Running pipeline stage MKMLizer
Starting job with name lmsys-vicuna-7b-v1-5-v1-mkmlizer
Waiting for job on lmsys-vicuna-7b-v1-5-v1-mkmlizer to finish
lmsys-vicuna-7b-v1-5-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
lmsys-vicuna-7b-v1-5-v1-mkmlizer: ║ _____ __ __ ║
lmsys-vicuna-7b-v1-5-v1-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
lmsys-vicuna-7b-v1-5-v1-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
lmsys-vicuna-7b-v1-5-v1-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
lmsys-vicuna-7b-v1-5-v1-mkmlizer: ║ /___/ ║
lmsys-vicuna-7b-v1-5-v1-mkmlizer: ║ ║
lmsys-vicuna-7b-v1-5-v1-mkmlizer: ║ Version: 0.6.11 ║
lmsys-vicuna-7b-v1-5-v1-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
lmsys-vicuna-7b-v1-5-v1-mkmlizer: ║ ║
lmsys-vicuna-7b-v1-5-v1-mkmlizer: ║ The license key for the current software has been verified as ║
lmsys-vicuna-7b-v1-5-v1-mkmlizer: ║ belonging to: ║
lmsys-vicuna-7b-v1-5-v1-mkmlizer: ║ ║
lmsys-vicuna-7b-v1-5-v1-mkmlizer: ║ Chai Research Corp. ║
lmsys-vicuna-7b-v1-5-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
lmsys-vicuna-7b-v1-5-v1-mkmlizer: ║ Expiration: 2024-07-15 23:59:59 ║
lmsys-vicuna-7b-v1-5-v1-mkmlizer: ║ ║
lmsys-vicuna-7b-v1-5-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
lmsys-vicuna-7b-v1-5-v1-mkmlizer:
.gitattributes: 0%| | 0.00/1.52k [00:00<?, ?B/s]
.gitattributes: 100%|██████████| 1.52k/1.52k [00:00<00:00, 14.6MB/s]
lmsys-vicuna-7b-v1-5-v1-mkmlizer:
README.md: 0%| | 0.00/1.97k [00:00<?, ?B/s]
README.md: 100%|██████████| 1.97k/1.97k [00:00<00:00, 15.2MB/s]
lmsys-vicuna-7b-v1-5-v1-mkmlizer:
config.json: 0%| | 0.00/615 [00:00<?, ?B/s]
config.json: 100%|██████████| 615/615 [00:00<00:00, 9.81MB/s]
lmsys-vicuna-7b-v1-5-v1-mkmlizer:
generation_config.json: 0%| | 0.00/162 [00:00<?, ?B/s]
generation_config.json: 100%|██████████| 162/162 [00:00<00:00, 1.26MB/s]
lmsys-vicuna-7b-v1-5-v1-mkmlizer:
pytorch_model-00001-of-00002.bin: 0%| | 0.00/9.98G [00:00<?, ?B/s]
pytorch_model-00001-of-00002.bin: 0%| | 10.5M/9.98G [00:01<24:55, 6.67MB/s]
pytorch_model-00001-of-00002.bin: 0%| | 21.0M/9.98G [00:02<22:37, 7.34MB/s]
pytorch_model-00001-of-00002.bin: 1%| | 73.4M/9.98G [00:03<05:50, 28.3MB/s]
pytorch_model-00001-of-00002.bin: 2%|▏ | 168M/9.98G [00:03<02:00, 81.6MB/s]
pytorch_model-00001-of-00002.bin: 5%|▌ | 545M/9.98G [00:03<00:25, 366MB/s]
pytorch_model-00001-of-00002.bin: 12%|█▏ | 1.16G/9.98G [00:03<00:09, 934MB/s]
pytorch_model-00001-of-00002.bin: 15%|█▍ | 1.47G/9.98G [00:04<00:10, 796MB/s]
pytorch_model-00001-of-00002.bin: 17%|█▋ | 1.69G/9.98G [00:04<00:10, 763MB/s]
pytorch_model-00001-of-00002.bin: 19%|█▊ | 1.87G/9.98G [00:04<00:11, 684MB/s]
pytorch_model-00001-of-00002.bin: 20%|██ | 2.00G/9.98G [00:05<00:12, 617MB/s]
