developer_uid: WesPro
submission_id: wespro-miss-kunodolph_v1
model_name: wespro-miss-kunodolph_v1
model_group: WesPro/Miss_KunoDolph
status: torndown
timestamp: 2024-04-13T19:31:38+00:00
num_battles: 48204
num_wins: 19029
celo_rating: 1075.06
family_friendly_score: 0.0
submission_type: basic
model_repo: WesPro/Miss_KunoDolph
model_architecture: MistralForCausalLM
model_num_parameters: 7241732096.0
best_of: 4
max_input_tokens: 512
max_output_tokens: 64
reward_model: default
display_name: wespro-miss-kunodolph_v1
is_internal_developer: False
language_model: WesPro/Miss_KunoDolph
model_size: 7B
ranking_group: single
us_pacific_date: 2024-04-13
win_ratio: 0.39475977097336323
generation_params: {'temperature': 1.0, 'top_p': 1.0, 'min_p': 0.0, 'top_k': 40, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n'], 'max_input_tokens': 512, 'best_of': 4, 'max_output_tokens': 64}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': False}
model_eval_status: success
reward_formatter: {'bot_template': '{bot_name}: {message}\n', 'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'response_template': '{bot_name}:', 'truncate_by_message': False, 'user_template': '{user_name}: {message}\n'}
reward_repo: ChaiML/reward_gpt2_medium_preference_24m_e2
Resubmit model
Running pipeline stage MKMLizer
Starting job with name wespro-miss-kunodolph-v1-mkmlizer
Stopping job with name wespro-miss-kunodolph-v1-mkmlizer
%s, retrying in %s seconds...
Starting job with name wespro-miss-kunodolph-v1-mkmlizer
Waiting for job on wespro-miss-kunodolph-v1-mkmlizer to finish
wespro-miss-kunodolph-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
wespro-miss-kunodolph-v1-mkmlizer: ║ _____ __ __ ║
wespro-miss-kunodolph-v1-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
wespro-miss-kunodolph-v1-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
wespro-miss-kunodolph-v1-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
wespro-miss-kunodolph-v1-mkmlizer: ║ /___/ ║
wespro-miss-kunodolph-v1-mkmlizer: ║ ║
wespro-miss-kunodolph-v1-mkmlizer: ║ Version: 0.6.11 ║
wespro-miss-kunodolph-v1-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
wespro-miss-kunodolph-v1-mkmlizer: ║ ║
wespro-miss-kunodolph-v1-mkmlizer: ║ The license key for the current software has been verified as ║
wespro-miss-kunodolph-v1-mkmlizer: ║ belonging to: ║
wespro-miss-kunodolph-v1-mkmlizer: ║ ║
wespro-miss-kunodolph-v1-mkmlizer: ║ Chai Research Corp. ║
wespro-miss-kunodolph-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
wespro-miss-kunodolph-v1-mkmlizer: ║ Expiration: 2024-07-15 23:59:59 ║
wespro-miss-kunodolph-v1-mkmlizer: ║ ║
wespro-miss-kunodolph-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
wespro-miss-kunodolph-v1-mkmlizer: .gitattributes: 0%| | 0.00/1.52k [00:00<?, ?B/s] .gitattributes: 100%|██████████| 1.52k/1.52k [00:00<00:00, 18.0MB/s]
wespro-miss-kunodolph-v1-mkmlizer: README.md: 0%| | 0.00/1.09k [00:00<?, ?B/s] README.md: 100%|██████████| 1.09k/1.09k [00:00<00:00, 15.9MB/s]
wespro-miss-kunodolph-v1-mkmlizer: config.json: 0%| | 0.00/653 [00:00<?, ?B/s] config.json: 100%|██████████| 653/653 [00:00<00:00, 10.5MB/s]
wespro-miss-kunodolph-v1-mkmlizer: mergekit_config.yml: 0%| | 0.00/438 [00:00<?, ?B/s] mergekit_config.yml: 100%|██████████| 438/438 [00:00<00:00, 7.04MB/s]
wespro-miss-kunodolph-v1-mkmlizer: model-00001-of-00002.safetensors: 0%| | 0.00/9.94G [00:00<?, ?B/s] model-00001-of-00002.safetensors: 0%| | 10.5M/9.94G [00:00<10:54, 15.2MB/s] model-00001-of-00002.safetensors: 0%| | 41.9M/9.94G [00:00<02:37, 63.0MB/s] model-00001-of-00002.safetensors: 2%|▏ | 231M/9.94G [00:01<00:27, 354MB/s] model-00001-of-00002.safetensors: 3%|▎ | 294M/9.94G [00:01<00:28, 343MB/s] model-00001-of-00002.safetensors: 3%|▎ | 346M/9.94G [00:01<00:27, 349MB/s] model-00001-of-00002.safetensors: 4%|▍ | 398M/9.94G [00:01<00:31, 302MB/s] model-00001-of-00002.safetensors: 4%|▍ | 440M/9.94G [00:01<00:30, 314MB/s] model-00001-of-00002.safetensors: 5%|▍ | 482M/9.94G [00:01<00:30, 312MB/s] model-00001-of-00002.safetensors: 5%|▌ | 524M/9.94G [00:02<00:44, 212MB/s] model-00001-of-00002.safetensors: 6%|▌ | 556M/9.94G [00:02<00:51, 181MB/s] model-00001-of-00002.safetensors: 6%|▌ | 587M/9.94G [00:02<01:08, 136MB/s] model-00001-of-00002.safetensors: 6%|▌ | 608M/9.94G [00:03<01:20, 116MB/s] model-00001-of-00002.safetensors: 7%|▋ | 661M/9.94G [00:03<00:55, 168MB/s] model-00001-of-00002.safetensors: 8%|▊ | 797M/9.94G [00:03<00:26, 350MB/s] model-00001-of-00002.safetensors: 13%|█▎ | 1.31G/9.94G [00:03<00:07, 1.21GB/s] model-00001-of-00002.safetensors: 16%|█▌ | 1.59G/9.94G [00:03<00:05, 1.53GB/s] model-00001-of-00002.safetensors: 18%|█▊ | 1.81G/9.94G [00:03<00:04, 1.66GB/s] model-00001-of-00002.safetensors: 20%|██ | 2.03G/9.94G [00:03<00:04, 1.60GB/s] model-00001-of-00002.safetensors: 22%|██▏ | 2.23G/9.94G [00:03<00:04, 1.63GB/s] model-00001-of-00002.safetensors: 26%|██▌ | 2.56G/9.94G [00:04<00:03, 2.02GB/s] model-00001-of-00002.safetensors: 29%|██▉ | 