developer_uid: Fizzarolli
submission_id: fizzarolli-llama-3-lust-_8388_v2
model_name: fizzarolli-llama-3-lust-_v2
model_group: Fizzarolli/llama-3-lust-
status: rejected
timestamp: 2024-04-19T01:31:53+00:00
num_battles: 98
num_wins: 44
family_friendly_score: 0.0
submission_type: basic
model_repo: Fizzarolli/llama-3-lust-8b-v0.1
model_architecture: LlamaForCausalLM
reward_repo: ChaiML/reward_gpt2_medium_preference_24m_e2
model_num_parameters: 8030261248.0
best_of: 8
max_input_tokens: 512
max_output_tokens: 64
display_name: fizzarolli-llama-3-lust-_v2
ineligible_reason: model is not deployable
is_internal_developer: False
language_model: Fizzarolli/llama-3-lust-8b-v0.1
model_size: 8B
ranking_group: single
us_pacific_date: 2024-04-18
win_ratio: 0.4489795918367347
generation_params: {'temperature': 0.85, 'top_p': 0.9, 'min_p': 0.0, 'top_k': 60, 'presence_penalty': 0.01, 'frequency_penalty': 0.01, 'stopping_words': ['\n', '</s>'], 'max_input_tokens': 512, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': '<|description|>{bot_name}\n{memory}</s>\n', 'prompt_template': '<|message|>{user_name}\n{prompt}</s>\n<|message|>{bot_name}\n', 'bot_template': '<|message|>{bot_name}\n{message}</s>\n', 'user_template': '<|message|>{user_name}\n{message}</s>\n', 'response_template': '<|message|>{bot_name}\n', 'truncate_by_message': False}
model_eval_status: success
reward_formatter: {'bot_template': '{bot_name}: {message}\n', 'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'response_template': '{bot_name}:', 'user_template': '{user_name}: {message}\n'}
Resubmit model
Running pipeline stage MKMLizer
Starting job with name fizzarolli-llama-3-lust-8388-v2-mkmlizer
Waiting for job on fizzarolli-llama-3-lust-8388-v2-mkmlizer to finish
Stopping job with name fizzarolli-llama-3-lust-8388-v2-mkmlizer
%s, retrying in %s seconds...
Starting job with name fizzarolli-llama-3-lust-8388-v2-mkmlizer
Waiting for job on fizzarolli-llama-3-lust-8388-v2-mkmlizer to finish
fizzarolli-llama-3-lust-8388-v2-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
fizzarolli-llama-3-lust-8388-v2-mkmlizer: ║ _____ __ __ ║
fizzarolli-llama-3-lust-8388-v2-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
fizzarolli-llama-3-lust-8388-v2-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
fizzarolli-llama-3-lust-8388-v2-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
fizzarolli-llama-3-lust-8388-v2-mkmlizer: ║ /___/ ║
fizzarolli-llama-3-lust-8388-v2-mkmlizer: ║ ║
fizzarolli-llama-3-lust-8388-v2-mkmlizer: ║ Version: 0.6.11 ║
fizzarolli-llama-3-lust-8388-v2-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
fizzarolli-llama-3-lust-8388-v2-mkmlizer: ║ ║
fizzarolli-llama-3-lust-8388-v2-mkmlizer: ║ The license key for the current software has been verified as ║
fizzarolli-llama-3-lust-8388-v2-mkmlizer: ║ belonging to: ║
fizzarolli-llama-3-lust-8388-v2-mkmlizer: ║ ║
fizzarolli-llama-3-lust-8388-v2-mkmlizer: ║ Chai Research Corp. ║
fizzarolli-llama-3-lust-8388-v2-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
fizzarolli-llama-3-lust-8388-v2-mkmlizer: ║ Expiration: 2024-07-15 23:59:59 ║
fizzarolli-llama-3-lust-8388-v2-mkmlizer: ║ ║
fizzarolli-llama-3-lust-8388-v2-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
fizzarolli-llama-3-lust-8388-v2-mkmlizer: .gitattributes: 0%| | 0.00/1.52k [00:00<?, ?B/s] .gitattributes: 100%|██████████| 1.52k/1.52k [00:00<00:00, 13.0MB/s]
fizzarolli-llama-3-lust-8388-v2-mkmlizer: LICENSE: 0%| | 0.00/7.80k [00:00<?, ?B/s] LICENSE: 100%|██████████| 7.80k/7.80k [00:00<00:00, 70.5MB/s]
fizzarolli-llama-3-lust-8388-v2-mkmlizer: NOTICE: 0%| | 0.00/118 [00:00<?, ?B/s] NOTICE: 100%|██████████| 118/118 [00:00<00:00, 1.50MB/s]
fizzarolli-llama-3-lust-8388-v2-mkmlizer: config.json: 0%| | 0.00/689 [00:00<?, ?B/s] config.json: 100%|██████████| 689/689 [00:00<00:00, 8.55MB/s]
