submission_id: megumi21-megumi-chat-7b-v0-6_v1
developer_uid: megumi_10073
status: inactive
model_repo: megumi21/Megumi-Chat-7B-v0.6
reward_repo: ChaiML/reward_gpt2_medium_preference_24m_e2
generation_params: {'temperature': 1.0, 'top_p': 1.0, 'top_k': 40, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n'], 'max_input_tokens': 512, 'best_of': 16, 'max_output_tokens': 64}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:'}
reward_formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:'}
timestamp: 2024-04-01T02:37:14+00:00
model_name: megumi21-megumi-chat-7b-v0-6_v1
model_eval_status: success
safety_score: 0.97
entertaining: 6.92
stay_in_character: 8.17
user_preference: 7.36
double_thumbs_up: 86
thumbs_up: 143
thumbs_down: 69
num_battles: 8749
num_wins: 4371
win_ratio: 0.4995999542804892
celo_rating: 1156.9
Resubmit model
Running pipeline stage MKMLizer
Starting job with name megumi21-megumi-chat-7b-v0-6-v1-mkmlizer
Waiting for job on megumi21-megumi-chat-7b-v0-6-v1-mkmlizer to finish
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: ║ _____ __ __ ║
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: ║ /___/ ║
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: ║ ║
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: ║ Version: 0.6.11 ║
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: ║ ║
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: ║ The license key for the current software has been verified as ║
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: ║ belonging to: ║
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: ║ ║
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: ║ Chai Research Corp. ║
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: ║ Expiration: 2024-07-15 23:59:59 ║
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: ║ ║
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: .gitattributes: 0%| | 0.00/1.52k [00:00<?, ?B/s] .gitattributes: 100%|██████████| 1.52k/1.52k [00:00<00:00, 16.5MB/s]
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: config.json: 0%| | 0.00/654 [00:00<?, ?B/s] config.json: 100%|██████████| 654/654 [00:00<00:00, 10.2MB/s]
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: generation_config.json: 0%| | 0.00/132 [00:00<?, ?B/s] generation_config.json: 100%|██████████| 132/132 [00:00<00:00, 1.03MB/s]
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: pytorch_model-00001-of-00003.bin: 0%| | 0.00/4.94G [00:00<?, ?B/s] pytorch_model-00001-of-00003.bin: 0%| | 10.5M/4.94G [00:03<26:36, 3.09MB/s] pytorch_model-00001-of-00003.bin: 0%| | 21.0M/4.94G [00:03<11:26, 7.17MB/s] pytorch_model-00001-of-00003.bin: 3%|▎ | 147M/4.94G [00:03<01:09, 69.1MB/s] pytorch_model-00001-of-00003.bin: 6%|▌ | 294M/4.94G [00:03<00:28, 161MB/s] pytorch_model-00001-of-00003.bin: 7%|▋ | 367M/4.94G [00:04<00:25, 177MB/s] pytorch_model-00001-of-00003.bin: 9%|▊ | 430M/4.94G [00:04<00:20, 218MB/s] pytorch_model-00001-of-00003.bin: 18%|█▊ | 902M/4.94G [00:04<00:05, 748MB/s] pytorch_model-00001-of-00003.bin: 22%|██▏ | 1.11G/4.94G [00:04<00:05, 743MB/s] pytorch_model-00001-of-00003.bin: 26%|██▌ | 1.27G/4.94G [00:05<00:06, 527MB/s] pytorch_model-00001-of-00003.bin: 28%|██▊ | 1.38G/4.94G [00:05<00:07, 484MB/s] pytorch_model-00001-of-00003.bin: 30%|███ | 1.50G/4.94G [00:05<00:06, 551MB/s] pytorch_model-00001-of-00003.bin: 33%|███▎ | 1.64G/4.94G [00:05<00:05, 