submission_id: chaiml-phase2-winner-13b2_v273
developer_uid: chai_backend_admin
status: inactive
model_repo: ChaiML/phase2_winner_13b2
reward_repo: rirv938/gpt2_ties_merge_preference_plus_classic_e2_density_99
generation_params: {'temperature': 1.0733671330918084, 'top_p': 0.6971846333941389, 'top_k': 50, 'presence_penalty': 0.0, 'frequency_penalty': 0.312882778758545, 'stopping_words': ['\n'], 'max_input_tokens': 512, 'best_of': 8, 'max_output_tokens': 128}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:'}
reward_formatter: {'memory_template': 'Memory: {memory}\n', 'prompt_template': '{prompt}\n', 'bot_template': 'Bot: {message}\n', 'user_template': 'User: {message}\n', 'response_template': 'Bot:'}
timestamp: 2024-03-31T01:28:43+00:00
model_name: chaiml-phase2-winner-128
model_eval_status: success
safety_score: 0.97
entertaining: 7.0
stay_in_character: 8.29
user_preference: 7.52
double_thumbs_up: 0
thumbs_up: 0
thumbs_down: 0
num_battles: 117
num_wins: 60
win_ratio: 0.5128205128205128
celo_rating: None
Resubmit model
Running pipeline stage MKMLizer
Starting job with name chaiml-phase2-winner-13b2-v273-mkmlizer
Waiting for job on chaiml-phase2-winner-13b2-v273-mkmlizer to finish
chaiml-phase2-winner-13b2-v273-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
chaiml-phase2-winner-13b2-v273-mkmlizer: ║ _____ __ __ ║
chaiml-phase2-winner-13b2-v273-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
chaiml-phase2-winner-13b2-v273-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
chaiml-phase2-winner-13b2-v273-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
chaiml-phase2-winner-13b2-v273-mkmlizer: ║ /___/ ║
chaiml-phase2-winner-13b2-v273-mkmlizer: ║ ║
chaiml-phase2-winner-13b2-v273-mkmlizer: ║ Version: 0.6.11 ║
chaiml-phase2-winner-13b2-v273-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
chaiml-phase2-winner-13b2-v273-mkmlizer: ║ ║
chaiml-phase2-winner-13b2-v273-mkmlizer: ║ The license key for the current software has been verified as ║
chaiml-phase2-winner-13b2-v273-mkmlizer: ║ belonging to: ║
chaiml-phase2-winner-13b2-v273-mkmlizer: ║ ║
chaiml-phase2-winner-13b2-v273-mkmlizer: ║ Chai Research Corp. ║
chaiml-phase2-winner-13b2-v273-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
chaiml-phase2-winner-13b2-v273-mkmlizer: ║ Expiration: 2024-07-15 23:59:59 ║
chaiml-phase2-winner-13b2-v273-mkmlizer: ║ ║
chaiml-phase2-winner-13b2-v273-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
chaiml-phase2-winner-13b2-v273-mkmlizer: .gitattributes: 0%| | 0.00/1.52k [00:00<?, ?B/s] .gitattributes: 100%|██████████| 1.52k/1.52k [00:00<00:00, 18.9MB/s]
chaiml-phase2-winner-13b2-v273-mkmlizer: README.md: 0%| | 0.00/1.53k [00:00<?, ?B/s] README.md: 100%|██████████| 1.53k/1.53k [00:00<00:00, 19.6MB/s]