fizzarolli-llama-3-lust-8388-v2-mkmlizer: generation_config.json: 0%| | 0.00/121 [00:00<?, ?B/s] generation_config.json: 100%|██████████| 121/121 [00:00<00:00, 800kB/s]
fizzarolli-llama-3-lust-8388-v2-mkmlizer: log.txt: 0%| | 0.00/34.0 [00:00<?, ?B/s] log.txt: 100%|██████████| 34.0/34.0 [00:00<00:00, 271kB/s]
fizzarolli-llama-3-lust-8388-v2-mkmlizer: model-00001-of-00007.safetensors: 0%| | 0.00/4.89G [00:00<?, ?B/s] model-00001-of-00007.safetensors: 0%| | 10.5M/4.89G [00:00<02:24, 33.7MB/s] model-00001-of-00007.safetensors: 2%|▏ | 105M/4.89G [00:00<00:16, 289MB/s] model-00001-of-00007.safetensors: 4%|▍ | 199M/4.89G [00:00<00:10, 466MB/s] model-00001-of-00007.safetensors: 11%|█▏ | 556M/4.89G [00:00<00:03, 1.35GB/s] model-00001-of-00007.safetensors: 15%|█▌ | 734M/4.89G [00:01<00:05, 726MB/s] model-00001-of-00007.safetensors: 18%|█▊ | 870M/4.89G [00:01<00:05, 701MB/s] model-00001-of-00007.safetensors: 22%|██▏ | 1.06G/4.89G [00:01<00:04, 799MB/s] model-00001-of-00007.safetensors: 24%|██▍ | 1.17G/4.89G [00:02<00:08, 444MB/s] model-00001-of-00007.safetensors: 26%|██▌ | 1.26G/4.89G [00:02<00:07, 476MB/s] model-00001-of-00007.safetensors: 30%|██▉ | 1.46G/4.89G [00:02<00:05, 684MB/s] model-00001-of-00007.safetensors: 32%|███▏ | 1.57G/4.89G [00:02<00:04, 754MB/s] model-00001-of-00007.safetensors: 38%|███▊ | 1.87G/4.89G [00:02<00:02, 1.16GB/s] model-00001-of-00007.safetensors: 42%|████▏ | 2.03G/4.89G [00:02<00:02, 1.20GB/s] model-00001-of-00007.safetensors: 45%|████▌ | 2.21G/4.89G [00:02<00:02, 1.27GB/s] model-00001-of-00007.safetensors: 49%|████▊ | 2.38G/4.89G [00:02<00:01, 1.35GB/s] model-00001-of-00007.safetensors: 52%|█████▏ | 2.54G/4.89G [00:03<00:01, 1.27GB/s] model-00001-of-00007.safetensors: 55%|█████▍ | 2.68G/4.89G [00:03<00:02, 1.07GB/s] model-00001-of-00007.safetensors: 61%|██████ | 2.96G/4.89G [00:03<00:01, 1.42GB/s] model-00001-of-00007.safetensors: 68%|██████▊ | 3.34G/4.89G [00:03<00:00, 1.99GB/s] model-00001-of-00007.safetensors: 74%|███████▍ | 3.64G/4.89G [00:03<00:00, 2.21GB/s] model-00001-of-00007.safetensors: 80%|███████▉ | 3.89G/4.89G [00:03<00:00, 2.09GB/s] model-00001-of-00007.safetensors: 84%|████████▍ | 4.12G/4.89G [00:03<00:00, 1.79GB/s] model-00001-of-00007.safetensors: 88%|████████▊ | 4.32G/4.89G [00:04<00:00, 1.51GB/s] model-00001-of-00007.safetensors: 92%|█████████▏| 4.50G/4.89G [00:04<00:00, 1.22GB/s] model-00001-of-00007.safetensors: 95%|█████████▌| 4.65G/4.89G [00:04<00:00, 1.20GB/s] model-00001-of-00007.safetensors: 100%|█████████▉| 4.89G/4.89G [00:04<00:00, 1.06GB/s]
fizzarolli-llama-3-lust-8388-v2-mkmlizer: model-00002-of-00007.safetensors: 0%| | 0.00/4.83G [00:00<?, ?B/s] model-00002-of-00007.safetensors: 0%| | 10.5M/4.83G [00:00<00:59, 81.6MB/s] model-00002-of-00007.safetensors: 2%|▏ | 105M/4.83G [00:00<00:09, 522MB/s] model-00002-of-00007.safetensors: 5%|▌ | 252M/4.83G [00:00<00:05, 907MB/s] model-00002-of-00007.safetensors: 8%|▊ | 388M/4.83G [00:00<00:04, 1.07GB/s] model-00002-of-00007.safetensors: 13%|█▎ | 608M/4.83G [00:00<00:03, 1.39GB/s] model-00002-of-00007.safetensors: 16%|█▌ | 755M/4.83G [00:00<00:03, 1.17GB/s] model-00002-of-00007.safetensors: 22%|██▏ | 1.05G/4.83G [00:00<00:02, 1.54GB/s] model-00002-of-00007.safetensors: 25%|██▌ | 1.22G/4.83G [00:01<00:03, 1.12GB/s] model-00002-of-00007.safetensors: 28%|██▊ | 1.35G/4.83G [00:01<00:03, 1.04GB/s] model-00002-of-00007.safetensors: 31%|███ | 1.48G/4.83G [00:01<00:03, 951MB/s] model-00002-of-00007.safetensors: 34%|███▎ | 1.63G/4.83G [00:01<00:03, 1.05GB/s] model-00002-of-00007.safetensors: 36%|███▌ | 1.74G/4.83G [00:01<00:03, 996MB/s] model-00002-of-00007.safetensors: 39%|███▉ | 1.90G/4.83G [00:01<00:02, 1.09GB/s] model-00002-of-00007.safetensors: 