pytorch_model-00001-of-00002.bin: 21%|██ | 2.12G/9.98G [00:05<00:13, 575MB/s]
pytorch_model-00001-of-00002.bin: 22%|██▏ | 2.21G/9.98G [00:05<00:13, 586MB/s]
pytorch_model-00001-of-00002.bin: 23%|██▎ | 2.31G/9.98G [00:05<00:12, 634MB/s]
pytorch_model-00001-of-00002.bin: 24%|██▍ | 2.44G/9.98G [00:05<00:10, 749MB/s]
pytorch_model-00001-of-00002.bin: 26%|██▋ | 2.62G/9.98G [00:06<00:07, 943MB/s]
pytorch_model-00001-of-00002.bin: 28%|██▊ | 2.83G/9.98G [00:06<00:06, 1.19GB/s]
pytorch_model-00001-of-00002.bin: 30%|██▉ | 2.99G/9.98G [00:06<00:06, 1.14GB/s]
pytorch_model-00001-of-00002.bin: 31%|███▏ | 3.12G/9.98G [00:06<00:06, 1.04GB/s]
pytorch_model-00001-of-00002.bin: 33%|███▎ | 3.28G/9.98G [00:06<00:05, 1.16GB/s]
pytorch_model-00001-of-00002.bin: 35%|███▌ | 3.53G/9.98G [00:06<00:04, 1.47GB/s]
pytorch_model-00001-of-00002.bin: 37%|███▋ | 3.73G/9.98G [00:06<00:03, 1.60GB/s]
pytorch_model-00001-of-00002.bin: 40%|███▉ | 3.94G/9.98G [00:06<00:03, 1.69GB/s]
pytorch_model-00001-of-00002.bin: 41%|████▏ | 4.13G/9.98G [00:06<00:03, 1.69GB/s]
pytorch_model-00001-of-00002.bin: 44%|████▎ | 4.35G/9.98G [00:07<00:03, 1.73GB/s]
pytorch_model-00001-of-00002.bin: 46%|████▌ | 4.60G/9.98G [00:07<00:02, 1.93GB/s]
pytorch_model-00001-of-00002.bin: 48%|████▊ | 4.80G/9.98G [00:07<00:03, 1.72GB/s]
pytorch_model-00001-of-00002.bin: 50%|█████ | 4.99G/9.98G [00:07<00:02, 1.68GB/s]
pytorch_model-00001-of-00002.bin: 52%|█████▏ | 5.17G/9.98G [00:07<00:02, 1.69GB/s]
pytorch_model-00001-of-00002.bin: 55%|█████▍ | 5.46G/9.98G [00:07<00:02, 2.01GB/s]
pytorch_model-00001-of-00002.bin: 57%|█████▋ | 5.67G/9.98G [00:07<00:02, 1.70GB/s]
pytorch_model-00001-of-00002.bin: 59%|█████▉ | 5.88G/9.98G [00:07<00:02, 1.78GB/s]
pytorch_model-00001-of-00002.bin: 61%|██████ | 6.07G/9.98G [00:08<00:02, 1.79GB/s]
pytorch_model-00001-of-00002.bin: 63%|██████▎ | 6.33G/9.98G [00:08<00:01, 1.98GB/s]
pytorch_model-00001-of-00002.bin: 66%|██████▋ | 6.62G/9.98G [00:08<00:01, 2.07GB/s]
pytorch_model-00001-of-00002.bin: 69%|██████▊ | 6.84G/9.98G [00:08<00:01, 1.97GB/s]
pytorch_model-00001-of-00002.bin: 71%|███████ | 7.05G/9.98G [00:08<00:01, 1.73GB/s]
pytorch_model-00001-of-00002.bin: 73%|███████▎ | 7.28G/9.98G [00:08<00:01, 1.87GB/s]
pytorch_model-00001-of-00002.bin: 76%|███████▌ | 7.58G/9.98G [00:08<00:01, 2.15GB/s]
pytorch_model-00001-of-00002.bin: 78%|███████▊ | 7.81G/9.98G [00:08<00:01, 2.11GB/s]
pytorch_model-00001-of-00002.bin: 81%|████████ | 8.04G/9.98G [00:08<00:00, 2.14GB/s]
pytorch_model-00001-of-00002.bin: 83%|████████▎ | 8.27G/9.98G [00:09<00:00, 2.09GB/s]
pytorch_model-00001-of-00002.bin: 85%|████████▌ | 8.49G/9.98G [00:09<00:00, 2.06GB/s]
pytorch_model-00001-of-00002.bin: 87%|████████▋ | 8.70G/9.98G [00:09<00:00, 2.04GB/s]
pytorch_model-00001-of-00002.bin: 90%|████████▉ | 8.97G/9.98G [00:09<00:00, 2.14GB/s]