chaiml-phase2-winner-13b2-v273-mkmlizer: config.json: 0%| | 0.00/651 [00:00<?, ?B/s] config.json: 100%|██████████| 651/651 [00:00<00:00, 9.13MB/s]
chaiml-phase2-winner-13b2-v273-mkmlizer: generation_config.json: 0%| | 0.00/170 [00:00<?, ?B/s] generation_config.json: 100%|██████████| 170/170 [00:00<00:00, 2.81MB/s]
chaiml-phase2-winner-13b2-v273-mkmlizer: pytorch_model-00001-of-00003.bin: 0%| | 0.00/9.95G [00:00<?, ?B/s] pytorch_model-00001-of-00003.bin: 0%| | 10.5M/9.95G [00:00<01:37, 102MB/s] pytorch_model-00001-of-00003.bin: 1%| | 73.4M/9.95G [00:00<00:31, 314MB/s] pytorch_model-00001-of-00003.bin: 1%|▏ | 147M/9.95G [00:00<00:24, 408MB/s] pytorch_model-00001-of-00003.bin: 2%|▏ | 220M/9.95G [00:00<00:19, 511MB/s] pytorch_model-00001-of-00003.bin: 3%|▎ | 304M/9.95G [00:00<00:18, 532MB/s] pytorch_model-00001-of-00003.bin: 4%|▎ | 367M/9.95G [00:00<00:19, 499MB/s] pytorch_model-00001-of-00003.bin: 4%|▍ | 440M/9.95G [00:00<00:17, 557MB/s] pytorch_model-00001-of-00003.bin: 5%|▌ | 535M/9.95G [00:01<00:17, 540MB/s] pytorch_model-00001-of-00003.bin: 7%|▋ | 661M/9.95G [00:01<00:13, 704MB/s] pytorch_model-00001-of-00003.bin: 8%|▊ | 755M/9.95G [00:01<00:12, 745MB/s] pytorch_model-00001-of-00003.bin: 9%|▉ | 912M/9.95G [00:01<00:09, 959MB/s] pytorch_model-00001-of-00003.bin: 10%|█ | 1.02G/9.95G [00:01<00:09, 952MB/s] pytorch_model-00001-of-00003.bin: 11%|█▏ | 1.14G/9.95G [00:01<00:08, 1.01GB/s] pytorch_model-00001-of-00003.bin: 13%|█▎ | 1.25G/9.95G [00:01<00:11, 788MB/s] pytorch_model-00001-of-00003.bin: 14%|█▍ | 1.42G/9.95G [00:01<00:08, 995MB/s] pytorch_model-00001-of-00003.bin: 15%|█▌ | 1.53G/9.95G [00:02<00:10, 827MB/s] pytorch_model-00001-of-00003.bin: 16%|█▋ | 1.64G/9.95G [00:02<00:10, 765MB/s] pytorch_model-00001-of-00003.bin: 18%|█▊ | 1.84G/9.95G [00:02<00:07, 1.03GB/s] pytorch_model-00001-of-00003.bin: 20%|█▉ | 1.97G/9.95G [00:02<00:07, 1.09GB/s] pytorch_model-00001-of-00003.bin: 21%|██ | 2.11G/9.95G [00:02<00:07, 1.09GB/s] pytorch_model-00001-of-00003.bin: 22%|██▏ | 2.23G/9.95G [00:02<00:07, 1.08GB/s] pytorch_model-00001-of-00003.bin: 24%|██▍ | 2.37G/9.95G [00:02<00:06, 1.10GB/s] pytorch_model-00001-of-00003.bin: 25%|██▌ | 2.51G/9.95G [00:02<00:06, 1.16GB/s] pytorch_model-00001-of-00003.bin: 27%|██▋ | 2.72G/9.95G [00:03<00:05, 1.37GB/s] pytorch_model-00001-of-00003.bin: 31%|███ | 3.10G/9.95G [00:03<00:03, 2.04GB/s] pytorch_model-00001-of-00003.bin: 34%|███▍ | 3.38G/9.95G [00:03<00:03, 2.15GB/s] pytorch_model-00001-of-00003.bin: 36%|███▋ | 3.61G/9.95G [00:03<00:03, 2.06GB/s] pytorch_model-00001-of-00003.bin: 39%|███▊ | 3.85G/9.95G [00:03<00:02, 2.15GB/s] pytorch_model-00001-of-00003.bin: 42%|████▏ | 4.23G/9.95G [00:03<00:02, 2.49GB/s] pytorch_model-00001-of-00003.bin: 45%|████▌ | 4.48G/9.95G [00:03<00:02, 1.95GB/s] pytorch_model-00001-of-00003.bin: 47%|████▋ | 4.70G/9.95G [00:04<00:03, 