2.87G/9.94G [00:04<00:03, 2.29GB/s] model-00001-of-00002.safetensors: 31%|███▏ | 3.12G/9.94G [00:04<00:03, 1.88GB/s] model-00001-of-00002.safetensors: 34%|███▎ | 3.34G/9.94G [00:05<00:09, 724MB/s] model-00001-of-00002.safetensors: 35%|███▌ | 3.51G/9.94G [00:05<00:09, 682MB/s] model-00001-of-00002.safetensors: 37%|███▋ | 3.65G/9.94G [00:05<00:08, 728MB/s] model-00001-of-00002.safetensors: 38%|███▊ | 3.81G/9.94G [00:05<00:07, 831MB/s] model-00001-of-00002.safetensors: 40%|███▉ | 3.97G/9.94G [00:05<00:06, 958MB/s] model-00001-of-00002.safetensors: 41%|████▏ | 4.11G/9.94G [00:05<00:06, 949MB/s] model-00001-of-00002.safetensors: 43%|████▎ | 4.30G/9.94G [00:06<00:04, 1.13GB/s] model-00001-of-00002.safetensors: 45%|████▍ | 4.45G/9.94G [00:06<00:05, 925MB/s] model-00001-of-00002.safetensors: 46%|████▌ | 4.57G/9.94G [00:06<00:08, 612MB/s] model-00001-of-00002.safetensors: 47%|████▋ | 4.67G/9.94G [00:07<00:11, 451MB/s] model-00001-of-00002.safetensors: 48%|████▊ | 4.74G/9.94G [00:07<00:12, 423MB/s] model-00001-of-00002.safetensors: 49%|████▊ | 4.82G/9.94G [00:07<00:11, 431MB/s] model-00001-of-00002.safetensors: 49%|████▉ | 4.90G/9.94G [00:07<00:10, 464MB/s] model-00001-of-00002.safetensors: 51%|█████ | 5.04G/9.94G [00:07<00:07, 634MB/s] model-00001-of-00002.safetensors: 52%|█████▏ | 5.17G/9.94G [00:07<00:06, 739MB/s] model-00001-of-00002.safetensors: 53%|█████▎ | 5.30G/9.94G [00:07<00:05, 837MB/s] model-00001-of-00002.safetensors: 55%|█████▍ | 5.46G/9.94G [00:08<00:04, 960MB/s] model-00001-of-00002.safetensors: 56%|█████▌ | 5.58G/9.94G [00:08<00:06, 692MB/s] model-00001-of-00002.safetensors: 57%|█████▋ | 5.67G/9.94G [00:08<00:07, 560MB/s] model-00001-of-00002.safetensors: 58%|█████▊ | 5.75G/9.94G [00:08<00:07, 546MB/s] model-00001-of-00002.safetensors: 59%|█████▊ | 5.82G/9.94G [00:09<00:09, 417MB/s] model-00001-of-00002.safetensors: 59%|█████▉ | 5.88G/9.94G [00:09<00:09, 429MB/s] model-00001-of-00002.safetensors: 60%|██████ | 5.99G/9.94G [00:09<00:07, 530MB/s] model-00001-of-00002.safetensors: 61%|██████▏ | 6.09G/9.94G [00:09<00:06, 613MB/s] model-00001-of-00002.safetensors: 62%|██████▏ | 6.21G/9.94G [00:09<00:05, 729MB/s] model-00001-of-00002.safetensors: 63%|██████▎ | 6.30G/9.94G [00:09<00:04, 776MB/s] model-00001-of-00002.safetensors: 64%|██████▍ | 6.40G/9.94G [00:09<00:04, 769MB/s] model-00001-of-00002.safetensors: 65%|██████▌ | 6.49G/9.94G [00:09<00:04, 781MB/s] model-00001-of-00002.safetensors: 66%|██████▌ | 6.57G/9.94G [00:10<00:04, 766MB/s] model-00001-of-00002.safetensors: 67%|██████▋ | 6.66G/9.94G [00:10<00:04, 701MB/s] model-00001-of-00002.safetensors: 68%|██████▊ | 6.73G/9.94G [00:10<00:05, 593MB/s] model-00001-of-00002.safetensors: 68%|██████▊ | 6.81G/9.94G [00:10<00:05, 555MB/s] model-00001-of-00002.safetensors: 69%|██████▉ | 6.87G/9.94G [00:10<00:07, 418MB/s] model-00001-of-00002.safetensors: 70%|██████▉ | 6.92G/9.94G [00:10<00:07, 378MB/s] model-00001-of-00002.safetensors: 70%|███████ | 7.00G/9.94G [00:11<00:06, 450MB/s] model-00001-of-00002.safetensors: 71%|███████ | 7.08G/9.94G [00:11<00:05, 506MB/s] model-00001-of-00002.safetensors: 72%|███████▏ | 7.14G/9.94G [00:11<00:05, 533MB/s] model-00001-of-00002.safetensors: 74%|███████▍ | 7.34G/9.94G [00:11<00:03, 861MB/s] model-00001-of-00002.safetensors: 75%|███████▍ | 7.46G/9.94G [00:11<00:02, 898MB/s] model-00001-of-00002.safetensors: 76%|███████▌ | 7.56G/9.94G [00:11<00:03, 786MB/s] model-00001-of-00002.safetensors: 77%|███████▋ | 7.65G/9.94G [00:11<00:02, 764MB/s] model-00001-of-00002.safetensors: 78%|███████▊ | 7.74G/9.94G [00:11<00:02, 772MB/s] model-00001-of-00002.safetensors: 79%|███████▊ | 7.82G/9.94G [00:12<00:03, 563MB/s] model-00001-of-00002.safetensors: 79%|███████▉ | 7.90G/9.94G [00:12<00:03, 526MB/s] model-00001-of-00002.safetensors: 80%|████████ | 7.96G/9.94G [00:12<00:04, 459MB/s] model-00001-of-00002.safetensors: 81%|████████ | 8.01G/9.94G [00:12<00:04, 463MB/s] model-00001-of-00002.safetensors: 81%|████████ | 8.07G/9.94G [00:12<00:04, 430MB/s] model-00001-of-00002.safetensors: 82%|████████▏ | 8.13G/9.94G [00:13<00:04, 408MB/s] model-00001-of-00002.safetensors: 82%|████████▏ | 8.18G/9.94G [00:13<00:04, 365MB/s] model-00001-of-00002.safetensors: 83%|████████▎ | 8.23G/9.94G [00:13<00:04, 376MB/s] model-00001-of-00002.safetensors: 84%|████████▍ | 8.38G/9.94G [00:13<00:02, 610MB/s] model-00001-of-00002.safetensors: 86%|████████▌ | 8.51G/9.94G [00:13<00:01, 782MB/s] model-00001-of-00002.safetensors: 87%|████████▋ | 8.61G/9.94G [00:13<00:01, 708MB/s] model-00001-of-00002.safetensors: 87%|████████▋ | 8.69G/9.94G [00:13<00:01, 682MB/s] model-00001-of-00002.safetensors: 88%|████████▊ | 8.78G/9.94G [00:13<00:01, 638MB/s] model-00001-of-00002.safetensors: 89%|████████▉ | 8.85G/9.94G [00:14<00:01, 590MB/s] model-00001-of-00002.safetensors: 90%|████████▉ | 8.91G/9.94G [00:14<00:02, 480MB/s] model-00001-of-00002.safetensors: 90%|█████████ | 8.99G/9.94G [00:14<00:01, 501MB/s] model-00001-of-00002.safetensors: 91%|█████████ | 9.06G/9.94G [00:14<00:01, 544MB/s] model-00001-of-00002.safetensors: 92%|█████████▏| 9.12G/9.94G [00:14<00:01, 536MB/s] model-00001-of-00002.safetensors: 92%|█████████▏| 9.19G/9.94G [00:14<00:01, 442MB/s] model-00001-of-00002.safetensors: 93%|█████████▎| 9.24G/9.94G [00:15<00:01, 448MB/s] model-00001-of-00002.safetensors: 93%|█████████▎| 9.29G/9.94G [00:15<00:01, 435MB/s] model-00001-of-00002.safetensors: 94%|█████████▍| 9.39G/9.94G [00:15<00:01, 544MB/s] model-00001-of-00002.safetensors: 97%|█████████▋| 9.64G/9.94G [00:15<00:00, 1.02GB/s] model-00001-of-00002.safetensors: 99%|█████████▉| 9.89G/9.94G [00:15<00:00, 1.41GB/s] model-00001-of-00002.safetensors: 100%|█████████▉| 9.94G/9.94G [00:15<00:00, 639MB/s]
