17GB/s] pytorch_model-00003-of-00003.bin: 70%|███████ | 4.33G/6.18G [00:07<00:01, 1.19GB/s] pytorch_model-00003-of-00003.bin: 73%|███████▎ | 4.50G/6.18G [00:07<00:01, 1.28GB/s] pytorch_model-00003-of-00003.bin: 75%|███████▌ | 4.63G/6.18G [00:07<00:01, 1.26GB/s] pytorch_model-00003-of-00003.bin: 77%|███████▋ | 4.77G/6.18G [00:07<00:01, 1.22GB/s] pytorch_model-00003-of-00003.bin: 80%|███████▉ | 4.93G/6.18G [00:08<00:00, 1.27GB/s] pytorch_model-00003-of-00003.bin: 82%|████████▏ | 5.06G/6.18G [00:08<00:00, 1.20GB/s] pytorch_model-00003-of-00003.bin: 84%|████████▍ | 5.19G/6.18G [00:08<00:00, 1.02GB/s] pytorch_model-00003-of-00003.bin: 86%|████████▌ | 5.32G/6.18G [00:08<00:00, 1.05GB/s] pytorch_model-00003-of-00003.bin: 88%|████████▊ | 5.46G/6.18G [00:08<00:00, 1.13GB/s] pytorch_model-00003-of-00003.bin: 91%|█████████ | 5.61G/6.18G [00:08<00:00, 1.21GB/s] pytorch_model-00003-of-00003.bin: 94%|█████████▍| 5.80G/6.18G [00:08<00:00, 1.35GB/s] pytorch_model-00003-of-00003.bin: 96%|█████████▌| 5.94G/6.18G [00:08<00:00, 1.28GB/s] pytorch_model-00003-of-00003.bin: 98%|█████████▊| 6.08G/6.18G [00:09<00:00, 1.26GB/s] pytorch_model-00003-of-00003.bin: 100%|█████████▉| 6.18G/6.18G [00:09<00:00, 679MB/s]
chaiml-phase2-winner-13b2-v271-mkmlizer: pytorch_model.bin.index.json: 0%| | 0.00/33.4k [00:00<?, ?B/s] pytorch_model.bin.index.json: 100%|██████████| 33.4k/33.4k [00:00<00:00, 150MB/s]
chaiml-phase2-winner-13b2-v271-mkmlizer: special_tokens_map.json: 0%| | 0.00/414 [00:00<?, ?B/s] special_tokens_map.json: 100%|██████████| 414/414 [00:00<00:00, 5.28MB/s]
chaiml-phase2-winner-13b2-v271-mkmlizer: tokenizer.json: 0%| | 0.00/1.84M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 1.84M/1.84M [00:00<00:00, 7.74MB/s] tokenizer.json: 100%|██████████| 1.84M/1.84M [00:00<00:00, 7.71MB/s]
chaiml-phase2-winner-13b2-v271-mkmlizer: tokenizer.model: 0%| | 0.00/500k [00:00<?, ?B/s] tokenizer.model: 100%|██████████| 500k/500k [00:00<00:00, 12.0MB/s]
chaiml-phase2-winner-13b2-v271-mkmlizer: tokenizer_config.json: 0%| | 0.00/725 [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 725/725 [00:00<00:00, 5.39MB/s]
chaiml-phase2-winner-13b2-v271-mkmlizer: Downloaded to shared memory in 52.119s
chaiml-phase2-winner-13b2-v271-mkmlizer: quantizing model to /dev/shm/model_cache
chaiml-phase2-winner-13b2-v271-mkmlizer: Saving mkml model at /dev/shm/model_cache
chaiml-phase2-winner-13b2-v271-mkmlizer: Reading /tmp/tmpyv6tr539/pytorch_model.bin.index.json
chaiml-phase2-winner-13b2-v271-mkmlizer: Profiling: 0%| | 0/363 [00:00<?, ?it/s] Profiling: 0%| | 1/363 [00:03<20:39, 3.42s/it] Profiling: 38%|███▊ | 139/363 [00:05<00:06, 32.29it/s] Profiling: 77%|███████▋ | 278/363 [00:06<00:01, 55.69it/s] Profiling: 100%|██████████| 363/363 [00:08<00:00, 54.62it/s] Profiling: 100%|██████████| 363/363 [00:08<00:00, 44.43it/s]
chaiml-phase2-winner-13b2-v271-mkmlizer: quantized model in 26.687s
chaiml-phase2-winner-13b2-v271-mkmlizer: Processed model ChaiML/phase2_winner_13b2 in 80.409s
chaiml-phase2-winner-13b2-v271-mkmlizer: creating bucket guanaco-mkml-models
chaiml-phase2-winner-13b2-v271-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
chaiml-phase2-winner-13b2-v271-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v271