pytorch_model-00001-of-00002.bin: 92%|█████████▏| 9.19G/9.98G [00:09<00:00, 2.05GB/s]
pytorch_model-00001-of-00002.bin: 95%|█████████▍| 9.45G/9.98G [00:09<00:00, 2.19GB/s]
pytorch_model-00001-of-00002.bin: 97%|█████████▋| 9.68G/9.98G [00:09<00:00, 2.03GB/s]
pytorch_model-00001-of-00002.bin: 99%|█████████▉| 9.89G/9.98G [00:09<00:00, 1.69GB/s]
pytorch_model-00001-of-00002.bin: 100%|█████████▉| 9.98G/9.98G [00:10<00:00, 960MB/s]
lmsys-vicuna-7b-v1-5-v1-mkmlizer:
pytorch_model-00002-of-00002.bin: 0%| | 0.00/3.50G [00:00<?, ?B/s]
pytorch_model-00002-of-00002.bin: 0%| | 10.5M/3.50G [00:02<14:57, 3.89MB/s]
pytorch_model-00002-of-00002.bin: 1%| | 41.9M/3.50G [00:02<03:10, 18.1MB/s]
pytorch_model-00002-of-00002.bin: 4%|▎ | 126M/3.50G [00:03<00:53, 63.2MB/s]
pytorch_model-00002-of-00002.bin: 9%|▉ | 325M/3.50G [00:03<00:15, 208MB/s]
pytorch_model-00002-of-00002.bin: 31%|███ | 1.07G/3.50G [00:03<00:02, 908MB/s]
pytorch_model-00002-of-00002.bin: 40%|███▉ | 1.39G/3.50G [00:04<00:03, 595MB/s]
pytorch_model-00002-of-00002.bin: 46%|████▋ | 1.63G/3.50G [00:04<00:02, 660MB/s]
pytorch_model-00002-of-00002.bin: 54%|█████▍ | 1.89G/3.50G [00:04<00:01, 840MB/s]
pytorch_model-00002-of-00002.bin: 60%|█████▉ | 2.10G/3.50G [00:04<00:01, 897MB/s]
pytorch_model-00002-of-00002.bin: 67%|██████▋ | 2.35G/3.50G [00:04<00:01, 1.11GB/s]
pytorch_model-00002-of-00002.bin: 73%|███████▎ | 2.55G/3.50G [00:05<00:00, 1.18GB/s]
pytorch_model-00002-of-00002.bin: 78%|███████▊ | 2.74G/3.50G [00:05<00:00, 1.01GB/s]
pytorch_model-00002-of-00002.bin: 87%|████████▋ | 3.03G/3.50G [00:05<00:00, 1.32GB/s]
pytorch_model-00002-of-00002.bin: 99%|█████████▉| 3.48G/3.50G [00:05<00:00, 1.91GB/s]
pytorch_model-00002-of-00002.bin: 100%|█████████▉| 3.50G/3.50G [00:05<00:00, 595MB/s]
lmsys-vicuna-7b-v1-5-v1-mkmlizer:
pytorch_model.bin.index.json: 0%| | 0.00/26.8k [00:00<?, ?B/s]
pytorch_model.bin.index.json: 100%|██████████| 26.8k/26.8k [00:00<00:00, 126MB/s]
lmsys-vicuna-7b-v1-5-v1-mkmlizer:
special_tokens_map.json: 0%| | 0.00/438 [00:00<?, ?B/s]
special_tokens_map.json: 100%|██████████| 438/438 [00:00<00:00, 6.99MB/s]
lmsys-vicuna-7b-v1-5-v1-mkmlizer:
tokenizer.model: 0%| | 0.00/500k [00:00<?, ?B/s]
tokenizer.model: 100%|██████████| 500k/500k [00:00<00:00, 49.9MB/s]
lmsys-vicuna-7b-v1-5-v1-mkmlizer:
tokenizer_config.json: 0%| | 0.00/749 [00:00<?, ?B/s]
tokenizer_config.json: 100%|██████████| 749/749 [00:00<00:00, 12.6MB/s]
lmsys-vicuna-7b-v1-5-v1-mkmlizer: Downloaded to shared memory in 17.836s
lmsys-vicuna-7b-v1-5-v1-mkmlizer: quantizing model to /dev/shm/model_cache
lmsys-vicuna-7b-v1-5-v1-mkmlizer: Saving mkml model at /dev/shm/model_cache
lmsys-vicuna-7b-v1-5-v1-mkmlizer: Reading /tmp/tmpfmkmynu_/pytorch_model.bin.index.json
lmsys-vicuna-7b-v1-5-v1-mkmlizer:
Profiling: 0%| | 0/291 [00:00<?, ?it/s]
Profiling: 0%| | 1/291 [00:03<16:38, 3.44s/it]
Profiling: 75%|███████▍ | 218/291 [00:04<00:01, 64.98it/s]
Profiling: 100%|██████████| 291/291 [00:05<00:00, 61.06it/s]
Profiling: 100%|██████████| 291/291 [00:05<00:00, 50.79it/s]
lmsys-vicuna-7b-v1-5-v1-mkmlizer: quantized model in 15.721s
lmsys-vicuna-7b-v1-5-v1-mkmlizer: Processed model lmsys/vicuna-7b-v1.5 in 34.525s
lmsys-vicuna-7b-v1-5-v1-mkmlizer: creating bucket guanaco-mkml-models
lmsys-vicuna-7b-v1-5-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
lmsys-vicuna-7b-v1-5-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/lmsys-vicuna-7b-v1-5-v1
lmsys-vicuna-7b-v1-5-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/lmsys-vicuna-7b-v1-5-v1/special_tokens_map.json
lmsys-vicuna-7b-v1-5-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/lmsys-vicuna-7b-v1-5-v1/config.json
lmsys-vicuna-7b-v1-5-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.model s3://guanaco-mkml-models/lmsys-vicuna-7b-v1-5-v1/tokenizer.model
lmsys-vicuna-7b-v1-5-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/lmsys-vicuna-7b-v1-5-v1/tokenizer.json
lmsys-vicuna-7b-v1-5-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/lmsys-vicuna-7b-v1-5-v1/tokenizer_config.json
lmsys-vicuna-7b-v1-5-v1-mkmlizer: loading reward model from ChaiML/reward_gpt2_medium_preference_24m_e2
lmsys-vicuna-7b-v1-5-v1-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:1067: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
lmsys-vicuna-7b-v1-5-v1-mkmlizer: warnings.warn(
lmsys-vicuna-7b-v1-5-v1-mkmlizer:
config.json: 0%| | 0.00/1.05k [00:00<?, ?B/s]
config.json: 100%|██████████| 1.05k/1.05k [00:00<00:00, 9.34MB/s]
lmsys-vicuna-7b-v1-5-v1-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:690: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
lmsys-vicuna-7b-v1-5-v1-mkmlizer: warnings.warn(
lmsys-vicuna-7b-v1-5-v1-mkmlizer:
tokenizer_config.json: 0%| | 0.00/234 [00:00<?, ?B/s]
tokenizer_config.json: 100%|██████████| 234/234 [00:00<00:00, 2.45MB/s]
lmsys-vicuna-7b-v1-5-v1-mkmlizer:
vocab.json: 0%| | 0.00/1.04M [00:00<?, ?B/s]
vocab.json: 100%|██████████| 1.04M/1.04M [00:00<00:00, 3.92MB/s]
vocab.json: 100%|██████████| 1.04M/1.04M [00:00<00:00, 3.91MB/s]
lmsys-vicuna-7b-v1-5-v1-mkmlizer:
tokenizer.json: 0%| | 0.00/2.11M [00:00<?, ?B/s]
tokenizer.json: 100%|██████████| 2.11M/2.11M [00:00<00:00, 30.1MB/s]
lmsys-vicuna-7b-v1-5-v1-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:472: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
lmsys-vicuna-7b-v1-5-v1-mkmlizer: warnings.warn(
lmsys-vicuna-7b-v1-5-v1-mkmlizer:
pytorch_model.bin: 0%| | 0.00/1.44G [00:00<?, ?B/s]
pytorch_model.bin: 1%| | 10.5M/1.44G [00:00<00:19, 75.0MB/s]