wespro-miss-kunodolph-v1-mkmlizer: model-00002-of-00002.safetensors: 0%| | 0.00/4.54G [00:00<?, ?B/s] model-00002-of-00002.safetensors: 0%| | 10.5M/4.54G [00:04<29:39, 2.55MB/s] model-00002-of-00002.safetensors: 0%| | 21.0M/4.54G [00:04<13:29, 5.58MB/s] model-00002-of-00002.safetensors: 2%|▏ | 105M/4.54G [00:04<01:47, 41.3MB/s] model-00002-of-00002.safetensors: 23%|██▎ | 1.06G/4.54G [00:04<00:05, 587MB/s] model-00002-of-00002.safetensors: 32%|███▏ | 1.45G/4.54G [00:05<00:06, 444MB/s] model-00002-of-00002.safetensors: 38%|███▊ | 1.71G/4.54G [00:06<00:07, 392MB/s] model-00002-of-00002.safetensors: 42%|████▏ | 1.89G/4.54G [00:06<00:05, 460MB/s] model-00002-of-00002.safetensors: 45%|████▌ | 2.07G/4.54G [00:07<00:04, 539MB/s] model-00002-of-00002.safetensors: 49%|████▉ | 2.23G/4.54G [00:07<00:03, 601MB/s] model-00002-of-00002.safetensors: 56%|█████▌ | 2.55G/4.54G [00:07<00:02, 836MB/s] model-00002-of-00002.safetensors: 60%|██████ | 2.73G/4.54G [00:07<00:02, 693MB/s] model-00002-of-00002.safetensors: 63%|██████▎ | 2.86G/4.54G [00:08<00:03, 508MB/s] model-00002-of-00002.safetensors: 65%|██████▌ | 2.97G/4.54G [00:08<00:03, 457MB/s] model-00002-of-00002.safetensors: 67%|██████▋ | 3.05G/4.54G [00:08<00:03, 445MB/s] model-00002-of-00002.safetensors: 70%|███████ | 3.19G/4.54G [00:08<00:02, 535MB/s] model-00002-of-00002.safetensors: 72%|███████▏ | 3.27G/4.54G [00:09<00:02, 561MB/s] model-00002-of-00002.safetensors: 74%|███████▍ | 3.36G/4.54G [00:09<00:01, 596MB/s] model-00002-of-00002.safetensors: 77%|███████▋ | 3.49G/4.54G [00:09<00:01, 735MB/s] model-00002-of-00002.safetensors: 79%|███████▉ | 3.59G/4.54G [00:09<00:01, 698MB/s] model-00002-of-00002.safetensors: 81%|████████ | 3.67G/4.54G [00:09<00:01, 709MB/s] model-00002-of-00002.safetensors: 85%|████████▌ | 3.87G/4.54G [00:09<00:00, 994MB/s] model-00002-of-00002.safetensors: 88%|████████▊ | 4.02G/4.54G [00:09<00:00, 1.08GB/s] model-00002-of-00002.safetensors: 91%|█████████ | 4.14G/4.54G [00:09<00:00, 955MB/s] model-00002-of-00002.safetensors: 96%|█████████▌| 4.36G/4.54G [00:10<00:00, 1.21GB/s] model-00002-of-00002.safetensors: 100%|█████████▉| 4.54G/4.54G [00:10<00:00, 445MB/s]
wespro-miss-kunodolph-v1-mkmlizer: model.safetensors.index.json: 0%| | 0.00/22.8k [00:00<?, ?B/s] model.safetensors.index.json: 100%|██████████| 22.8k/22.8k [00:00<00:00, 15.4MB/s]
wespro-miss-kunodolph-v1-mkmlizer: special_tokens_map.json: 0%| | 0.00/414 [00:00<?, ?B/s] special_tokens_map.json: 100%|██████████| 414/414 [00:00<00:00, 4.13MB/s]
wespro-miss-kunodolph-v1-mkmlizer: tokenizer.json: 0%| | 0.00/1.80M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 1.80M/1.80M [00:00<00:00, 15.9MB/s] tokenizer.json: 100%|██████████| 1.80M/1.80M [00:00<00:00, 15.8MB/s]
wespro-miss-kunodolph-v1-mkmlizer: tokenizer.model: 0%| | 0.00/493k [00:00<?, ?B/s] tokenizer.model: 100%|██████████| 493k/493k [00:00<00:00, 5.61MB/s]
wespro-miss-kunodolph-v1-mkmlizer: tokenizer_config.json: 0%| | 0.00/1.46k [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 1.46k/1.46k [00:00<00:00, 11.8MB/s]
wespro-miss-kunodolph-v1-mkmlizer: Downloaded to shared memory in 28.177s
wespro-miss-kunodolph-v1-mkmlizer: quantizing model to /dev/shm/model_cache
wespro-miss-kunodolph-v1-mkmlizer: Saving mkml model at /dev/shm/model_cache
wespro-miss-kunodolph-v1-mkmlizer: Reading /tmp/tmpvjqr97ui/model.safetensors.index.json
wespro-miss-kunodolph-v1-mkmlizer: Profiling: 0%| | 0/291 [00:00<?, ?it/s] Profiling: 0%| | 1/291 [00:01<05:45, 1.19s/it] Profiling: 5%|▍ | 14/291 [00:01<00:18, 14.65it/s] Profiling: 11%|█ | 32/291 [00:01<00:07, 36.51it/s] Profiling: 17%|█▋ | 49/291 [00:01<00:04, 57.16it/s] Profiling: 23%|██▎ | 68/291 [00:01<00:02, 80.33it/s] Profiling: 31%|███ | 90/291 [00:01<00:01, 108.30it/s] Profiling: 38%|███▊ | 111/291 [00:01<00:01, 129.38it/s] Profiling: 45%|████▍ | 130/291 [00:01<00:01, 142.17it/s] Profiling: 51%|█████ | 149/291 [00:02<00:00, 152.49it/s] Profiling: 58%|█████▊ | 169/291 [00:02<00:00, 163.23it/s] Profiling: 65%|██████▍ | 188/291 [00:02<00:00, 167.41it/s] Profiling: 71%|███████ | 207/291 [00:04<00:02, 30.68it/s] Profiling: 77%|███████▋ | 224/291 [00:04<00:01, 39.74it/s] Profiling: 84%|████████▍ | 244/291 [00:04<00:00, 53.31it/s] Profiling: 91%|█████████ | 265/291 [00:04<00:00, 69.78it/s] Profiling: 98%|█████████▊| 284/291 [00:04<00:00, 84.99it/s] Profiling: 100%|██████████| 291/291 [00:04<00:00, 62.04it/s]
