submission_id: mistralai-mixtral-8x7b-i_3473_v9
developer_uid: robert_irvine
status: inactive
model_repo: mistralai/Mixtral-8x7B-Instruct-v0.1
reward_repo: rirv938/reward_gpt2_medium_preference_24m_e2
generation_params: {'temperature': 1.0, 'top_p': 1.0, 'top_k': 50, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['</s>', '<|user|>', '###', '\n'], 'max_input_tokens': 512, 'best_of': 4, 'max_output_tokens': 64}
formatter: {'memory_template': '<s>[INST] This is an entertaining conversation. You are {bot_name} who has the persona: {memory}.\nPlay the role of {bot_name}. Engage in a chat with {user_name} while staying in character. You should create a fun dialogue which entertains {user_name}.\n', 'prompt_template': '{prompt}\n', 'bot_template': '{bot_name}: {message}</s>', 'user_template': '[INST] {user_name}: {message} [/INST]', 'response_template': '{bot_name}:'}
reward_formatter: {'memory_template': 'Memory: {memory}\n', 'prompt_template': '{prompt}\n', 'bot_template': 'Bot: {message}\n', 'user_template': 'User: {message}\n', 'response_template': 'Bot:'}
timestamp: 2024-03-19T17:57:25+00:00
model_name: mistralai-mixtral-8x7b-i_3473_v9
model_eval_status: pending
safety_score: None
entertaining: None
stay_in_character: None
user_preference: None
double_thumbs_up: 1225
thumbs_up: 1873
thumbs_down: 754
num_battles: 112376
num_wins: 59255
win_ratio: 0.5272923044066349
celo_rating: 1177.02
Resubmit model
Running pipeline stage MKMLizer
Starting job with name mistralai-mixtral-8x7b-i-3473-v9-mkmlizer
Waiting for job on mistralai-mixtral-8x7b-i-3473-v9-mkmlizer to finish
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: ║ _____ __ __ ║
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: ║ /___/ ║
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: ║ ║
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: ║ Version: 0.8.6 ║
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: ║ ║
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: ║ The license key for the current software has been verified as ║
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: ║ belonging to: ║
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: ║ ║
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: ║ Chai Research Corp. ║
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: ║ Expiration: 2024-04-15 23:59:59 ║
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: ║ ║
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: /opt/conda/lib/python3.10/site-packages/huggingface_hub/utils/_deprecation.py:131: FutureWarning: 'list_files_info' (from 'huggingface_hub.hf_api') is deprecated and will be removed from version '0.23'. Use `list_repo_tree` and `get_paths_info` instead.
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: warnings.warn(warning_message, FutureWarning)
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: Downloaded to shared memory in 97.608s
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: quantizing model to /dev/shm/model_cache
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: Saving flywheel model at /dev/shm/model_cache
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: quantized model in 60.197s
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: Processed model mistralai/Mixtral-8x7B-Instruct-v0.1 in 163.936s
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: creating bucket guanaco-mkml-models
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/mistralai-mixtral-8x7b-i-3473-v9
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/mistralai-mixtral-8x7b-i-3473-v9/config.json
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/mistralai-mixtral-8x7b-i-3473-v9/special_tokens_map.json
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/mistralai-mixtral-8x7b-i-3473-v9/tokenizer_config.json
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: cp /dev/shm/model_cache/tokenizer.model s3://guanaco-mkml-models/mistralai-mixtral-8x7b-i-3473-v9/tokenizer.model