44%|████▍ | 2.12G/4.83G [00:01<00:02, 1.34GB/s] model-00002-of-00007.safetensors: 47%|████▋ | 2.26G/4.83G [00:02<00:02, 1.08GB/s] model-00002-of-00007.safetensors: 49%|████▉ | 2.39G/4.83G [00:02<00:02, 1.09GB/s] model-00002-of-00007.safetensors: 54%|█████▍ | 2.60G/4.83G [00:02<00:01, 1.32GB/s] model-00002-of-00007.safetensors: 57%|█████▋ | 2.75G/4.83G [00:02<00:01, 1.25GB/s] model-00002-of-00007.safetensors: 62%|██████▏ | 2.99G/4.83G [00:02<00:01, 1.51GB/s] model-00002-of-00007.safetensors: 65%|██████▌ | 3.16G/4.83G [00:02<00:01, 1.47GB/s] model-00002-of-00007.safetensors: 71%|███████ | 3.41G/4.83G [00:02<00:00, 1.72GB/s] model-00002-of-00007.safetensors: 74%|███████▍ | 3.60G/4.83G [00:02<00:00, 1.58GB/s] model-00002-of-00007.safetensors: 79%|███████▉ | 3.83G/4.83G [00:03<00:00, 1.75GB/s] model-00002-of-00007.safetensors: 86%|████████▌ | 4.13G/4.83G [00:03<00:00, 2.09GB/s] model-00002-of-00007.safetensors: 92%|█████████▏| 4.44G/4.83G [00:03<00:00, 2.32GB/s] model-00002-of-00007.safetensors: 97%|█████████▋| 4.69G/4.83G [00:03<00:00, 1.05GB/s] model-00002-of-00007.safetensors: 100%|█████████▉| 4.83G/4.83G [00:05<00:00, 960MB/s]
fizzarolli-llama-3-lust-8388-v2-mkmlizer: model-00003-of-00007.safetensors: 0%| | 0.00/5.00G [00:00<?, ?B/s] model-00003-of-00007.safetensors: 0%| | 10.5M/5.00G [00:00<01:21, 61.3MB/s] model-00003-of-00007.safetensors: 2%|▏ | 115M/5.00G [00:00<00:09, 502MB/s] model-00003-of-00007.safetensors: 6%|▌ | 283M/5.00G [00:00<00:04, 944MB/s] model-00003-of-00007.safetensors: 9%|▉ | 440M/5.00G [00:00<00:03, 1.16GB/s] model-00003-of-00007.safetensors: 15%|█▌ | 765M/5.00G [00:00<00:02, 1.82GB/s] model-00003-of-00007.safetensors: 19%|█▉ | 965M/5.00G [00:00<00:02, 1.47GB/s] model-00003-of-00007.safetensors: 23%|██▎ | 1.16G/5.00G [00:00<00:02, 1.60GB/s] model-00003-of-00007.safetensors: 27%|██▋ | 1.34G/5.00G [00:01<00:02, 1.42GB/s] model-00003-of-00007.safetensors: 30%|██▉ | 1.50G/5.00G [00:01<00:02, 1.30GB/s] model-00003-of-00007.safetensors: 33%|███▎ | 1.67G/5.00G [00:01<00:02, 1.37GB/s] model-00003-of-00007.safetensors: 36%|███▋ | 1.81G/5.00G [00:01<00:02, 1.21GB/s] model-00003-of-00007.safetensors: 40%|███▉ | 1.98G/5.00G [00:01<00:02, 1.31GB/s] model-00003-of-00007.safetensors: 43%|████▎ | 2.13G/5.00G [00:01<00:02, 1.06GB/s] model-00003-of-00007.safetensors: 45%|████▌ | 2.25G/5.00G [00:01<00:02, 1.07GB/s] model-00003-of-00007.safetensors: 48%|████▊ | 2.42G/5.00G [00:01<00:02, 1.20GB/s] model-00003-of-00007.safetensors: 51%|█████▏ | 2.57G/5.00G [00:02<00:01, 1.24GB/s] model-00003-of-00007.safetensors: 54%|█████▍ | 2.71G/5.00G [00:02<00:02, 1.10GB/s] model-00003-of-00007.safetensors: 57%|█████▋ | 2.85G/5.00G [00:02<00:01, 1.18GB/s] model-00003-of-00007.safetensors: 61%|██████ | 3.03G/5.00G [00:02<00:01, 1.30GB/s] model-00003-of-00007.safetensors: 65%|██████▍ | 3.23G/5.00G [00:02<00:01, 1.47GB/s] model-00003-of-00007.safetensors: 68%|██████▊ | 3.41G/5.00G [00:02<00:01, 1.53GB/s] model-00003-of-00007.safetensors: 72%|███████▏ | 3.59G/5.00G [00:02<00:00, 1.54GB/s] model-00003-of-00007.safetensors: 76%|███████▋ | 3.82G/5.00G [00:02<00:00, 1.74GB/s] model-00003-of-00007.safetensors: 82%|████████▏ | 4.11G/5.00G [00:02<00:00, 2.07GB/s] model-00003-of-00007.safetensors: 87%|████████▋ | 4.36G/5.00G [00:03<00:00, 2.18GB/s] model-00003-of-00007.safetensors: 92%|█████████▏| 4.59G/5.00G [00:03<00:00, 1.90GB/s] model-00003-of-00007.safetensors: 96%|█████████▌| 4.79G/5.00G [00:03<00:00, 916MB/s] model-00003-of-00007.safetensors: 100%|█████████▉| 5.00G/5.00G [00:03<00:00, 1.28GB/s]