wespro-miss-kunodolph-v1-mkmlizer: quantized model in 14.889s
wespro-miss-kunodolph-v1-mkmlizer: Processed model WesPro/Miss_KunoDolph in 44.029s
wespro-miss-kunodolph-v1-mkmlizer: creating bucket guanaco-mkml-models
wespro-miss-kunodolph-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
wespro-miss-kunodolph-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/wespro-miss-kunodolph-v1
wespro-miss-kunodolph-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/wespro-miss-kunodolph-v1/config.json
wespro-miss-kunodolph-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/wespro-miss-kunodolph-v1/special_tokens_map.json
wespro-miss-kunodolph-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/wespro-miss-kunodolph-v1/tokenizer_config.json
wespro-miss-kunodolph-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.model s3://guanaco-mkml-models/wespro-miss-kunodolph-v1/tokenizer.model
wespro-miss-kunodolph-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/wespro-miss-kunodolph-v1/tokenizer.json
wespro-miss-kunodolph-v1-mkmlizer: cp /dev/shm/model_cache/mkml_model.tensors s3://guanaco-mkml-models/wespro-miss-kunodolph-v1/mkml_model.tensors
wespro-miss-kunodolph-v1-mkmlizer: loading reward model from ChaiML/reward_gpt2_medium_preference_24m_e2
wespro-miss-kunodolph-v1-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:1067: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
wespro-miss-kunodolph-v1-mkmlizer: warnings.warn(
wespro-miss-kunodolph-v1-mkmlizer: config.json: 0%| | 0.00/1.05k [00:00<?, ?B/s] config.json: 100%|██████████| 1.05k/1.05k [00:00<00:00, 12.6MB/s]
wespro-miss-kunodolph-v1-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:690: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
wespro-miss-kunodolph-v1-mkmlizer: warnings.warn(
wespro-miss-kunodolph-v1-mkmlizer: tokenizer_config.json: 0%| | 0.00/234 [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 234/234 [00:00<00:00, 2.58MB/s]
wespro-miss-kunodolph-v1-mkmlizer: vocab.json: 0%| | 0.00/1.04M [00:00<?, ?B/s] vocab.json: 100%|██████████| 1.04M/1.04M [00:00<00:00, 10.1MB/s] vocab.json: 100%|██████████| 1.04M/1.04M [00:00<00:00, 9.99MB/s]
wespro-miss-kunodolph-v1-mkmlizer: tokenizer.json: 0%| | 0.00/2.11M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 2.11M/2.11M [00:00<00:00, 52.5MB/s]
wespro-miss-kunodolph-v1-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:472: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
wespro-miss-kunodolph-v1-mkmlizer: warnings.warn(
wespro-miss-kunodolph-v1-mkmlizer: pytorch_model.bin: 0%| | 0.00/1.44G [00:00<?, ?B/s] pytorch_model.bin: 1%| | 10.5M/1.44G [00:00<01:03, 22.8MB/s] pytorch_model.bin: 1%|▏ | 21.0M/1.44G [00:00<01:03, 22.6MB/s] pytorch_model.bin: 4%|▍ | 62.9M/1.44G [00:01<00:19, 71.5MB/s] pytorch_model.bin: 7%|▋ | 94.4M/1.44G [00:01<00:13, 102MB/s] pytorch_model.bin: 9%|▊ | 126M/1.44G [00:01<00:09, 132MB/s] pytorch_model.bin: 15%|█▌ | 220M/1.44G [00:01<00:04, 281MB/s] pytorch_model.bin: 33%|███▎ | 482M/1.44G [00:01<00:01, 769MB/s] pytorch_model.bin: 77%|███████▋ | 1.11G/1.44G [00:01<00:00, 2.04GB/s] pytorch_model.bin: 96%|█████████▋| 1.39G/1.44G [00:01<00:00, 2.15GB/s] pytorch_model.bin: 100%|█████████▉| 1.44G/1.44G [00:01<00:00, 763MB/s]
wespro-miss-kunodolph-v1-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
wespro-miss-kunodolph-v1-mkmlizer: Saving duration: 0.238s
wespro-miss-kunodolph-v1-mkmlizer: Processed model ChaiML/reward_gpt2_medium_preference_24m_e2 in 5.709s
wespro-miss-kunodolph-v1-mkmlizer: creating bucket guanaco-reward-models
wespro-miss-kunodolph-v1-mkmlizer: Bucket 's3://guanaco-reward-models/' created
wespro-miss-kunodolph-v1-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/wespro-miss-kunodolph-v1_reward
wespro-miss-kunodolph-v1-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/wespro-miss-kunodolph-v1_reward/config.json
wespro-miss-kunodolph-v1-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/wespro-miss-kunodolph-v1_reward/special_tokens_map.json
wespro-miss-kunodolph-v1-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/wespro-miss-kunodolph-v1_reward/tokenizer_config.json
wespro-miss-kunodolph-v1-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/wespro-miss-kunodolph-v1_reward/merges.txt
wespro-miss-kunodolph-v1-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/wespro-miss-kunodolph-v1_reward/vocab.json
wespro-miss-kunodolph-v1-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/wespro-miss-kunodolph-v1_reward/tokenizer.json
Job wespro-miss-kunodolph-v1-mkmlizer completed after 75.04s with status: succeeded
Stopping job with name wespro-miss-kunodolph-v1-mkmlizer
%s, retrying in %s seconds...
Stopping job with name wespro-miss-kunodolph-v1-mkmlizer
%s, retrying in %s seconds...
Stopping job with name wespro-miss-kunodolph-v1-mkmlizer
%s, retrying in %s seconds...