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/mistralai-mixtral-8x7b-i-3473-v9/tokenizer.json
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: cp /dev/shm/model_cache/flywheel_model.3.safetensors s3://guanaco-mkml-models/mistralai-mixtral-8x7b-i-3473-v9/flywheel_model.3.safetensors
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: cp /dev/shm/model_cache/flywheel_model.1.safetensors s3://guanaco-mkml-models/mistralai-mixtral-8x7b-i-3473-v9/flywheel_model.1.safetensors
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: cp /dev/shm/model_cache/flywheel_model.2.safetensors s3://guanaco-mkml-models/mistralai-mixtral-8x7b-i-3473-v9/flywheel_model.2.safetensors
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/mistralai-mixtral-8x7b-i-3473-v9/flywheel_model.0.safetensors
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: loading reward model from rirv938/reward_gpt2_medium_preference_24m_e2
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: Loading 0: 0%| | 0/995 [00:00<?, ?it/s] Loading 0: 1%| | 7/995 [00:00<00:14, 67.07it/s] Loading 0: 1%|▏ | 14/995 [00:00<00:15, 61.40it/s] Loading 0: 2%|▏ | 21/995 [00:00<00:15, 61.04it/s] Loading 0: 3%|▎ | 34/995 [00:00<00:11, 82.32it/s] Loading 0: 4%|▍ | 43/995 [00:00<00:12, 73.63it/s] Loading 0: 5%|▌ | 52/995 [00:01<00:23, 39.84it/s] Loading 0: 6%|▌ | 59/995 [00:01<00:21, 43.98it/s] Loading 0: 7%|▋ | 67/995 [00:01<00:18, 50.79it/s] Loading 0: 7%|▋ | 74/995 [00:01<00:17, 53.13it/s] Loading 0: 8%|▊ | 81/995 [00:01<00:16, 55.19it/s] Loading 0: 9%|▉ | 92/995 [00:01<00:13, 67.76it/s] Loading 0: 10%|█ | 100/995 [00:01<00:12, 70.57it/s] Loading 0: 11%|█ | 108/995 [00:02<00:22, 39.31it/s] Loading 0: 12%|█▏ | 115/995 [00:02<00:20, 43.54it/s] Loading 0: 12%|█▏ | 122/995 [00:02<00:18, 47.32it/s] Loading 0: 13%|█▎ | 131/995 [00:02<00:15, 54.60it/s] Loading 0: 14%|█▍ | 138/995 [00:02<00:15, 56.62it/s] Loading 0: 15%|█▍ | 145/995 [00:02<00:14, 58.43it/s] Loading 0: 16%|█▋ | 162/995 [00:03<00:18, 45.59it/s] Loading 0: 17%|█▋ | 169/995 [00:03<00:16, 48.97it/s] Loading 0: 18%|█▊ | 176/995 [00:03<00:15, 52.27it/s] Loading 0: 18%|█▊ | 183/995 [00:03<00:14, 55.08it/s] Loading 0: 19%|█▉ | 192/995 [00:03<00:12, 62.07it/s] Loading 0: 20%|██ | 199/995 [00:03<00:12, 63.17it/s] Loading 0: 21%|██ | 210/995 [00:04<00:19, 40.23it/s] Loading 0: 22%|██▏ | 219/995 [00:04<00:16, 47.52it/s] Loading 0: 23%|██▎ | 226/995 [00:04<00:15, 50.66it/s] Loading 0: 23%|██▎ | 233/995 [00:04<00:14, 53.42it/s] Loading 0: 24%|██▍ | 240/995 [00:04<00:13, 55.86it/s] Loading 0: 25%|██▌ | 253/995 [00:04<00:10, 72.45it/s] Loading 0: 26%|██▋ | 262/995 [00:04<00:09, 76.69it/s] Loading 0: 27%|██▋ | 271/995 [00:05<00:16, 44.29it/s] Loading 0: 28%|██▊ | 279/995 [00:05<00:14, 49.41it/s] Loading 0: 28%|██▊ | 281/995 [00:16<00:14, 49.41it/s] Loading 0: 28%|██▊ | 282/995 [00:16<05:41, 2.09it/s] Loading 0: 29%|██▉ | 291/995 [00:16<03:40, 3.19it/s] Loading 0: 30%|███ | 299/995 [00:16<02:34, 4.52it/s] Loading 0: 31%|███ | 306/995 [00:16<01:53, 6.10it/s] Loading 0: 32%|███▏ | 317/995 [00:16<01:10, 9.57it/s] Loading 0: 33%|███▎ | 325/995 [00:17<01:05, 10.23it/s] Loading 0: 33%|███▎ | 332/995 [00:17<00:50, 13.12it/s] Loading 0: 34%|███▍ | 339/995 [00:17<00:39, 16.75it/s] Loading 0: 35%|███▍ | 348/995 [00:17<00:28, 22.78it/s] Loading 0: 36%|███▌ | 355/995 [00:17<00:23, 27.56it/s] Loading 0: 36%|███▋ | 362/995 [00:17<00:19, 32.71it/s] Loading 0: 37%|███▋ | 369/995 [00:18<00:23, 26.78it/s] Loading 0: 38%|███▊ | 378/995 [00:18<00:17, 34.54it/s] Loading 0: 39%|███▊ | 384/995 [00:18<00:15, 38.56it/s] Loading 0: 39%|███▉ | 390/995 [00:18<00:14, 42.50it/s] Loading 0: 40%|███▉ | 397/995 [00:18<00:12, 46.70it/s] Loading 0: 41%|████ | 410/995 [00:18<00:09, 63.55it/s] Loading 0: 42%|████▏ | 418/995 [00:18<00:08, 64.86it/s] Loading 0: 43%|████▎ | 426/995 [00:19<00:14, 38.82it/s] Loading 0: 43%|████▎ | 432/995 [00:19<00:13, 42.14it/s] Loading 0: 