fizzarolli-llama-3-lust-8388-v2-mkmlizer: model-00004-of-00007.safetensors: 0%| | 0.00/5.00G [00:00<?, ?B/s] model-00004-of-00007.safetensors: 0%| | 10.5M/5.00G [00:00<02:19, 35.9MB/s] model-00004-of-00007.safetensors: 5%|▌ | 273M/5.00G [00:00<00:05, 875MB/s] model-00004-of-00007.safetensors: 12%|█▏ | 619M/5.00G [00:00<00:02, 1.68GB/s] model-00004-of-00007.safetensors: 17%|█▋ | 860M/5.00G [00:00<00:02, 1.58GB/s] model-00004-of-00007.safetensors: 21%|██▏ | 1.07G/5.00G [00:00<00:03, 1.10GB/s] model-00004-of-00007.safetensors: 25%|██▍ | 1.23G/5.00G [00:01<00:03, 1.10GB/s] model-00004-of-00007.safetensors: 27%|██▋ | 1.37G/5.00G [00:01<00:04, 839MB/s] model-00004-of-00007.safetensors: 30%|██▉ | 1.49G/5.00G [00:01<00:03, 878MB/s] model-00004-of-00007.safetensors: 32%|███▏ | 1.60G/5.00G [00:01<00:04, 834MB/s] model-00004-of-00007.safetensors: 34%|███▍ | 1.71G/5.00G [00:01<00:04, 814MB/s] model-00004-of-00007.safetensors: 37%|███▋ | 1.85G/5.00G [00:01<00:03, 888MB/s] model-00004-of-00007.safetensors: 39%|███▉ | 1.95G/5.00G [00:02<00:03, 858MB/s] model-00004-of-00007.safetensors: 41%|████ | 2.06G/5.00G [00:02<00:03, 898MB/s] model-00004-of-00007.safetensors: 44%|████▍ | 2.21G/5.00G [00:02<00:02, 1.06GB/s] model-00004-of-00007.safetensors: 47%|████▋ | 2.33G/5.00G [00:02<00:02, 1.04GB/s] model-00004-of-00007.safetensors: 49%|████▉ | 2.45G/5.00G [00:02<00:02, 1.06GB/s] model-00004-of-00007.safetensors: 52%|█████▏ | 2.60G/5.00G [00:02<00:02, 1.15GB/s] model-00004-of-00007.safetensors: 55%|█████▍ | 2.73G/5.00G [00:02<00:02, 1.08GB/s] model-00004-of-00007.safetensors: 57%|█████▋ | 2.84G/5.00G [00:02<00:02, 1.02GB/s] model-00004-of-00007.safetensors: 59%|█████▉ | 2.95G/5.00G [00:02<00:02, 992MB/s] model-00004-of-00007.safetensors: 62%|██████▏ | 3.10G/5.00G [00:03<00:01, 1.11GB/s] model-00004-of-00007.safetensors: 64%|██████▍ | 3.22G/5.00G [00:03<00:01, 1.04GB/s] model-00004-of-00007.safetensors: 67%|██████▋ | 3.33G/5.00G [00:03<00:01, 1.05GB/s] model-00004-of-00007.safetensors: 71%|███████ | 3.55G/5.00G [00:03<00:01, 1.36GB/s] model-00004-of-00007.safetensors: 77%|███████▋ | 3.85G/5.00G [00:03<00:00, 1.78GB/s] model-00004-of-00007.safetensors: 83%|████████▎ | 4.14G/5.00G [00:03<00:00, 2.05GB/s] model-00004-of-00007.safetensors: 88%|████████▊ | 4.39G/5.00G [00:03<00:00, 2.17GB/s] model-00004-of-00007.safetensors: 92%|█████████▏| 4.62G/5.00G [00:04<00:00, 1.20GB/s] model-00004-of-00007.safetensors: 96%|█████████▌| 4.80G/5.00G [00:04<00:00, 857MB/s] model-00004-of-00007.safetensors: 99%|█████████▊| 4.94G/5.00G [00:04<00:00, 895MB/s] model-00004-of-00007.safetensors: 100%|█████████▉| 5.00G/5.00G [00:04<00:00, 1.06GB/s]
fizzarolli-llama-3-lust-8388-v2-mkmlizer: model-00005-of-00007.safetensors: 0%| | 0.00/4.83G [00:00<?, ?B/s] model-00005-of-00007.safetensors: 0%| | 10.5M/4.83G [00:00<01:12, 66.8MB/s] model-00005-of-00007.safetensors: 2%|▏ | 73.4M/4.83G [00:00<00:15, 300MB/s] model-00005-of-00007.safetensors: 3%|▎ | 136M/4.83G [00:00<00:11, 424MB/s] model-00005-of-00007.safetensors: 7%|▋ | 315M/4.83G [00:00<00:05, 899MB/s] model-00005-of-00007.safetensors: 13%|█▎ | 650M/4.83G [00:00<00:02, 1.72GB/s] model-00005-of-00007.safetensors: 18%|█▊ | 881M/4.83G [00:00<00:02, 1.76GB/s] model-00005-of-00007.safetensors: 22%|██▏ | 1.07G/4.83G [00:00<00:02, 1.52GB/s] model-00005-of-00007.safetensors: 30%|██▉ | 1.44G/4.83G [00:00<00:01, 2.06GB/s] model-00005-of-00007.safetensors: 36%|███▌ | 1.72G/4.83G [00:01<00:01, 2.25GB/s] model-00005-of-00007.safetensors: 41%|████ | 1.98G/4.83G [00:01<00:01, 2.35GB/s] model-00005-of-00007.safetensors: 46%|████▌ | 2.23G/4.83G [00:01<00:02, 954MB/s] model-00005-of-00007.safetensors: 50%|█████ | 2.42G/4.83G [00:02<00:02, 845MB/s] model-00005-of-00007.safetensors: 53%|█████▎ | 2.57G/4.83G [00:02<00:02, 870MB/s] model-00005-of-00007.safetensors: 56%|█████▌ | 2.71G/4.83G [00:02<00:02, 827MB/s] model-00005-of-00007.safetensors: 58%|█████▊ | 2.82G/4.83G [00:02<00:02, 839MB/s] model-00005-of-00007.safetensors: 61%|██████ | 