Starting job with name wespro-miss-kunodolph-v1-mkmlizer
Waiting for job on wespro-miss-kunodolph-v1-mkmlizer to finish
wespro-miss-kunodolph-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
wespro-miss-kunodolph-v1-mkmlizer: ║ _____ __ __ ║
wespro-miss-kunodolph-v1-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
wespro-miss-kunodolph-v1-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
wespro-miss-kunodolph-v1-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
wespro-miss-kunodolph-v1-mkmlizer: ║ /___/ ║
wespro-miss-kunodolph-v1-mkmlizer: ║ ║
wespro-miss-kunodolph-v1-mkmlizer: ║ Version: 0.6.11 ║
wespro-miss-kunodolph-v1-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
wespro-miss-kunodolph-v1-mkmlizer: ║ ║
wespro-miss-kunodolph-v1-mkmlizer: ║ The license key for the current software has been verified as ║
wespro-miss-kunodolph-v1-mkmlizer: ║ belonging to: ║
wespro-miss-kunodolph-v1-mkmlizer: ║ ║
wespro-miss-kunodolph-v1-mkmlizer: ║ Chai Research Corp. ║
wespro-miss-kunodolph-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
wespro-miss-kunodolph-v1-mkmlizer: ║ Expiration: 2024-07-15 23:59:59 ║
wespro-miss-kunodolph-v1-mkmlizer: ║ ║
wespro-miss-kunodolph-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
wespro-miss-kunodolph-v1-mkmlizer: .gitattributes: 0%| | 0.00/1.52k [00:00<?, ?B/s] .gitattributes: 100%|██████████| 1.52k/1.52k [00:00<00:00, 16.6MB/s]
wespro-miss-kunodolph-v1-mkmlizer: README.md: 0%| | 0.00/1.09k [00:00<?, ?B/s] README.md: 100%|██████████| 1.09k/1.09k [00:00<00:00, 15.1MB/s]
wespro-miss-kunodolph-v1-mkmlizer: config.json: 0%| | 0.00/653 [00:00<?, ?B/s] config.json: 100%|██████████| 653/653 [00:00<00:00, 10.2MB/s]
wespro-miss-kunodolph-v1-mkmlizer: mergekit_config.yml: 0%| | 0.00/438 [00:00<?, ?B/s] mergekit_config.yml: 100%|██████████| 438/438 [00:00<00:00, 6.21MB/s]
wespro-miss-kunodolph-v1-mkmlizer: model-00001-of-00002.safetensors: 0%| | 0.00/9.94G [00:00<?, ?B/s] model-00001-of-00002.safetensors: 0%| | 10.5M/9.94G [00:00<02:53, 57.4MB/s] model-00001-of-00002.safetensors: 2%|▏ | 157M/9.94G [00:00<00:15, 633MB/s] model-00001-of-00002.safetensors: 3%|▎ | 252M/9.94G [00:00<00:13, 717MB/s] model-00001-of-00002.safetensors: 3%|▎ | 336M/9.94G [00:00<00:13, 697MB/s] model-00001-of-00002.safetensors: 4%|▍ | 419M/9.94G [00:00<00:12, 738MB/s] model-00001-of-00002.safetensors: 5%|▌ | 535M/9.94G [00:00<00:10, 858MB/s] model-00001-of-00002.safetensors: 6%|▋ | 640M/9.94G [00:00<00:10, 904MB/s] model-00001-of-00002.safetensors: 8%|▊ | 786M/9.94G [00:00<00:08, 1.03GB/s] model-00001-of-00002.safetensors: 9%|▉ | 891M/9.94G [00:01<00:10, 856MB/s] model-00001-of-00002.safetensors: 10%|▉ | 986M/9.94G [00:01<00:10, 829MB/s] model-00001-of-00002.safetensors: 11%|█ | 1.08G/9.94G [00:01<00:10, 824MB/s] model-00001-of-00002.safetensors: 12%|█▏ | 1.17G/9.94G [00:01<00:10, 848MB/s] model-00001-of-00002.safetensors: 13%|█▎ | 1.34G/9.94G [00:01<00:08, 1.06GB/s] model-00001-of-00002.safetensors: 15%|█▍ | 1.46G/9.94G [00:01<00:08, 1.04GB/s] model-00001-of-00002.safetensors: 16%|█▌ | 1.57G/9.94G [00:01<00:07, 1.06GB/s] model-00001-of-00002.safetensors: 17%|█▋ | 1.69G/9.94G [00:01<00:08, 993MB/s] model-00001-of-00002.safetensors: 18%|█▊ | 1.79G/9.94G [00:02<00:08, 932MB/s] model-00001-of-00002.safetensors: 19%|█▉ | 1.93G/9.94G [00:02<00:07, 1.04GB/s] model-00001-of-00002.safetensors: 22%|██▏ | 2.15G/9.94G [00:02<00:06, 1.24GB/s] model-00001-of-00002.safetensors: 23%|██▎ | 2.28G/9.94G [00:02<00:06, 1.16GB/s] model-00001-of-00002.safetensors: 24%|██▍ | 2.41G/9.94G [00:02<00:06, 1.16GB/s] model-00001-of-00002.safetensors: 26%|██▌ | 2.54G/9.94G [00:02<00:06, 1.18GB/s] model-00001-of-00002.safetensors: 27%|██▋ | 2.66G/9.94G [00:02<00:06, 1.06GB/s] model-00001-of-00002.safetensors: 28%|██▊ | 2.78G/9.94G [00:02<00:07, 962MB/s] model-00001-of-00002.safetensors: 29%|██▉ | 2.92G/9.94G [00:03<00:07, 994MB/s] model-00001-of-00002.safetensors: 30%|███ | 3.02G/9.94G [00:03<00:06, 1.00GB/s] model-00001-of-00002.safetensors: 31%|███▏ | 3.12G/9.94G [00:03<00:06, 984MB/s] model-00001-of-00002.safetensors: 33%|███▎ | 3.30G/9.94G [00:03<00:05, 1.13GB/s] model-00001-of-00002.safetensors: 36%|███▌ | 3.57G/9.94G [00:03<00:04, 1.52GB/s] model-00001-of-00002.safetensors: 38%|███▊ | 3.74G/9.94G [00:03<00:04, 1.35GB/s] model-00001-of-00002.safetensors: 39%|███▉ | 3.89G/9.94G [00:03<00:04, 1.29GB/s] model-00001-of-00002.safetensors: 40%|████ | 4.03G/9.94G [00:03<00:04, 1.19GB/s] model-00001-of-00002.safetensors: 42%|████▏ | 4.15G/9.94G [00:04<00:05, 1.04GB/s] model-00001-of-00002.safetensors: 43%|████▎ | 4.28G/9.94G [00:04<00:05, 1.09GB/s] model-00001-of-00002.safetensors: 44%|████▍ | 4.41G/9.94G [00:04<00:04, 1.12GB/s] model-00001-of-00002.safetensors: 46%|████▌ | 4.54G/9.94G [00:04<00:05, 937MB/s] model-00001-of-00002.safetensors: 48%|████▊ | 4.78G/9.94G [00:04<00:04, 1.27GB/s] model-00001-of-00002.safetensors: 50%|████▉ | 4.94G/9.94G [00:04<00:03, 1.34GB/s] model-00001-of-00002.safetensors: 52%|█████▏ | 5.21G/9.94G [00:04<00:02, 1.67GB/s] model-00001-of-00002.safetensors: 55%|█████▍ | 5.46G/9.94G [00:04<00:02, 