44%|████▍ | 440/995 [00:19<00:11, 49.29it/s] Loading 0: 45%|████▍ | 447/995 [00:19<00:10, 51.91it/s] Loading 0: 46%|████▌ | 454/995 [00:19<00:10, 54.02it/s] Loading 0: 47%|████▋ | 467/995 [00:19<00:07, 70.06it/s] Loading 0: 48%|████▊ | 478/995 [00:20<00:12, 42.74it/s] Loading 0: 49%|████▊ | 485/995 [00:20<00:11, 46.13it/s] Loading 0: 49%|████▉ | 492/995 [00:20<00:10, 49.14it/s] Loading 0: 50%|█████ | 501/995 [00:20<00:08, 55.92it/s] Loading 0: 51%|█████ | 508/995 [00:20<00:08, 57.49it/s] Loading 0: 52%|█████▏ | 515/995 [00:20<00:08, 58.80it/s] Loading 0: 53%|█████▎ | 526/995 [00:21<00:11, 39.19it/s] Loading 0: 54%|█████▍ | 535/995 [00:21<00:09, 46.31it/s] Loading 0: 54%|█████▍ | 542/995 [00:21<00:09, 49.42it/s] Loading 0: 55%|█████▌ | 549/995 [00:21<00:08, 52.19it/s] Loading 0: 56%|█████▋ | 560/995 [00:32<00:08, 52.19it/s] Loading 0: 56%|█████▋ | 561/995 [00:32<02:39, 2.72it/s] Loading 0: 57%|█████▋ | 568/995 [00:32<02:00, 3.56it/s] Loading 0: 58%|█████▊ | 575/995 [00:32<01:28, 4.72it/s] Loading 0: 58%|█████▊ | 582/995 [00:33<01:13, 5.63it/s] Loading 0: 59%|█████▉ | 588/995 [00:33<00:55, 7.27it/s] Loading 0: 60%|██████ | 597/995 [00:33<00:37, 10.63it/s] Loading 0: 61%|██████ | 604/995 [00:33<00:28, 13.82it/s] Loading 0: 61%|██████▏ | 611/995 [00:33<00:21, 17.72it/s] Loading 0: 63%|██████▎ | 624/995 [00:33<00:13, 27.93it/s] Loading 0: 64%|██████▎ | 632/995 [00:33<00:10, 33.95it/s] Loading 0: 64%|██████▍ | 640/995 [00:34<00:12, 28.65it/s] Loading 0: 65%|██████▌ | 647/995 [00:34<00:10, 33.19it/s] Loading 0: 66%|██████▌ | 656/995 [00:34<00:08, 40.73it/s] Loading 0: 67%|██████▋ | 663/995 [00:34<00:07, 44.62it/s] Loading 0: 67%|██████▋ | 670/995 [00:34<00:06, 48.16it/s] Loading 0: 68%|██████▊ | 677/995 [00:34<00:06, 52.76it/s] Loading 0: 69%|██████▉ | 691/995 [00:35<00:06, 44.72it/s] Loading 0: 70%|███████ | 698/995 [00:35<00:06, 48.24it/s] Loading 0: 71%|███████ | 705/995 [00:35<00:05, 51.63it/s] Loading 0: 72%|███████▏ | 712/995 [00:35<00:05, 54.38it/s] Loading 0: 72%|███████▏ | 721/995 [00:35<00:04, 60.85it/s] Loading 0: 73%|███████▎ | 728/995 [00:35<00:04, 61.78it/s] Loading 0: 74%|███████▍ | 739/995 [00:36<00:06, 40.86it/s] Loading 0: 75%|███████▌ | 748/995 [00:36<00:05, 47.78it/s] Loading 0: 76%|███████▌ | 755/995 [00:36<00:04, 50.50it/s] Loading 0: 77%|███████▋ | 762/995 [00:36<00:04, 53.02it/s] Loading 0: 77%|███████▋ | 769/995 [00:36<00:04, 54.82it/s] Loading 0: 79%|███████▊ | 782/995 [00:36<00:03, 70.31it/s] Loading 0: 79%|███████▉ | 790/995 [00:36<00:02, 72.04it/s] Loading 0: 80%|████████ | 798/995 [00:37<00:04, 42.31it/s] Loading 0: 81%|████████ | 805/995 [00:37<00:04, 45.82it/s] Loading 0: 82%|████████▏ | 814/995 [00:37<00:03, 52.88it/s] Loading 0: 83%|████████▎ | 821/995 [00:37<00:03, 54.74it/s] Loading 0: 83%|████████▎ | 828/995 [00:37<00:02, 56.24it/s] Loading 0: 85%|████████▍ | 841/995 [00:37<00:02, 71.57it/s] Loading 0: 85%|████████▍ | 841/995 [00:48<00:02, 71.57it/s] Loading 0: 85%|████████▍ | 842/995 [00:48<01:14, 2.06it/s] Loading 0: 85%|████████▌ | 849/995 [00:49<00:52, 2.76it/s] Loading 0: 86%|████████▌ | 856/995 [00:49<00:35, 3.90it/s] Loading 0: 87%|████████▋ | 863/995 [00:49<00:24, 5.46it/s] Loading 0: 88%|████████▊ | 872/995 [00:49<00:15, 8.19it/s] Loading 0: 88%|████████▊ | 879/995 [00:49<00:10, 10.90it/s] Loading 0: 89%|████████▉ | 886/995 [00:49<00:07, 14.36it/s] Loading 0: 90%|█████████ | 897/995 [00:49<00:05, 17.95it/s] Loading 0: 91%|█████████ | 906/995 [00:50<00:03, 23.73it/s] Loading 0: 92%|█████████▏| 913/995 [00:50<00:02, 28.30it/s] Loading 0: 92%|█████████▏| 920/995 [00:50<00:02, 33.26it/s] Loading 0: 94%|█████████▍| 933/995 [00:50<00:01, 47.66it/s] Loading 0: 95%|█████████▍| 942/995 [00:50<00:01, 51.21it/s] Loading 0: 96%|█████████▌| 952/995 [00:52<00:02, 16.30it/s] Loading 0: 96%|█████████▋| 959/995 [00:52<00:01, 19.90it/s] Loading 0: 97%|█████████▋| 968/995 [00:52<00:01, 25.97it/s] Loading 0: 98%|█████████▊| 975/995 [00:52<00:00, 30.59it/s] Loading 0: 99%|█████████▊| 982/995 [00:52<00:00, 35.53it/s] /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:1096: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: warnings.warn(