2.94G/4.83G [00:02<00:02, 812MB/s] model-00005-of-00007.safetensors: 63%|██████▎ | 3.04G/4.83G [00:02<00:02, 807MB/s] model-00005-of-00007.safetensors: 66%|██████▌ | 3.20G/4.83G [00:02<00:01, 958MB/s] model-00005-of-00007.safetensors: 69%|██████▊ | 3.31G/4.83G [00:03<00:01, 974MB/s] model-00005-of-00007.safetensors: 71%|███████ | 3.43G/4.83G [00:03<00:01, 997MB/s] model-00005-of-00007.safetensors: 74%|███████▎ | 3.55G/4.83G [00:03<00:01, 1.06GB/s] model-00005-of-00007.safetensors: 76%|███████▌ | 3.67G/4.83G [00:03<00:01, 1.04GB/s] model-00005-of-00007.safetensors: 79%|███████▉ | 3.81G/4.83G [00:03<00:00, 1.10GB/s] model-00005-of-00007.safetensors: 81%|████████▏ | 3.93G/4.83G [00:03<00:00, 1.12GB/s] model-00005-of-00007.safetensors: 84%|████████▍ | 4.07G/4.83G [00:03<00:00, 1.19GB/s] model-00005-of-00007.safetensors: 87%|████████▋ | 4.19G/4.83G [00:03<00:00, 1.17GB/s] model-00005-of-00007.safetensors: 91%|█████████▏| 4.41G/4.83G [00:03<00:00, 1.40GB/s] model-00005-of-00007.safetensors: 95%|█████████▌| 4.61G/4.83G [00:04<00:00, 1.45GB/s] model-00005-of-00007.safetensors: 98%|█████████▊| 4.76G/4.83G [00:04<00:00, 939MB/s] model-00005-of-00007.safetensors: 100%|█████████▉| 4.83G/4.83G [00:04<00:00, 1.08GB/s]
fizzarolli-llama-3-lust-8388-v2-mkmlizer: model-00006-of-00007.safetensors: 0%| | 0.00/5.00G [00:00<?, ?B/s] model-00006-of-00007.safetensors: 0%| | 10.5M/5.00G [00:00<02:03, 40.3MB/s] model-00006-of-00007.safetensors: 4%|▍ | 210M/5.00G [00:00<00:06, 721MB/s] model-00006-of-00007.safetensors: 11%|█▏ | 566M/5.00G [00:00<00:02, 1.66GB/s] model-00006-of-00007.safetensors: 16%|█▌ | 797M/5.00G [00:00<00:02, 1.75GB/s] model-00006-of-00007.safetensors: 21%|██ | 1.04G/5.00G [00:00<00:02, 1.93GB/s] model-00006-of-00007.safetensors: 25%|██▌ | 1.26G/5.00G [00:00<00:02, 1.61GB/s] model-00006-of-00007.safetensors: 30%|██▉ | 1.48G/5.00G [00:00<00:02, 1.69GB/s] model-00006-of-00007.safetensors: 33%|███▎ | 1.67G/5.00G [00:01<00:02, 1.45GB/s] model-00006-of-00007.safetensors: 37%|███▋ | 1.84G/5.00G [00:01<00:02, 1.33GB/s] model-00006-of-00007.safetensors: 40%|████ | 2.01G/5.00G [00:01<00:02, 1.41GB/s] model-00006-of-00007.safetensors: 43%|████▎ | 2.17G/5.00G [00:01<00:02, 1.22GB/s] model-00006-of-00007.safetensors: 46%|████▌ | 2.31G/5.00G [00:01<00:02, 1.12GB/s] model-00006-of-00007.safetensors: 49%|████▊ | 2.43G/5.00G [00:01<00:02, 1.05GB/s] model-00006-of-00007.safetensors: 54%|█████▎ | 2.68G/5.00G [00:02<00:01, 1.38GB/s] model-00006-of-00007.safetensors: 57%|█████▋ | 2.84G/5.00G [00:02<00:01, 1.37GB/s] model-00006-of-00007.safetensors: 60%|█████▉ | 2.99G/5.00G [00:02<00:01, 1.30GB/s] model-00006-of-00007.safetensors: 63%|██████▎ | 3.14G/5.00G [00:02<00:01, 1.21GB/s] model-00006-of-00007.safetensors: 66%|██████▌ | 3.30G/5.00G [00:02<00:01, 1.30GB/s] model-00006-of-00007.safetensors: 69%|██████▉ | 3.44G/5.00G [00:02<00:01, 1.18GB/s] model-00006-of-00007.safetensors: 74%|███████▍ | 3.72G/5.00G [00:02<00:00, 1.58GB/s] model-00006-of-00007.safetensors: 78%|███████▊ | 3.91G/5.00G [00:02<00:00, 1.58GB/s] model-00006-of-00007.safetensors: 82%|████████▏ | 4.08G/5.00G [00:02<00:00, 1.54GB/s] model-00006-of-00007.safetensors: 87%|████████▋ | 4.36G/5.00G [00:03<00:00, 1.88GB/s] model-00006-of-00007.safetensors: 95%|█████████▍| 4.74G/5.00G [00:03<00:00, 2.37GB/s] model-00006-of-00007.safetensors: 100%|█████████▉| 4.99G/5.00G [00:03<00:00, 1.37GB/s] model-00006-of-00007.safetensors: 100%|█████████▉| 5.00G/5.00G [00:03<00:00, 1.39GB/s]