1.88GB/s] model-00001-of-00002.safetensors: 57%|█████▋ | 5.66G/9.94G [00:05<00:02, 1.59GB/s] model-00001-of-00002.safetensors: 59%|█████▊ | 5.84G/9.94G [00:05<00:02, 1.45GB/s] model-00001-of-00002.safetensors: 61%|██████▏ | 6.10G/9.94G [00:05<00:02, 1.71GB/s] model-00001-of-00002.safetensors: 65%|██████▍ | 6.44G/9.94G [00:05<00:01, 2.11GB/s] model-00001-of-00002.safetensors: 68%|██████▊ | 6.76G/9.94G [00:05<00:01, 2.33GB/s] model-00001-of-00002.safetensors: 71%|███████ | 7.01G/9.94G [00:05<00:01, 2.20GB/s] model-00001-of-00002.safetensors: 73%|███████▎ | 7.25G/9.94G [00:05<00:01, 2.23GB/s] model-00001-of-00002.safetensors: 75%|███████▌ | 7.48G/9.94G [00:05<00:01, 2.16GB/s] model-00001-of-00002.safetensors: 78%|███████▊ | 7.71G/9.94G [00:06<00:01, 2.15GB/s] model-00001-of-00002.safetensors: 80%|███████▉ | 7.93G/9.94G [00:06<00:00, 2.04GB/s] model-00001-of-00002.safetensors: 82%|████████▏ | 8.14G/9.94G [00:06<00:01, 1.67GB/s] model-00001-of-00002.safetensors: 84%|████████▎ | 8.33G/9.94G [00:06<00:00, 1.64GB/s] model-00001-of-00002.safetensors: 86%|████████▌ | 8.50G/9.94G [00:06<00:00, 1.61GB/s] model-00001-of-00002.safetensors: 87%|████████▋ | 8.67G/9.94G [00:06<00:00, 1.39GB/s] model-00001-of-00002.safetensors: 89%|████████▊ | 8.82G/9.94G [00:06<00:00, 1.37GB/s] model-00001-of-00002.safetensors: 90%|█████████ | 8.97G/9.94G [00:06<00:00, 1.34GB/s] model-00001-of-00002.safetensors: 92%|█████████▏| 9.10G/9.94G [00:07<00:00, 1.35GB/s] model-00001-of-00002.safetensors: 93%|█████████▎| 9.25G/9.94G [00:07<00:00, 1.32GB/s] model-00001-of-00002.safetensors: 95%|█████████▌| 9.46G/9.94G [00:07<00:00, 1.51GB/s] model-00001-of-00002.safetensors: 99%|█████████▊| 9.80G/9.94G [00:07<00:00, 2.00GB/s] model-00001-of-00002.safetensors: 100%|█████████▉| 9.94G/9.94G [00:10<00:00, 951MB/s]
wespro-miss-kunodolph-v1-mkmlizer: model-00002-of-00002.safetensors: 0%| | 0.00/4.54G [00:00<?, ?B/s] model-00002-of-00002.safetensors: 0%| | 10.5M/4.54G [00:00<00:56, 80.9MB/s] model-00002-of-00002.safetensors: 1%| | 52.4M/4.54G [00:00<00:18, 242MB/s] model-00002-of-00002.safetensors: 3%|▎ | 157M/4.54G [00:00<00:08, 548MB/s] model-00002-of-00002.safetensors: 5%|▌ | 231M/4.54G [00:00<00:07, 587MB/s] model-00002-of-00002.safetensors: 8%|▊ | 377M/4.54G [00:00<00:04, 877MB/s] model-00002-of-00002.safetensors: 12%|█▏ | 524M/4.54G [00:00<00:03, 1.04GB/s] model-00002-of-00002.safetensors: 14%|█▍ | 640M/4.54G [00:00<00:04, 957MB/s] model-00002-of-00002.safetensors: 16%|█▋ | 744M/4.54G [00:00<00:04, 944MB/s] model-00002-of-00002.safetensors: 20%|█▉ | 891M/4.54G [00:01<00:03, 1.05GB/s] model-00002-of-00002.safetensors: 24%|██▍ | 1.08G/4.54G [00:01<00:02, 1.28GB/s] model-00002-of-00002.safetensors: 30%|███ | 1.37G/4.54G [00:01<00:01, 1.72GB/s] model-00002-of-00002.safetensors: 34%|███▍ | 1.55G/4.54G [00:01<00:02, 1.07GB/s] model-00002-of-00002.safetensors: 37%|███▋ | 1.70G/4.54G [00:01<00:02, 1.11GB/s] model-00002-of-00002.safetensors: 41%|████ | 1.85G/4.54G [00:01<00:02, 1.18GB/s] model-00002-of-00002.safetensors: 44%|████▍ | 1.99G/4.54G [00:01<00:02, 1.17GB/s] model-00002-of-00002.safetensors: 47%|████▋ | 2.13G/4.54G [00:02<00:02, 1.18GB/s] model-00002-of-00002.safetensors: 50%|████▉ | 2.26G/4.54G [00:02<00:02, 1.09GB/s] model-00002-of-00002.safetensors: 54%|█████▍ | 2.44G/4.54G [00:02<00:01, 1.25GB/s] model-00002-of-00002.safetensors: 57%|█████▋ | 2.60G/4.54G [00:02<00:01, 1.33GB/s] model-00002-of-00002.safetensors: 61%|██████ | 2.75G/4.54G [00:02<00:01, 1.26GB/s] model-00002-of-00002.safetensors: 64%|██████▎ | 2.88G/4.54G [00:02<00:01, 944MB/s] model-00002-of-00002.safetensors: 66%|██████▌ | 3.00G/4.54G [00:03<00:02, 692MB/s] model-00002-of-00002.safetensors: 70%|███████ | 3.19G/4.54G [00:03<00:01, 863MB/s] model-00002-of-00002.safetensors: 73%|███████▎ | 3.30G/4.54G [00:03<00:01, 781MB/s] model-00002-of-00002.safetensors: 75%|███████▍ | 3.40G/4.54G [00:03<00:01, 694MB/s] model-00002-of-00002.safetensors: 78%|███████▊ | 3.52G/4.54G [00:03<00:01, 780MB/s] model-00002-of-00002.safetensors: 80%|███████▉ | 3.62G/4.54G [00:03<00:01, 728MB/s] model-00002-of-00002.safetensors: 82%|████████▏ | 3.70G/4.54G [00:03<00:01, 740MB/s] model-00002-of-00002.safetensors: 85%|████████▍ | 3.85G/4.54G [00:04<00:00, 889MB/s] model-00002-of-00002.safetensors: 87%|████████▋ | 3.95G/4.54G [00:04<00:00, 923MB/s] model-00002-of-00002.safetensors: 91%|█████████ | 4.13G/4.54G [00:04<00:00, 1.10GB/s] model-00002-of-00002.safetensors: 94%|█████████▍| 4.28G/4.54G [00:04<00:00, 1.18GB/s] model-00002-of-00002.safetensors: 98%|█████████▊| 4.46G/4.54G [00:04<00:00, 1.33GB/s] model-00002-of-00002.safetensors: 100%|█████████▉| 4.54G/4.54G [00:04<00:00, 1.00GB/s]
wespro-miss-kunodolph-v1-mkmlizer: model.safetensors.index.json: 0%| | 0.00/22.8k [00:00<?, ?B/s] model.safetensors.index.json: 100%|██████████| 22.8k/22.8k [00:00<00:00, 113MB/s]
wespro-miss-kunodolph-v1-mkmlizer: special_tokens_map.json: 0%| | 0.00/414 [00:00<?, ?B/s] special_tokens_map.json: 100%|██████████| 414/414 [00:00<00:00, 3.85MB/s]