1.63GB/s] pytorch_model-00001-of-00003.bin: 49%|████▉ | 4.89G/9.95G [00:04<00:03, 1.52GB/s] pytorch_model-00001-of-00003.bin: 51%|█████ | 5.05G/9.95G [00:04<00:03, 1.27GB/s] pytorch_model-00001-of-00003.bin: 52%|█████▏ | 5.20G/9.95G [00:04<00:04, 1.12GB/s] pytorch_model-00001-of-00003.bin: 54%|█████▎ | 5.33G/9.95G [00:04<00:04, 986MB/s] pytorch_model-00001-of-00003.bin: 55%|█████▍ | 5.44G/9.95G [00:04<00:05, 872MB/s] pytorch_model-00001-of-00003.bin: 56%|█████▌ | 5.54G/9.95G [00:05<00:05, 867MB/s] pytorch_model-00001-of-00003.bin: 57%|█████▋ | 5.63G/9.95G [00:05<00:05, 768MB/s] pytorch_model-00001-of-00003.bin: 58%|█████▊ | 5.75G/9.95G [00:05<00:05, 822MB/s] pytorch_model-00001-of-00003.bin: 59%|█████▉ | 5.87G/9.95G [00:05<00:04, 914MB/s] pytorch_model-00001-of-00003.bin: 60%|██████ | 6.00G/9.95G [00:05<00:04, 908MB/s] pytorch_model-00001-of-00003.bin: 61%|██████▏ | 6.11G/9.95G [00:05<00:03, 964MB/s] pytorch_model-00001-of-00003.bin: 63%|██████▎ | 6.26G/9.95G [00:05<00:03, 1.08GB/s] pytorch_model-00001-of-00003.bin: 64%|██████▍ | 6.41G/9.95G [00:05<00:03, 1.15GB/s] pytorch_model-00001-of-00003.bin: 66%|██████▌ | 6.57G/9.95G [00:05<00:02, 1.27GB/s] pytorch_model-00001-of-00003.bin: 68%|██████▊ | 6.78G/9.95G [00:06<00:02, 1.48GB/s] pytorch_model-00001-of-00003.bin: 70%|███████ | 6.97G/9.95G [00:06<00:01, 1.58GB/s] pytorch_model-00001-of-00003.bin: 72%|███████▏ | 7.14G/9.95G [00:06<00:01, 1.42GB/s] pytorch_model-00001-of-00003.bin: 73%|███████▎ | 7.30G/9.95G [00:06<00:01, 1.43GB/s] pytorch_model-00001-of-00003.bin: 76%|███████▋ | 7.60G/9.95G [00:06<00:01, 1.84GB/s] pytorch_model-00001-of-00003.bin: 78%|███████▊ | 7.80G/9.95G [00:06<00:01, 1.70GB/s] pytorch_model-00001-of-00003.bin: 81%|████████ | 8.03G/9.95G [00:06<00:01, 1.85GB/s] pytorch_model-00001-of-00003.bin: 83%|████████▎ | 8.26G/9.95G [00:06<00:00, 1.97GB/s] pytorch_model-00001-of-00003.bin: 85%|████████▌ | 8.47G/9.95G [00:07<00:00, 1.93GB/s] pytorch_model-00001-of-00003.bin: 88%|████████▊ | 8.76G/9.95G [00:07<00:00, 2.16GB/s] pytorch_model-00001-of-00003.bin: 90%|█████████ | 8.98G/9.95G [00:07<00:00, 1.75GB/s] pytorch_model-00001-of-00003.bin: 93%|█████████▎| 9.21G/9.95G [00:07<00:00, 1.86GB/s] pytorch_model-00001-of-00003.bin: 97%|█████████▋| 9.61G/9.95G [00:07<00:00, 2.37GB/s] pytorch_model-00001-of-00003.bin: 99%|█████████▉| 9.86G/9.95G [00:07<00:00, 1.63GB/s] pytorch_model-00001-of-00003.bin: 100%|█████████▉| 9.95G/9.95G [00:07<00:00, 1.25GB/s]