pytorch_model.bin: 2%|▏ | 31.5M/1.44G [00:00<00:15, 89.9MB/s]
pytorch_model.bin: 3%|▎ | 41.9M/1.44G [00:00<00:18, 77.0MB/s]
pytorch_model.bin: 4%|▎ | 52.4M/1.44G [00:00<00:18, 76.5MB/s]
pytorch_model.bin: 7%|▋ | 105M/1.44G [00:01<00:18, 70.7MB/s]
pytorch_model.bin: 12%|█▏ | 168M/1.44G [00:01<00:09, 133MB/s]
pytorch_model.bin: 32%|███▏ | 461M/1.44G [00:01<00:01, 526MB/s]
pytorch_model.bin: 81%|████████▏ | 1.17G/1.44G [00:01<00:00, 1.63GB/s]
pytorch_model.bin: 100%|█████████▉| 1.44G/1.44G [00:02<00:00, 710MB/s]
lmsys-vicuna-7b-v1-5-v1-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
lmsys-vicuna-7b-v1-5-v1-mkmlizer: Saving duration: 0.285s
lmsys-vicuna-7b-v1-5-v1-mkmlizer: Processed model ChaiML/reward_gpt2_medium_preference_24m_e2 in 6.671s
lmsys-vicuna-7b-v1-5-v1-mkmlizer: creating bucket guanaco-reward-models
lmsys-vicuna-7b-v1-5-v1-mkmlizer: Bucket 's3://guanaco-reward-models/' created
lmsys-vicuna-7b-v1-5-v1-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/lmsys-vicuna-7b-v1-5-v1_reward
lmsys-vicuna-7b-v1-5-v1-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/lmsys-vicuna-7b-v1-5-v1_reward/config.json
lmsys-vicuna-7b-v1-5-v1-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/lmsys-vicuna-7b-v1-5-v1_reward/special_tokens_map.json
lmsys-vicuna-7b-v1-5-v1-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/lmsys-vicuna-7b-v1-5-v1_reward/merges.txt
lmsys-vicuna-7b-v1-5-v1-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/lmsys-vicuna-7b-v1-5-v1_reward/vocab.json
lmsys-vicuna-7b-v1-5-v1-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/lmsys-vicuna-7b-v1-5-v1_reward/tokenizer_config.json
lmsys-vicuna-7b-v1-5-v1-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/lmsys-vicuna-7b-v1-5-v1_reward/tokenizer.json
lmsys-vicuna-7b-v1-5-v1-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/lmsys-vicuna-7b-v1-5-v1_reward/reward.tensors
Job lmsys-vicuna-7b-v1-5-v1-mkmlizer completed after 64.98s with status: succeeded
Stopping job with name lmsys-vicuna-7b-v1-5-v1-mkmlizer
Pipeline stage MKMLizer completed in 71.13s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.14s
Running pipeline stage ISVCDeployer
Creating inference service lmsys-vicuna-7b-v1-5-v1
Waiting for inference service lmsys-vicuna-7b-v1-5-v1 to be ready
Inference service lmsys-vicuna-7b-v1-5-v1 ready after 50.783488512039185s
Pipeline stage ISVCDeployer completed in 58.92s
Running pipeline stage StressChecker
Received healthy response to inference request in 1.7592439651489258s
Received healthy response to inference request in 1.1436641216278076s
Received healthy response to inference request in 1.1120400428771973s
Received healthy response to inference request in 0.8369612693786621s
Received healthy response to inference request in 0.7358007431030273s