wespro-miss-kunodolph-v1-mkmlizer: tokenizer.json: 0%| | 0.00/1.80M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 1.80M/1.80M [00:00<00:00, 27.2MB/s]
wespro-miss-kunodolph-v1-mkmlizer: tokenizer.model: 0%| | 0.00/493k [00:00<?, ?B/s] tokenizer.model: 100%|██████████| 493k/493k [00:00<00:00, 60.8MB/s]
wespro-miss-kunodolph-v1-mkmlizer: tokenizer_config.json: 0%| | 0.00/1.46k [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 1.46k/1.46k [00:00<00:00, 24.6MB/s]
wespro-miss-kunodolph-v1-mkmlizer: Downloaded to shared memory in 16.352s
wespro-miss-kunodolph-v1-mkmlizer: quantizing model to /dev/shm/model_cache
wespro-miss-kunodolph-v1-mkmlizer: Saving mkml model at /dev/shm/model_cache
wespro-miss-kunodolph-v1-mkmlizer: Reading /tmp/tmp3aqz7l1_/model.safetensors.index.json
wespro-miss-kunodolph-v1-mkmlizer: Profiling: 0%| | 0/291 [00:00<?, ?it/s] Profiling: 0%| | 1/291 [00:01<06:14, 1.29s/it] Profiling: 4%|▍ | 13/291 [00:01<00:22, 12.53it/s] Profiling: 10%|█ | 30/291 [00:01<00:08, 31.44it/s] Profiling: 14%|█▍ | 41/291 [00:01<00:05, 42.99it/s] Profiling: 20%|█▉ | 58/291 [00:01<00:03, 63.76it/s] Profiling: 26%|██▌ | 75/291 [00:01<00:02, 82.96it/s] Profiling: 31%|███ | 89/291 [00:01<00:02, 93.36it/s] Profiling: 35%|███▌ | 103/291 [00:02<00:01, 102.55it/s] Profiling: 41%|████ | 120/291 [00:02<00:01, 115.92it/s] Profiling: 46%|████▌ | 134/291 [00:02<00:01, 119.43it/s] Profiling: 52%|█████▏ | 151/291 [00:02<00:01, 132.37it/s] Profiling: 57%|█████▋ | 166/291 [00:02<00:00, 132.88it/s] Profiling: 62%|██████▏ | 181/291 [00:02<00:00, 131.03it/s] Profiling: 68%|██████▊ | 197/291 [00:02<00:00, 135.07it/s] Profiling: 73%|███████▎ | 211/291 [00:04<00:03, 22.51it/s] Profiling: 76%|███████▋ | 222/291 [00:04<00:02, 27.80it/s] Profiling: 82%|████████▏ | 239/291 [00:04<00:01, 38.82it/s] Profiling: 88%|████████▊ | 256/291 [00:04<00:00, 51.78it/s] Profiling: 93%|█████████▎| 270/291 [00:05<00:00, 62.72it/s] Profiling: 98%|█████████▊| 284/291 [00:05<00:00, 74.44it/s] Profiling: 100%|██████████| 291/291 [00:05<00:00, 53.17it/s]
wespro-miss-kunodolph-v1-mkmlizer: quantized model in 16.052s
wespro-miss-kunodolph-v1-mkmlizer: Processed model WesPro/Miss_KunoDolph in 33.626s
wespro-miss-kunodolph-v1-mkmlizer: creating bucket guanaco-mkml-models
wespro-miss-kunodolph-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
wespro-miss-kunodolph-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/wespro-miss-kunodolph-v1
wespro-miss-kunodolph-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/wespro-miss-kunodolph-v1/config.json
wespro-miss-kunodolph-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/wespro-miss-kunodolph-v1/tokenizer_config.json
wespro-miss-kunodolph-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.model s3://guanaco-mkml-models/wespro-miss-kunodolph-v1/tokenizer.model
wespro-miss-kunodolph-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/wespro-miss-kunodolph-v1/special_tokens_map.json
wespro-miss-kunodolph-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/wespro-miss-kunodolph-v1/tokenizer.json
wespro-miss-kunodolph-v1-mkmlizer: cp /dev/shm/model_cache/mkml_model.tensors s3://guanaco-mkml-models/wespro-miss-kunodolph-v1/mkml_model.tensors
wespro-miss-kunodolph-v1-mkmlizer: loading reward model from ChaiML/reward_gpt2_medium_preference_24m_e2
wespro-miss-kunodolph-v1-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:1067: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
wespro-miss-kunodolph-v1-mkmlizer: warnings.warn(
wespro-miss-kunodolph-v1-mkmlizer: config.json: 0%| | 0.00/1.05k [00:00<?, ?B/s] config.json: 100%|██████████| 1.05k/1.05k [00:00<00:00, 8.24MB/s]
wespro-miss-kunodolph-v1-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:690: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
wespro-miss-kunodolph-v1-mkmlizer: warnings.warn(
wespro-miss-kunodolph-v1-mkmlizer: tokenizer_config.json: 0%| | 0.00/234 [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 234/234 [00:00<00:00, 1.47MB/s]
wespro-miss-kunodolph-v1-mkmlizer: vocab.json: 0%| | 0.00/1.04M [00:00<?, ?B/s] vocab.json: 100%|██████████| 1.04M/1.04M [00:00<00:00, 24.3MB/s]
wespro-miss-kunodolph-v1-mkmlizer: pytorch_model.bin: 0%| | 0.00/1.44G [00:00<?, ?B/s] pytorch_model.bin: 1%| | 10.5M/1.44G [00:00<00:17, 83.2MB/s] pytorch_model.bin: 6%|▌ | 83.9M/1.44G [00:00<00:03, 419MB/s] pytorch_model.bin: 9%|▉ | 136M/1.44G [00:00<00:03, 338MB/s] pytorch_model.bin: 14%|█▍ | 199M/1.44G [00:00<00:03, 411MB/s] pytorch_model.bin: 22%|██▏ | 315M/1.44G [00:00<00:02, 536MB/s] pytorch_model.bin: 28%|██▊ | 398M/1.44G [00:00<00:01, 607MB/s] pytorch_model.bin: 33%|███▎ | 472M/1.44G [00:00<00:01, 502MB/s] pytorch_model.bin: 37%|███▋ | 535M/1.44G [00:01<00:01, 485MB/s] pytorch_model.bin: 41%|████ | 587M/1.44G [00:01<00:01, 485MB/s] pytorch_model.bin: 56%|█████▌ | 807M/1.44G [00:01<00:00, 899MB/s] pytorch_model.bin: 80%|███████▉ | 1.15G/1.44G [00:01<00:00, 1.55GB/s] pytorch_model.bin: 100%|█████████▉| 1.44G/1.44G [00:01<00:00, 921MB/s]
wespro-miss-kunodolph-v1-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
wespro-miss-kunodolph-v1-mkmlizer: Saving duration: 0.267s