chaiml-phase2-winner-13b2-v273-mkmlizer: pytorch_model-00002-of-00003.bin: 0%| | 0.00/9.90G [00:00<?, ?B/s] pytorch_model-00002-of-00003.bin: 0%| | 10.5M/9.90G [00:00<02:49, 58.2MB/s] pytorch_model-00002-of-00003.bin: 1%| | 94.4M/9.90G [00:00<00:31, 307MB/s] pytorch_model-00002-of-00003.bin: 2%|▏ | 210M/9.90G [00:00<00:17, 567MB/s] pytorch_model-00002-of-00003.bin: 3%|▎ | 283M/9.90G [00:00<00:16, 583MB/s] pytorch_model-00002-of-00003.bin: 5%|▌ | 503M/9.90G [00:00<00:08, 1.06GB/s] pytorch_model-00002-of-00003.bin: 6%|▋ | 629M/9.90G [00:00<00:09, 1.02GB/s] pytorch_model-00002-of-00003.bin: 8%|▊ | 744M/9.90G [00:00<00:08, 1.06GB/s] pytorch_model-00002-of-00003.bin: 10%|▉ | 975M/9.90G [00:01<00:06, 1.39GB/s] pytorch_model-00002-of-00003.bin: 11%|█▏ | 1.12G/9.90G [00:01<00:07, 1.21GB/s] pytorch_model-00002-of-00003.bin: 13%|█▎ | 1.30G/9.90G [00:01<00:06, 1.25GB/s] pytorch_model-00002-of-00003.bin: 15%|█▍ | 1.45G/9.90G [00:01<00:06, 1.27GB/s] pytorch_model-00002-of-00003.bin: 16%|█▌ | 1.58G/9.90G [00:01<00:06, 1.26GB/s] pytorch_model-00002-of-00003.bin: 17%|█▋ | 1.73G/9.90G [00:01<00:06, 1.22GB/s] pytorch_model-00002-of-00003.bin: 19%|█▊ | 1.86G/9.90G [00:01<00:06, 1.22GB/s] pytorch_model-00002-of-00003.bin: 21%|██ | 2.04G/9.90G [00:01<00:05, 1.40GB/s] pytorch_model-00002-of-00003.bin: 23%|██▎ | 2.23G/9.90G [00:01<00:05, 1.50GB/s] pytorch_model-00002-of-00003.bin: 24%|██▍ | 2.39G/9.90G [00:02<00:05, 1.47GB/s] pytorch_model-00002-of-00003.bin: 26%|██▋ | 2.61G/9.90G [00:02<00:04, 1.63GB/s] pytorch_model-00002-of-00003.bin: 29%|██▊ | 2.84G/9.90G [00:02<00:03, 1.82GB/s] pytorch_model-00002-of-00003.bin: 32%|███▏ | 3.14G/9.90G [00:02<00:03, 2.09GB/s] pytorch_model-00002-of-00003.bin: 35%|███▍ | 3.42G/9.90G [00:02<00:02, 2.30GB/s] pytorch_model-00002-of-00003.bin: 37%|███▋ | 3.70G/9.90G [00:02<00:02, 2.42GB/s] pytorch_model-00002-of-00003.bin: 40%|███▉ | 3.95G/9.90G [00:02<00:03, 1.72GB/s] pytorch_model-00002-of-00003.bin: 42%|████▏ | 4.16G/9.90G [00:02<00:03, 1.64GB/s] pytorch_model-00002-of-00003.bin: 44%|████▍ | 4.40G/9.90G [00:03<00:03, 1.76GB/s] pytorch_model-00002-of-00003.bin: 46%|████▋ | 4.60G/9.90G [00:03<00:03, 1.69GB/s] pytorch_model-00002-of-00003.bin: 48%|████▊ | 4.79G/9.90G [00:03<00:03, 1.57GB/s] pytorch_model-00002-of-00003.bin: 50%|█████ | 4.97G/9.90G [00:03<00:03, 1.59GB/s] pytorch_model-00002-of-00003.bin: 52%|█████▏ | 5.14G/9.90G [00:03<00:02, 1.59GB/s] pytorch_model-00002-of-00003.bin: 54%|█████▎ | 5.31G/9.90G [00:03<00:03, 1.53GB/s] pytorch_model-00002-of-00003.bin: 56%|█████▌ | 5.54G/9.90G [00:03<00:02, 1.69GB/s] pytorch_model-00002-of-00003.bin: 58%|█████▊ | 5.71G/9.90G [00:03<00:02, 1.63GB/s] pytorch_model-00002-of-00003.bin: 59%|█████▉ | 5.88G/9.90G [00:04<00:02, 1.63GB/s] pytorch_model-00002-of-00003.bin: 61%|██████ | 6.05G/9.90G [00:04<00:02, 1.53GB/s] pytorch_model-00002-of-00003.bin: 63%|██████▎ | 6.21G/9.90G [00:04<00:02, 1.46GB/s] pytorch_model-00002-of-00003.bin: 64%|██████▍ | 6.36G/9.90G [00:04<00:02, 1.47GB/s] pytorch_model-00002-of-00003.bin: 66%|██████▌ | 6.52G/9.90G [00:04<00:02, 1.43GB/s] pytorch_model-00002-of-00003.bin: 68%|██████▊ | 6.72G/9.90G [00:04<00:02, 1.57GB/s] pytorch_model-00002-of-00003.bin: 