5 requests
0 failed requests
5th percentile: 0.7560328483581543
10th percentile: 0.7762649536132813
20th percentile: 0.8167291641235351
30th percentile: 0.8919770240783691
40th percentile: 1.0020085334777833
50th percentile: 1.1120400428771973
60th percentile: 1.1246896743774415
70th percentile: 1.1373393058776855
80th percentile: 1.2667800903320314
90th percentile: 1.5130120277404786
95th percentile: 1.636127996444702
99th percentile: 1.734620771408081
mean time: 1.117542028427124
Pipeline stage StressChecker completed in 6.42s
Running pipeline stage DaemonicModelEvalScorer
Pipeline stage DaemonicModelEvalScorer completed in 0.03s
Running pipeline stage DaemonicSafetyScorer
Running M-Eval for topic stay_in_character
Pipeline stage DaemonicSafetyScorer completed in 0.04s
M-Eval Dataset for topic stay_in_character is loaded
lmsys-vicuna-7b-v1-5_v1 status is now deployed due to DeploymentManager action
lmsys-vicuna-7b-v1-5_v1 status is now inactive due to auto deactivation removed underperforming models
admin requested tearing down of lmsys-vicuna-7b-v1-5_v1
Running pipeline stage ISVCDeleter
Checking if service lmsys-vicuna-7b-v1-5-v1 is running
Tearing down inference service lmsys-vicuna-7b-v1-5-v1
Toredown service lmsys-vicuna-7b-v1-5-v1
Pipeline stage ISVCDeleter completed in 4.31s
Running pipeline stage MKMLModelDeleter
Cleaning model data from S3
Cleaning model data from model cache
Deleting key lmsys-vicuna-7b-v1-5-v1/config.json from bucket guanaco-mkml-models
Deleting key lmsys-vicuna-7b-v1-5-v1/mkml_model.tensors from bucket guanaco-mkml-models
Deleting key lmsys-vicuna-7b-v1-5-v1/special_tokens_map.json from bucket guanaco-mkml-models
Deleting key lmsys-vicuna-7b-v1-5-v1/tokenizer.json from bucket guanaco-mkml-models
Deleting key lmsys-vicuna-7b-v1-5-v1/tokenizer.model from bucket guanaco-mkml-models
Deleting key lmsys-vicuna-7b-v1-5-v1/tokenizer_config.json from bucket guanaco-mkml-models
Cleaning model data from model cache
Deleting key lmsys-vicuna-7b-v1-5-v1_reward/config.json from bucket guanaco-reward-models
Deleting key lmsys-vicuna-7b-v1-5-v1_reward/merges.txt from bucket guanaco-reward-models
Deleting key lmsys-vicuna-7b-v1-5-v1_reward/reward.tensors from bucket guanaco-reward-models
Deleting key lmsys-vicuna-7b-v1-5-v1_reward/special_tokens_map.json from bucket guanaco-reward-models
Deleting key lmsys-vicuna-7b-v1-5-v1_reward/tokenizer.json from bucket guanaco-reward-models
Deleting key lmsys-vicuna-7b-v1-5-v1_reward/tokenizer_config.json from bucket guanaco-reward-models
Deleting key lmsys-vicuna-7b-v1-5-v1_reward/vocab.json from bucket guanaco-reward-models
Pipeline stage MKMLModelDeleter completed in 3.32s
lmsys-vicuna-7b-v1-5_v1 status is now torndown due to DeploymentManager action