fizzarolli-llama-3-lust-8388-v2-mkmlizer: model-00007-of-00007.safetensors: 0%| | 0.00/2.57G [00:00<?, ?B/s] model-00007-of-00007.safetensors: 0%| | 10.5M/2.57G [00:00<01:03, 40.3MB/s] model-00007-of-00007.safetensors: 11%|█▏ | 294M/2.57G [00:00<00:02, 1.02GB/s] model-00007-of-00007.safetensors: 29%|██▊ | 734M/2.57G [00:00<00:00, 2.14GB/s] model-00007-of-00007.safetensors: 40%|███▉ | 1.03G/2.57G [00:00<00:00, 1.68GB/s] model-00007-of-00007.safetensors: 49%|████▉ | 1.26G/2.57G [00:00<00:00, 1.77GB/s] model-00007-of-00007.safetensors: 58%|█████▊ | 1.48G/2.57G [00:01<00:00, 1.42GB/s] model-00007-of-00007.safetensors: 64%|██████▍ | 1.66G/2.57G [00:01<00:00, 1.37GB/s] model-00007-of-00007.safetensors: 73%|███████▎ | 1.87G/2.57G [00:01<00:00, 1.47GB/s] model-00007-of-00007.safetensors: 79%|███████▉ | 2.04G/2.57G [00:02<00:01, 415MB/s] model-00007-of-00007.safetensors: 85%|████████▍ | 2.18G/2.57G [00:02<00:00, 500MB/s] model-00007-of-00007.safetensors: 90%|████████▉ | 2.31G/2.57G [00:02<00:00, 572MB/s] model-00007-of-00007.safetensors: 99%|█████████▉| 2.55G/2.57G [00:02<00:00, 809MB/s] model-00007-of-00007.safetensors: 100%|█████████▉| 2.57G/2.57G [00:02<00:00, 881MB/s]
fizzarolli-llama-3-lust-8388-v2-mkmlizer: model.safetensors.index.json: 0%| | 0.00/23.9k [00:00<?, ?B/s] model.safetensors.index.json: 100%|██████████| 23.9k/23.9k [00:00<00:00, 136MB/s]
fizzarolli-llama-3-lust-8388-v2-mkmlizer: special_tokens_map.json: 0%| | 0.00/73.0 [00:00<?, ?B/s] special_tokens_map.json: 100%|██████████| 73.0/73.0 [00:00<00:00, 1.16MB/s]
fizzarolli-llama-3-lust-8388-v2-mkmlizer: tokenizer.json: 0%| | 0.00/9.08M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 9.08M/9.08M [00:00<00:00, 23.5MB/s] tokenizer.json: 100%|██████████| 9.08M/9.08M [00:00<00:00, 23.3MB/s]
fizzarolli-llama-3-lust-8388-v2-mkmlizer: tokenizer_config.json: 0%| | 0.00/50.9k [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 50.9k/50.9k [00:00<00:00, 295MB/s]
fizzarolli-llama-3-lust-8388-v2-mkmlizer: Downloaded to shared memory in 33.587s
fizzarolli-llama-3-lust-8388-v2-mkmlizer: quantizing model to /dev/shm/model_cache
fizzarolli-llama-3-lust-8388-v2-mkmlizer: Saving mkml model at /dev/shm/model_cache
fizzarolli-llama-3-lust-8388-v2-mkmlizer: Reading /tmp/tmpnv9n0s1f/model.safetensors.index.json
fizzarolli-llama-3-lust-8388-v2-mkmlizer: Profiling: 0%| | 0/291 [00:00<?, ?it/s] Profiling: 0%| | 1/291 [00:04<23:44, 4.91s/it] Profiling: 2%|▏ | 5/291 [00:05<03:36, 1.32it/s] Profiling: 4%|▍ | 13/291 [00:05<01:04, 4.34it/s] Profiling: 7%|▋ | 21/291 [00:05<00:32, 8.21it/s] Profiling: 9%|▉ | 27/291 [00:05<00:22, 11.64it/s] Profiling: 11%|█▏ | 33/291 [00:05<00:19, 13.05it/s] Profiling: 13%|█▎ | 38/291 [00:05<00:15, 16.05it/s] Profiling: 14%|█▍ | 42/291 [00:05<00:13, 18.40it/s] Profiling: 17%|█▋ | 49/291 [00:06<00:09, 25.41it/s] Profiling: 20%|█▉ | 58/291 [00:06<00:06, 34.05it/s] Profiling: 23%|██▎ | 67/291 [00:06<00:05, 41.57it/s] Profiling: 25%|██▌ | 74/291 [00:06<00:04, 46.64it/s] Profiling: 27%|██▋ | 80/291 [00:06<00:06, 35.10it/s] Profiling: 29%|██▉ | 85/291 [00:06<00:05, 35.99it/s] Profiling: 31%|███▏ | 91/291 [00:06<00:04, 40.15it/s] Profiling: 34%|███▍ | 99/291 [00:07<00:04, 47.42it/s] Profiling: 36%|███▋ | 106/291 [00:07<00:03, 52.41it/s] Profiling: 38%|███▊ | 112/291 [00:07<00:03, 52.68it/s] Profiling: 42%|████▏ | 122/291 [00:07<00:02, 58.35it/s] Profiling: 44%|████▍ | 129/291 [00:07<00:02, 56.28it/s] Profiling: 46%|████▋ | 135/291 [00:07<00:04, 36.33it/s] Profiling: 48%|████▊ | 140/291 [00:08<00:03, 37.77it/s] Profiling: 51%|█████ | 148/291 [00:08<00:03, 45.94it/s] Profiling: 54%|█████▍ | 157/291 [00:08<00:02, 51.55it/s] Profiling: 57%|█████▋ | 165/291 [00:08<00:02, 57.91it/s] Profiling: 59%|█████▉ | 172/291 [00:08<00:01, 60.33it/s] Profiling: 62%|██████▏ | 179/291 [00:08<00:01, 57.64it/s] Profiling: 64%|██████▍ | 186/291 [00:08<00:02, 42.16it/s] Profiling: 66%|██████▌ | 192/291 [00:09<00:02, 39.81it/s] Profiling: 68%|██████▊ | 197/291 [00:09<00:02, 41.62it/s] Profiling: 69%|██████▉ | 202/291 [00:09<00:02, 43.39it/s] Profiling: 72%|███████▏ | 210/291 [00:09<00:01, 50.65it/s] Profiling: 74%|███████▍ | 216/291 [00:09<00:01, 52.23it/s] Profiling: 76%|███████▋ | 222/291 [00:09<00:01, 51.11it/s] Profiling: 79%|███████▊ | 229/291 [00:09<00:01, 55.55it/s] Profiling: 81%|████████ | 235/291 [00:09<00:01, 37.77it/s] Profiling: 82%|████████▏ | 240/291 [00:10<00:01, 38.40it/s] Profiling: 85%|████████▌ | 248/291 [00:10<00:00, 43.76it/s] Profiling: 88%|████████▊ | 257/291 [00:10<00:00, 49.97it/s] Profiling: 91%|█████████ | 265/291 [00:10<00:00, 56.70it/s] Profiling: 94%|█████████▍| 274/291 [00:10<00:00, 60.00it/s] Profiling: 97%|█████████▋| 281/291 [00:10<00:00, 61.83it/s] Profiling: 99%|█████████▉| 288/291 [00:16<00:00, 4.32it/s] Profiling: 100%|██████████| 291/291 [00:16<00:00, 17.75it/s]
fizzarolli-llama-3-lust-8388-v2-mkmlizer: Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
fizzarolli-llama-3-lust-8388-v2-mkmlizer: quantized model in 29.042s
fizzarolli-llama-3-lust-8388-v2-mkmlizer: Processed model Fizzarolli/llama-3-lust-8b-v0.1 in 64.734s
fizzarolli-llama-3-lust-8388-v2-mkmlizer: creating bucket guanaco-mkml-models
fizzarolli-llama-3-lust-8388-v2-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
fizzarolli-llama-3-lust-8388-v2-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/fizzarolli-llama-3-lust-8388-v2
fizzarolli-llama-3-lust-8388-v2-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/fizzarolli-llama-3-lust-8388-v2/config.json
fizzarolli-llama-3-lust-8388-v2-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/fizzarolli-llama-3-lust-8388-v2/tokenizer_config.json
fizzarolli-llama-3-lust-8388-v2-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/fizzarolli-llama-3-lust-8388-v2/special_tokens_map.json
fizzarolli-llama-3-lust-8388-v2-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/fizzarolli-llama-3-lust-8388-v2/tokenizer.json
fizzarolli-llama-3-lust-8388-v2-mkmlizer: cp /dev/shm/model_cache/mkml_model.tensors s3://guanaco-mkml-models/fizzarolli-llama-3-lust-8388-v2/mkml_model.tensors
fizzarolli-llama-3-lust-8388-v2-mkmlizer: loading reward model from ChaiML/reward_gpt2_medium_preference_24m_e2
fizzarolli-llama-3-lust-8388-v2-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:1067: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
fizzarolli-llama-3-lust-8388-v2-mkmlizer: warnings.warn(
fizzarolli-llama-3-lust-8388-v2-mkmlizer: config.json: 0%| | 0.00/1.05k [00:00<?, ?B/s] config.json: 100%|██████████| 1.05k/1.05k [00:00<00:00, 8.56MB/s]
fizzarolli-llama-3-lust-8388-v2-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:690: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
fizzarolli-llama-3-lust-8388-v2-mkmlizer: warnings.warn(
fizzarolli-llama-3-lust-8388-v2-mkmlizer: tokenizer_config.json: 0%| | 0.00/234 [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 234/234 [00:00<00:00, 2.77MB/s]
fizzarolli-llama-3-lust-8388-v2-mkmlizer: vocab.json: 0%| | 0.00/1.04M [00:00<?, ?B/s] vocab.json: 100%|██████████| 1.04M/1.04M [00:00<00:00, 2.06MB/s] vocab.json: 100%|██████████| 1.04M/1.04M [00:00<00:00, 2.05MB/s]
fizzarolli-llama-3-lust-8388-v2-mkmlizer: tokenizer.json: 0%| | 0.00/2.11M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 2.11M/2.11M [00:00<00:00, 17.4MB/s] tokenizer.json: 100%|██████████| 2.11M/2.11M [00:00<00:00, 17.2MB/s]
fizzarolli-llama-3-lust-8388-v2-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:472: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
fizzarolli-llama-3-lust-8388-v2-mkmlizer: warnings.warn(