70%|██████▉ | 6.89G/9.90G [00:04<00:02, 1.48GB/s] pytorch_model-00002-of-00003.bin: 72%|███████▏ | 7.09G/9.90G [00:04<00:01, 1.61GB/s] pytorch_model-00002-of-00003.bin: 73%|███████▎ | 7.26G/9.90G [00:04<00:01, 1.53GB/s] pytorch_model-00002-of-00003.bin: 75%|███████▌ | 7.47G/9.90G [00:05<00:01, 1.67GB/s] pytorch_model-00002-of-00003.bin: 78%|███████▊ | 7.77G/9.90G [00:05<00:01, 2.02GB/s] pytorch_model-00002-of-00003.bin: 81%|████████ | 7.99G/9.90G [00:05<00:00, 2.07GB/s] pytorch_model-00002-of-00003.bin: 83%|████████▎ | 8.21G/9.90G [00:05<00:00, 2.02GB/s] pytorch_model-00002-of-00003.bin: 85%|████████▌ | 8.43G/9.90G [00:05<00:00, 2.05GB/s] pytorch_model-00002-of-00003.bin: 87%|████████▋ | 8.64G/9.90G [00:05<00:00, 1.98GB/s] pytorch_model-00002-of-00003.bin: 89%|████████▉ | 8.85G/9.90G [00:05<00:00, 1.98GB/s] pytorch_model-00002-of-00003.bin: 92%|█████████▏| 9.11G/9.90G [00:05<00:00, 2.13GB/s] pytorch_model-00002-of-00003.bin: 94%|█████████▍| 9.33G/9.90G [00:06<00:00, 1.78GB/s] pytorch_model-00002-of-00003.bin: 96%|█████████▌| 9.52G/9.90G [00:06<00:00, 1.05GB/s] pytorch_model-00002-of-00003.bin: 98%|█████████▊| 9.66G/9.90G [00:06<00:00, 930MB/s] pytorch_model-00002-of-00003.bin: 99%|█████████▉| 9.79G/9.90G [00:06<00:00, 941MB/s] pytorch_model-00002-of-00003.bin: 100%|█████████▉| 9.90G/9.90G [00:06<00:00, 1.45GB/s]
chaiml-phase2-winner-13b2-v273-mkmlizer: pytorch_model-00003-of-00003.bin: 0%| | 0.00/6.18G [00:00<?, ?B/s] pytorch_model-00003-of-00003.bin: 0%| | 10.5M/6.18G [00:00<01:18, 78.6MB/s] pytorch_model-00003-of-00003.bin: 1%| | 73.4M/6.18G [00:00<00:17, 347MB/s] pytorch_model-00003-of-00003.bin: 2%|▏ | 136M/6.18G [00:00<00:13, 464MB/s] pytorch_model-00003-of-00003.bin: 4%|▎ | 231M/6.18G [00:00<00:09, 637MB/s] pytorch_model-00003-of-00003.bin: 8%|▊ | 472M/6.18G [00:00<00:04, 1.24GB/s] pytorch_model-00003-of-00003.bin: 11%|█ | 671M/6.18G [00:00<00:03, 1.47GB/s] pytorch_model-00003-of-00003.bin: 16%|█▌ | 975M/6.18G [00:00<00:02, 1.95GB/s] pytorch_model-00003-of-00003.bin: 19%|█▉ | 1.17G/6.18G [00:00<00:02, 1.81GB/s] pytorch_model-00003-of-00003.bin: 22%|██▏ | 1.36G/6.18G [00:01<00:03, 1.26GB/s] pytorch_model-00003-of-00003.bin: 25%|██▍ | 1.54G/6.18G [00:01<00:03, 1.34GB/s] pytorch_model-00003-of-00003.bin: 27%|██▋ | 1.70G/6.18G [00:01<00:03, 1.29GB/s] pytorch_model-00003-of-00003.bin: 31%|███ | 1.90G/6.18G [00:01<00:02, 1.43GB/s] pytorch_model-00003-of-00003.bin: 34%|███▍ | 2.11G/6.18G [00:01<00:02, 1.57GB/s] pytorch_model-00003-of-00003.bin: 38%|███▊ | 2.33G/6.18G [00:01<00:02, 1.72GB/s] pytorch_model-00003-of-00003.bin: 42%|████▏ | 2.58G/6.18G [00:01<00:01, 1.91GB/s] pytorch_model-00003-of-00003.bin: 45%|████▍ | 2.78G/6.18G [00:01<00:01, 1.81GB/s] pytorch_model-00003-of-00003.bin: 50%|████▉ | 3.07G/6.18G [00:02<00:01, 2.10GB/s] pytorch_model-00003-of-00003.bin: 