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:720: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: warnings.warn(
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:466: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: warnings.warn(
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: /opt/conda/lib/python3.10/site-packages/torch/_utils.py:831: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: return self.fget.__get__(instance, owner)()
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: Saving duration: 0.308s
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: Processed model rirv938/reward_gpt2_medium_preference_24m_e2 in 10.377s
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: creating bucket guanaco-reward-models
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: Bucket 's3://guanaco-reward-models/' created
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/mistralai-mixtral-8x7b-i-3473-v9_reward
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/mistralai-mixtral-8x7b-i-3473-v9_reward/special_tokens_map.json
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/mistralai-mixtral-8x7b-i-3473-v9_reward/config.json
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/mistralai-mixtral-8x7b-i-3473-v9_reward/tokenizer_config.json
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/mistralai-mixtral-8x7b-i-3473-v9_reward/merges.txt
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/mistralai-mixtral-8x7b-i-3473-v9_reward/vocab.json
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/mistralai-mixtral-8x7b-i-3473-v9_reward/tokenizer.json
mistralai-mixtral-8x7b-i-3473-v9-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/mistralai-mixtral-8x7b-i-3473-v9_reward/reward.tensors
Job mistralai-mixtral-8x7b-i-3473-v9-mkmlizer completed after 209.45s with status: succeeded
Stopping job with name mistralai-mixtral-8x7b-i-3473-v9-mkmlizer
Pipeline stage MKMLizer completed in 210.88s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.36s
Running pipeline stage ISVCDeployer
Creating inference service mistralai-mixtral-8x7b-i-3473-v9
Waiting for inference service mistralai-mixtral-8x7b-i-3473-v9 to be ready
Inference service mistralai-mixtral-8x7b-i-3473-v9 ready after 51.192118406295776s
Pipeline stage ISVCDeployer completed in 57.53s
Running pipeline stage StressChecker
Received healthy response to inference request in 10.758958578109741s
Received healthy response to inference request in 1.838003396987915s
Received healthy response to inference request in 1.5748176574707031s
Received healthy response to inference request in 2.4888381958007812s
Received healthy response to inference request in 1.9372076988220215s
5 requests
0 failed requests
5th percentile: 1.6274548053741456
10th percentile: 1.680091953277588
20th percentile: 1.7853662490844726
30th percentile: 1.8578442573547362
40th percentile: 1.8975259780883789
50th percentile: 1.9372076988220215
60th percentile: 2.1578598976135255
70th percentile: 2.378512096405029
80th percentile: 4.142862272262574
90th percentile: 7.450910425186158
95th percentile: 9.104934501647948
99th percentile: 10.428153762817383
mean time: 3.7195651054382326
Pipeline stage StressChecker completed in 21.36s
Running pipeline stage DaemonicModelEvalScorer
Pipeline stage DaemonicModelEvalScorer completed in 0.14s
Running M-Eval for topic stay_in_character
Running pipeline stage DaemonicSafetyScorer
M-Eval Dataset for topic stay_in_character is loaded
Pipeline stage DaemonicSafetyScorer completed in 0.27s
%s, retrying in %s seconds...
%s, retrying in %s seconds...
mistralai-mixtral-8x7b-i_3473_v9 status is now inactive due to auto deactivation removed underperforming models

Usage Metrics

Latency Metrics