chaiml-phase2-winner-13b2-v271-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v271/tokenizer_config.json
chaiml-phase2-winner-13b2-v271-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v271/tokenizer.json
chaiml-phase2-winner-13b2-v271-mkmlizer: cp /dev/shm/model_cache/tokenizer.model s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v271/tokenizer.model
chaiml-phase2-winner-13b2-v271-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v271/config.json
chaiml-phase2-winner-13b2-v271-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v271/special_tokens_map.json
chaiml-phase2-winner-13b2-v271-mkmlizer: cp /dev/shm/model_cache/mkml_model.tensors s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v271/mkml_model.tensors
chaiml-phase2-winner-13b2-v271-mkmlizer: loading reward model from rirv938/gpt2_ties_merge_preference_plus_classic_e2_density_99
chaiml-phase2-winner-13b2-v271-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:1067: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
chaiml-phase2-winner-13b2-v271-mkmlizer: warnings.warn(
chaiml-phase2-winner-13b2-v271-mkmlizer: config.json: 0%| | 0.00/983 [00:00<?, ?B/s] config.json: 100%|██████████| 983/983 [00:00<00:00, 12.3MB/s]
chaiml-phase2-winner-13b2-v271-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:690: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
chaiml-phase2-winner-13b2-v271-mkmlizer: warnings.warn(
chaiml-phase2-winner-13b2-v271-mkmlizer: tokenizer_config.json: 0%| | 0.00/445 [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 445/445 [00:00<00:00, 6.22MB/s]
chaiml-phase2-winner-13b2-v271-mkmlizer: vocab.json: 0%| | 0.00/798k [00:00<?, ?B/s] vocab.json: 100%|██████████| 798k/798k [00:00<00:00, 37.8MB/s]
chaiml-phase2-winner-13b2-v271-mkmlizer: merges.txt: 0%| | 0.00/456k [00:00<?, ?B/s] merges.txt: 100%|██████████| 456k/456k [00:00<00:00, 10.4MB/s]
chaiml-phase2-winner-13b2-v271-mkmlizer: tokenizer.json: 0%| | 0.00/2.11M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 2.11M/2.11M [00:00<00:00, 22.5MB/s]
chaiml-phase2-winner-13b2-v271-mkmlizer: special_tokens_map.json: 0%| | 0.00/441 [00:00<?, ?B/s] special_tokens_map.json: 100%|██████████| 441/441 [00:00<00:00, 5.89MB/s]
chaiml-phase2-winner-13b2-v271-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:472: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
chaiml-phase2-winner-13b2-v271-mkmlizer: warnings.warn(
chaiml-phase2-winner-13b2-v271-mkmlizer: model-00001-of-00001.safetensors: 4%|▍ | 10.5M/249M [00:00<00:14, 16.1MB/s]
chaiml-phase2-winner-13b2-v271-mkmlizer: model-00001-of-00001.safetensors: 17%|█▋ | 41.9M/249M [00:00<00:03, 56.9MB/s]
chaiml-phase2-winner-13b2-v271-mkmlizer: model-00001-of-00001.safetensors: 49%|████▉ | 123M/249M [00:00<00:00, 187MB/s]  model-00001-of-00001.safetensors: 100%|█████████▉| 249M/249M [00:01<00:00, 244MB/s]
chaiml-phase2-winner-13b2-v271-mkmlizer: Downloading shards: 100%|██████████| 1/1 [00:01<00:00, 1.45s/it] Downloading shards: 100%|██████████| 1/1 [00:01<00:00, 1.45s/it]
chaiml-phase2-winner-13b2-v271-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
chaiml-phase2-winner-13b2-v271-mkmlizer: Saving duration: 0.084s
chaiml-phase2-winner-13b2-v271-mkmlizer: Processed model rirv938/gpt2_ties_merge_preference_plus_classic_e2_density_99 in 4.297s