54%|█████▍ | 3.34G/6.18G [00:02<00:01, 2.19GB/s] pytorch_model-00003-of-00003.bin: 58%|█████▊ | 3.58G/6.18G [00:02<00:01, 2.12GB/s] pytorch_model-00003-of-00003.bin: 61%|██████▏ | 3.80G/6.18G [00:02<00:01, 2.00GB/s] pytorch_model-00003-of-00003.bin: 65%|██████▍ | 4.01G/6.18G [00:02<00:01, 2.01GB/s] pytorch_model-00003-of-00003.bin: 69%|██████▉ | 4.26G/6.18G [00:02<00:00, 2.14GB/s] pytorch_model-00003-of-00003.bin: 73%|███████▎ | 4.54G/6.18G [00:02<00:00, 2.33GB/s] pytorch_model-00003-of-00003.bin: 77%|███████▋ | 4.78G/6.18G [00:02<00:00, 1.97GB/s] pytorch_model-00003-of-00003.bin: 81%|████████ | 4.99G/6.18G [00:03<00:00, 1.80GB/s] pytorch_model-00003-of-00003.bin: 84%|████████▍ | 5.18G/6.18G [00:03<00:00, 1.49GB/s] pytorch_model-00003-of-00003.bin: 87%|████████▋ | 5.36G/6.18G [00:03<00:00, 1.55GB/s] pytorch_model-00003-of-00003.bin: 89%|████████▉ | 5.53G/6.18G [00:03<00:00, 1.18GB/s] pytorch_model-00003-of-00003.bin: 92%|█████████▏| 5.68G/6.18G [00:03<00:00, 1.23GB/s] pytorch_model-00003-of-00003.bin: 94%|█████████▍| 5.82G/6.18G [00:03<00:00, 1.05GB/s] pytorch_model-00003-of-00003.bin: 96%|█████████▋| 5.95G/6.18G [00:03<00:00, 1.05GB/s] pytorch_model-00003-of-00003.bin: 99%|█████████▉| 6.11G/6.18G [00:04<00:00, 1.15GB/s] pytorch_model-00003-of-00003.bin: 100%|█████████▉| 6.18G/6.18G [00:04<00:00, 1.49GB/s]
chaiml-phase2-winner-13b2-v273-mkmlizer: pytorch_model.bin.index.json: 0%| | 0.00/33.4k [00:00<?, ?B/s] pytorch_model.bin.index.json: 100%|██████████| 33.4k/33.4k [00:00<00:00, 12.4MB/s]
chaiml-phase2-winner-13b2-v273-mkmlizer: special_tokens_map.json: 0%| | 0.00/414 [00:00<?, ?B/s] special_tokens_map.json: 100%|██████████| 414/414 [00:00<00:00, 4.62MB/s]
chaiml-phase2-winner-13b2-v273-mkmlizer: tokenizer.json: 0%| | 0.00/1.84M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 1.84M/1.84M [00:00<00:00, 26.6MB/s]
chaiml-phase2-winner-13b2-v273-mkmlizer: tokenizer.model: 0%| | 0.00/500k [00:00<?, ?B/s] tokenizer.model: 100%|██████████| 500k/500k [00:00<00:00, 9.43MB/s]
chaiml-phase2-winner-13b2-v273-mkmlizer: tokenizer_config.json: 0%| | 0.00/725 [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 725/725 [00:00<00:00, 7.45MB/s]
chaiml-phase2-winner-13b2-v273-mkmlizer: Downloaded to shared memory in 20.855s
chaiml-phase2-winner-13b2-v273-mkmlizer: quantizing model to /dev/shm/model_cache
chaiml-phase2-winner-13b2-v273-mkmlizer: Saving mkml model at /dev/shm/model_cache
chaiml-phase2-winner-13b2-v273-mkmlizer: Reading /tmp/tmp1c912zgd/pytorch_model.bin.index.json
chaiml-phase2-winner-13b2-v273-mkmlizer: quantized model in 27.498s
chaiml-phase2-winner-13b2-v273-mkmlizer: creating bucket guanaco-mkml-models
chaiml-phase2-winner-13b2-v273-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