wespro-miss-kunodolph-v1-mkmlizer: Processed model ChaiML/reward_gpt2_medium_preference_24m_e2 in 5.658s
wespro-miss-kunodolph-v1-mkmlizer: creating bucket guanaco-reward-models
wespro-miss-kunodolph-v1-mkmlizer: Bucket 's3://guanaco-reward-models/' created
wespro-miss-kunodolph-v1-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/wespro-miss-kunodolph-v1_reward
wespro-miss-kunodolph-v1-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/wespro-miss-kunodolph-v1_reward/tokenizer_config.json
wespro-miss-kunodolph-v1-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/wespro-miss-kunodolph-v1_reward/special_tokens_map.json
wespro-miss-kunodolph-v1-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/wespro-miss-kunodolph-v1_reward/config.json
wespro-miss-kunodolph-v1-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/wespro-miss-kunodolph-v1_reward/vocab.json
wespro-miss-kunodolph-v1-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/wespro-miss-kunodolph-v1_reward/merges.txt
wespro-miss-kunodolph-v1-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/wespro-miss-kunodolph-v1_reward/tokenizer.json
wespro-miss-kunodolph-v1-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/wespro-miss-kunodolph-v1_reward/reward.tensors
Job wespro-miss-kunodolph-v1-mkmlizer completed after 65.38s with status: succeeded
Stopping job with name wespro-miss-kunodolph-v1-mkmlizer
Pipeline stage MKMLizer completed in 144.29s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.11s
Running pipeline stage ISVCDeployer
Creating inference service wespro-miss-kunodolph-v1
Ignoring service wespro-miss-kunodolph-v1 already deployed
Waiting for inference service wespro-miss-kunodolph-v1 to be ready
Inference service wespro-miss-kunodolph-v1 ready after 10.226337671279907s
Pipeline stage ISVCDeployer completed in 17.14s
Running pipeline stage StressChecker
Received healthy response to inference request in 0.9374186992645264s
Received healthy response to inference request in 0.9914467334747314s
Received healthy response to inference request in 0.9180018901824951s
Received healthy response to inference request in 0.847515344619751s
Received healthy response to inference request in 0.7181761264801025s
5 requests
0 failed requests
5th percentile: 0.7440439701080322
10th percentile: 0.769911813735962
20th percentile: 0.8216475009918213
30th percentile: 0.8616126537322998
40th percentile: 0.8898072719573975
50th percentile: 0.9180018901824951
60th percentile: 0.9257686138153076
70th percentile: 0.9335353374481201
80th percentile: 0.9482243061065674
90th percentile: 0.9698355197906494
95th percentile: 0.9806411266326904
99th percentile: 0.9892856121063233
mean time: 0.8825117588043213
Pipeline stage StressChecker completed in 5.37s
Running pipeline stage DaemonicModelEvalScorer
Pipeline stage DaemonicModelEvalScorer completed in 0.06s
Running pipeline stage DaemonicSafetyScorer
Running M-Eval for topic stay_in_character
Pipeline stage DaemonicSafetyScorer completed in 0.05s
M-Eval Dataset for topic stay_in_character is loaded
wespro-miss-kunodolph_v1 status is now deployed due to DeploymentManager action
Scoring model output for bot %s
Scoring model output for bot %s
Scoring model output for bot %s
Scoring model output for bot %s
wespro-miss-kunodolph_v1 status is now inactive due to auto deactivation removed underperforming models
admin requested tearing down of wespro-miss-kunodolph_v1
Running pipeline stage ISVCDeleter
Checking if service wespro-miss-kunodolph-v1 is running
Tearing down inference service wespro-miss-kunodolph-v1
Toredown service wespro-miss-kunodolph-v1
Pipeline stage ISVCDeleter completed in 7.68s
Running pipeline stage MKMLModelDeleter
Cleaning model data from S3
Cleaning model data from model cache
Deleting key wespro-miss-kunodolph-v1/config.json from bucket guanaco-mkml-models
Deleting key wespro-miss-kunodolph-v1/mkml_model.tensors from bucket guanaco-mkml-models
Deleting key wespro-miss-kunodolph-v1/special_tokens_map.json from bucket guanaco-mkml-models
Deleting key wespro-miss-kunodolph-v1/tokenizer.json from bucket guanaco-mkml-models
Deleting key wespro-miss-kunodolph-v1/tokenizer.model from bucket guanaco-mkml-models
Deleting key wespro-miss-kunodolph-v1/tokenizer_config.json from bucket guanaco-mkml-models
Cleaning model data from model cache
Deleting key wespro-miss-kunodolph-v1_reward/config.json from bucket guanaco-reward-models
Deleting key wespro-miss-kunodolph-v1_reward/merges.txt from bucket guanaco-reward-models
Deleting key wespro-miss-kunodolph-v1_reward/reward.tensors from bucket guanaco-reward-models
Deleting key wespro-miss-kunodolph-v1_reward/special_tokens_map.json from bucket guanaco-reward-models
Deleting key wespro-miss-kunodolph-v1_reward/tokenizer.json from bucket guanaco-reward-models
Deleting key wespro-miss-kunodolph-v1_reward/tokenizer_config.json from bucket guanaco-reward-models
Deleting key wespro-miss-kunodolph-v1_reward/vocab.json from bucket guanaco-reward-models
Pipeline stage MKMLModelDeleter completed in 2.26s
wespro-miss-kunodolph_v1 status is now torndown due to DeploymentManager action