fizzarolli-llama-3-lust-8388-v2-mkmlizer: pytorch_model.bin: 0%| | 0.00/1.44G [00:00<?, ?B/s] pytorch_model.bin: 1%|▏ | 21.0M/1.44G [00:00<00:08, 166MB/s] pytorch_model.bin: 3%|▎ | 41.9M/1.44G [00:00<00:09, 151MB/s] pytorch_model.bin: 10%|█ | 147M/1.44G [00:00<00:02, 477MB/s] pytorch_model.bin: 15%|█▌ | 220M/1.44G [00:00<00:02, 562MB/s] pytorch_model.bin: 21%|██ | 304M/1.44G [00:00<00:01, 626MB/s] pytorch_model.bin: 26%|██▌ | 377M/1.44G [00:01<00:03, 270MB/s] pytorch_model.bin: 34%|███▍ | 493M/1.44G [00:01<00:02, 402MB/s] pytorch_model.bin: 62%|██████▏ | 891M/1.44G [00:01<00:00, 1.03GB/s] pytorch_model.bin: 100%|█████████▉| 1.44G/1.44G [00:05<00:00, 282MB/s]
fizzarolli-llama-3-lust-8388-v2-mkmlizer: creating bucket guanaco-reward-models
fizzarolli-llama-3-lust-8388-v2-mkmlizer: Bucket 's3://guanaco-reward-models/' created
fizzarolli-llama-3-lust-8388-v2-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/fizzarolli-llama-3-lust-8388-v2_reward
fizzarolli-llama-3-lust-8388-v2-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/fizzarolli-llama-3-lust-8388-v2_reward/special_tokens_map.json
fizzarolli-llama-3-lust-8388-v2-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/fizzarolli-llama-3-lust-8388-v2_reward/config.json
fizzarolli-llama-3-lust-8388-v2-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/fizzarolli-llama-3-lust-8388-v2_reward/merges.txt
fizzarolli-llama-3-lust-8388-v2-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/fizzarolli-llama-3-lust-8388-v2_reward/tokenizer_config.json
fizzarolli-llama-3-lust-8388-v2-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/fizzarolli-llama-3-lust-8388-v2_reward/vocab.json
fizzarolli-llama-3-lust-8388-v2-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/fizzarolli-llama-3-lust-8388-v2_reward/tokenizer.json
fizzarolli-llama-3-lust-8388-v2-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/fizzarolli-llama-3-lust-8388-v2_reward/reward.tensors
Job fizzarolli-llama-3-lust-8388-v2-mkmlizer completed after 95.87s with status: succeeded
Stopping job with name fizzarolli-llama-3-lust-8388-v2-mkmlizer
Pipeline stage MKMLizer completed in 99.78s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.13s
Running pipeline stage ISVCDeployer
Creating inference service fizzarolli-llama-3-lust-8388-v2
Waiting for inference service fizzarolli-llama-3-lust-8388-v2 to be ready
Inference service fizzarolli-llama-3-lust-8388-v2 ready after 40.286892890930176s
Pipeline stage ISVCDeployer completed in 47.70s
Running pipeline stage StressChecker
Received healthy response to inference request in 1.405282735824585s
Received healthy response to inference request in 1.0024380683898926s
Received healthy response to inference request in 0.814502477645874s
Received healthy response to inference request in 0.8043124675750732s
Received healthy response to inference request in 1.0278306007385254s
5 requests
0 failed requests
5th percentile: 0.8063504695892334
10th percentile: 0.8083884716033936
20th percentile: 0.8124644756317139
30th percentile: 0.8520895957946777
40th percentile: 0.9272638320922851
50th percentile: 1.0024380683898926
60th percentile: 1.0125950813293456
70th percentile: 1.0227520942687989
80th percentile: 1.1033210277557375
90th percentile: 1.2543018817901612
95th percentile: 1.3297923088073729
99th percentile: 1.3901846504211426
mean time: 1.01087327003479
Pipeline stage StressChecker completed in 6.13s
Running pipeline stage DaemonicModelEvalScorer
Pipeline stage DaemonicModelEvalScorer completed in 0.07s
Running pipeline stage DaemonicSafetyScorer
Running M-Eval for topic stay_in_character
Pipeline stage DaemonicSafetyScorer completed in 0.05s
M-Eval Dataset for topic stay_in_character is loaded
fizzarolli-llama-3-lust-_8388_v2 status is now deployed due to DeploymentManager action
fizzarolli-llama-3-lust-_8388_v2 status is now rejected due to its M-Eval score being less than the acceptable minimum 6.5 to serve to users. Please consider iterating on your model's ability to adhere to prompts to improve this score.