chaiml-phase2-winner-13b2-v271-mkmlizer: creating bucket guanaco-reward-models
chaiml-phase2-winner-13b2-v271-mkmlizer: Bucket 's3://guanaco-reward-models/' created
chaiml-phase2-winner-13b2-v271-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/chaiml-phase2-winner-13b2-v271_reward
chaiml-phase2-winner-13b2-v271-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/chaiml-phase2-winner-13b2-v271_reward/config.json
chaiml-phase2-winner-13b2-v271-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/chaiml-phase2-winner-13b2-v271_reward/special_tokens_map.json
chaiml-phase2-winner-13b2-v271-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/chaiml-phase2-winner-13b2-v271_reward/tokenizer_config.json
chaiml-phase2-winner-13b2-v271-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/chaiml-phase2-winner-13b2-v271_reward/merges.txt
chaiml-phase2-winner-13b2-v271-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/chaiml-phase2-winner-13b2-v271_reward/vocab.json
chaiml-phase2-winner-13b2-v271-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/chaiml-phase2-winner-13b2-v271_reward/tokenizer.json
chaiml-phase2-winner-13b2-v271-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/chaiml-phase2-winner-13b2-v271_reward/reward.tensors
Job chaiml-phase2-winner-13b2-v271-mkmlizer completed after 106.03s with status: succeeded
Stopping job with name chaiml-phase2-winner-13b2-v271-mkmlizer
Pipeline stage MKMLizer completed in 110.74s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.10s
Running pipeline stage ISVCDeployer
Creating inference service chaiml-phase2-winner-13b2-v271
Waiting for inference service chaiml-phase2-winner-13b2-v271 to be ready
Inference service chaiml-phase2-winner-13b2-v271 ready after 70.39803671836853s
Pipeline stage ISVCDeployer completed in 78.17s
Running pipeline stage StressChecker
Received healthy response to inference request in 1.8959860801696777s
Received healthy response to inference request in 1.3776462078094482s
Received healthy response to inference request in 1.3705894947052002s
Received healthy response to inference request in 1.3604986667633057s
Received healthy response to inference request in 1.378218412399292s
5 requests
0 failed requests
5th percentile: 1.3625168323516845
10th percentile: 1.3645349979400634
20th percentile: 1.3685713291168213
30th percentile: 1.3720008373260497
40th percentile: 1.374823522567749
50th percentile: 1.3776462078094482
60th percentile: 1.3778750896453857
70th percentile: 1.3781039714813232
80th percentile: 1.4817719459533691
90th percentile: 1.6888790130615234
95th percentile: 1.7924325466156006
99th percentile: 1.8752753734588623
mean time: 1.4765877723693848
Pipeline stage StressChecker completed in 8.37s
Running pipeline stage DaemonicModelEvalScorer
Pipeline stage DaemonicModelEvalScorer completed in 0.04s
Running M-Eval for topic stay_in_character
Running pipeline stage DaemonicSafetyScorer
M-Eval Dataset for topic stay_in_character is loaded
Pipeline stage DaemonicSafetyScorer completed in 0.09s
chaiml-phase2-winner-13b2_v271 status is now deployed due to DeploymentManager action
chaiml-phase2-winner-13b2_v271 status is now inactive due to admin request

Usage Metrics

Latency Metrics