chaiml-phase2-winner-13b2-v273-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v273
chaiml-phase2-winner-13b2-v273-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v273/config.json
chaiml-phase2-winner-13b2-v273-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v273/special_tokens_map.json
chaiml-phase2-winner-13b2-v273-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v273/tokenizer_config.json
chaiml-phase2-winner-13b2-v273-mkmlizer: cp /dev/shm/model_cache/tokenizer.model s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v273/tokenizer.model
chaiml-phase2-winner-13b2-v273-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v273/tokenizer.json
chaiml-phase2-winner-13b2-v273-mkmlizer: cp /dev/shm/model_cache/mkml_model.tensors s3://guanaco-mkml-models/chaiml-phase2-winner-13b2-v273/mkml_model.tensors
chaiml-phase2-winner-13b2-v273-mkmlizer: loading reward model from rirv938/gpt2_ties_merge_preference_plus_classic_e2_density_99
chaiml-phase2-winner-13b2-v273-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:1067: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
chaiml-phase2-winner-13b2-v273-mkmlizer: warnings.warn(
chaiml-phase2-winner-13b2-v273-mkmlizer: config.json: 0%| | 0.00/983 [00:00<?, ?B/s] config.json: 100%|██████████| 983/983 [00:00<00:00, 12.7MB/s]
chaiml-phase2-winner-13b2-v273-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:690: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
chaiml-phase2-winner-13b2-v273-mkmlizer: warnings.warn(
chaiml-phase2-winner-13b2-v273-mkmlizer: tokenizer_config.json: 0%| | 0.00/445 [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 445/445 [00:00<00:00, 5.98MB/s]
chaiml-phase2-winner-13b2-v273-mkmlizer: vocab.json: 0%| | 0.00/798k [00:00<?, ?B/s] vocab.json: 100%|██████████| 798k/798k [00:00<00:00, 25.0MB/s]
chaiml-phase2-winner-13b2-v273-mkmlizer: merges.txt: 0%| | 0.00/456k [00:00<?, ?B/s] merges.txt: 100%|██████████| 456k/456k [00:00<00:00, 6.63MB/s]
chaiml-phase2-winner-13b2-v273-mkmlizer: tokenizer.json: 0%| | 0.00/2.11M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 2.11M/2.11M [00:00<00:00, 18.3MB/s] tokenizer.json: 100%|██████████| 2.11M/2.11M [00:00<00:00, 18.1MB/s]
chaiml-phase2-winner-13b2-v273-mkmlizer: special_tokens_map.json: 0%| | 0.00/441 [00:00<?, ?B/s] special_tokens_map.json: 100%|██████████| 441/441 [00:00<00:00, 7.17MB/s]
chaiml-phase2-winner-13b2-v273-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:472: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
chaiml-phase2-winner-13b2-v273-mkmlizer: warnings.warn(
chaiml-phase2-winner-13b2-v273-mkmlizer: model.safetensors.index.json: 0%| | 0.00/10.5k [00:00<?, ?B/s] model.safetensors.index.json: 100%|██████████| 10.5k/10.5k [00:00<00:00, 95.0MB/s]
chaiml-phase2-winner-13b2-v273-mkmlizer: Downloading shards: 0%| | 0/1 [00:00<?, ?it/s]
chaiml-phase2-winner-13b2-v273-mkmlizer: model-00001-of-00001.safetensors: 0%| | 0.00/249M [00:00<?, ?B/s]
chaiml-phase2-winner-13b2-v273-mkmlizer: model-00001-of-00001.safetensors: 4%|▍ | 10.5M/249M [00:00<00:02, 94.3MB/s]
chaiml-phase2-winner-13b2-v273-mkmlizer: model-00001-of-00001.safetensors: 79%|███████▉ | 196M/249M [00:00<00:00, 1.06GB/s]  model-00001-of-00001.safetensors: 100%|█████████▉| 249M/249M [00:00<00:00, 849MB/s]
chaiml-phase2-winner-13b2-v273-mkmlizer: Downloading shards: 100%|██████████| 1/1 [00:00<00:00, 1.89it/s] Downloading shards: 100%|██████████| 1/1 [00:00<00:00, 1.89it/s]
chaiml-phase2-winner-13b2-v273-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
chaiml-phase2-winner-13b2-v273-mkmlizer: Saving duration: 0.085s
chaiml-phase2-winner-13b2-v273-mkmlizer: Processed model rirv938/gpt2_ties_merge_preference_plus_classic_e2_density_99 in 2.739s
Job chaiml-phase2-winner-13b2-v273-mkmlizer completed after 75.37s with status: succeeded
Stopping job with name chaiml-phase2-winner-13b2-v273-mkmlizer
Pipeline stage MKMLizer completed in 80.69s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.10s
Running pipeline stage ISVCDeployer
Creating inference service chaiml-phase2-winner-13b2-v273
Waiting for inference service chaiml-phase2-winner-13b2-v273 to be ready
Inference service chaiml-phase2-winner-13b2-v273 ready after 40.255242109298706s
Pipeline stage ISVCDeployer completed in 47.98s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.7298977375030518s
Received healthy response to inference request in 1.9137365818023682s
Received healthy response to inference request in 2.4371085166931152s
Received healthy response to inference request in 1.812345266342163s
Received healthy response to inference request in 1.751591444015503s
5 requests
0 failed requests
5th percentile: 1.763742208480835
10th percentile: 1.775892972946167
20th percentile: 1.800194501876831
30th percentile: 1.8326235294342041
40th percentile: 1.873180055618286
50th percentile: 1.9137365818023682
60th percentile: 2.123085355758667
70th percentile: 2.3324341297149656
80th percentile: 2.4956663608551026
90th percentile: 2.612782049179077
95th percentile: 2.6713398933410644
99th percentile: 2.718186168670654
mean time: 2.1289359092712403
Pipeline stage StressChecker completed in 11.61s
Running pipeline stage DaemonicModelEvalScorer
Pipeline stage DaemonicModelEvalScorer completed in 0.04s
Running pipeline stage DaemonicSafetyScorer
Running M-Eval for topic stay_in_character
Pipeline stage DaemonicSafetyScorer completed in 0.04s
M-Eval Dataset for topic stay_in_character is loaded
chaiml-phase2-winner-13b2_v273 status is now deployed due to DeploymentManager action
chaiml-phase2-winner-13b2_v273 status is now inactive due to admin request

Usage Metrics

Latency Metrics