652MB/s] pytorch_model-00001-of-00003.bin: 35%|███▌ | 1.74G/4.94G [00:06<00:05, 593MB/s] pytorch_model-00001-of-00003.bin: 37%|███▋ | 1.84G/4.94G [00:06<00:04, 642MB/s] pytorch_model-00001-of-00003.bin: 39%|███▉ | 1.93G/4.94G [00:06<00:04, 650MB/s] pytorch_model-00001-of-00003.bin: 41%|████▏ | 2.04G/4.94G [00:06<00:03, 748MB/s] pytorch_model-00001-of-00003.bin: 43%|████▎ | 2.14G/4.94G [00:06<00:03, 702MB/s] pytorch_model-00001-of-00003.bin: 45%|████▍ | 2.22G/4.94G [00:06<00:03, 717MB/s] pytorch_model-00001-of-00003.bin: 47%|████▋ | 2.32G/4.94G [00:06<00:03, 738MB/s] pytorch_model-00001-of-00003.bin: 49%|████▉ | 2.43G/4.94G [00:06<00:03, 822MB/s] pytorch_model-00001-of-00003.bin: 51%|█████ | 2.53G/4.94G [00:06<00:02, 837MB/s] pytorch_model-00001-of-00003.bin: 53%|█████▎ | 2.62G/4.94G [00:07<00:02, 863MB/s] pytorch_model-00001-of-00003.bin: 55%|█████▍ | 2.72G/4.94G [00:07<00:02, 782MB/s] pytorch_model-00001-of-00003.bin: 59%|█████▊ | 2.89G/4.94G [00:07<00:02, 875MB/s] pytorch_model-00001-of-00003.bin: 60%|██████ | 2.99G/4.94G [00:07<00:02, 737MB/s] pytorch_model-00001-of-00003.bin: 65%|██████▌ | 3.22G/4.94G [00:07<00:01, 1.07GB/s] pytorch_model-00001-of-00003.bin: 70%|███████ | 3.48G/4.94G [00:07<00:01, 1.39GB/s] pytorch_model-00001-of-00003.bin: 76%|███████▌ | 3.76G/4.94G [00:07<00:00, 1.71GB/s] pytorch_model-00001-of-00003.bin: 81%|████████ | 4.00G/4.94G [00:08<00:00, 1.59GB/s] pytorch_model-00001-of-00003.bin: 84%|████████▍ | 4.17G/4.94G [00:08<00:00, 1.02GB/s] pytorch_model-00001-of-00003.bin: 87%|████████▋ | 4.31G/4.94G [00:08<00:00, 920MB/s] pytorch_model-00001-of-00003.bin: 90%|████████▉ | 4.44G/4.94G [00:08<00:00, 921MB/s] pytorch_model-00001-of-00003.bin: 92%|█████████▏| 4.56G/4.94G [00:08<00:00, 903MB/s] pytorch_model-00001-of-00003.bin: 100%|█████████▉| 4.94G/4.94G [00:09<00:00, 549MB/s]
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: pytorch_model-00002-of-00003.bin: 0%| | 0.00/5.00G [00:00<?, ?B/s] pytorch_model-00002-of-00003.bin: 0%| | 10.5M/5.00G [00:02<19:02, 4.37MB/s] pytorch_model-00002-of-00003.bin: 1%|▏ | 62.9M/5.00G [00:03<03:24, 24.2MB/s] pytorch_model-00002-of-00003.bin: 1%|▏ | 73.4M/5.00G [00:03<03:00, 27.3MB/s] pytorch_model-00002-of-00003.bin: 4%|▍ | 199M/5.00G [00:03<00:45, 105MB/s] pytorch_model-00002-of-00003.bin: 5%|▌ | 252M/5.00G [00:03<00:38, 123MB/s] pytorch_model-00002-of-00003.bin: 6%|▌ | 304M/5.00G [00:03<00:30, 155MB/s] pytorch_model-00002-of-00003.bin: 11%|█▏ | 566M/5.00G [00:04<00:10, 440MB/s] pytorch_model-00002-of-00003.bin: 23%|██▎ | 1.15G/5.00G [00:04<00:03, 1.14GB/s] pytorch_model-00002-of-00003.bin: 27%|██▋ | 1.35G/5.00G [00:05<00:06, 549MB/s] pytorch_model-00002-of-00003.bin: 30%|██▉ | 1.50G/5.00G [00:05<00:06, 580MB/s] pytorch_model-00002-of-00003.bin: 33%|███▎ | 1.64G/5.00G [00:05<00:05, 661MB/s] pytorch_model-00002-of-00003.bin: 35%|███▌ | 1.76G/5.00G [00:05<00:05, 575MB/s] pytorch_model-00002-of-00003.bin: 38%|███▊ | 1.90G/5.00G [00:05<00:04, 663MB/s] pytorch_model-00002-of-00003.bin: 40%|████ | 2.01G/5.00G [00:06<00:04, 726MB/s] pytorch_model-00002-of-00003.bin: 43%|████▎ | 2.13G/5.00G [00:06<00:04, 637MB/s] pytorch_model-00002-of-00003.bin: 45%|████▍ | 2.24G/5.00G [00:06<00:03, 721MB/s] pytorch_model-00002-of-00003.bin: 50%|█████ | 2.52G/5.00G [00:06<00:02, 1.10GB/s] pytorch_model-00002-of-00003.bin: 54%|█████▍ | 2.69G/5.00G [00:06<00:01, 1.23GB/s] pytorch_model-00002-of-00003.bin: 60%|█████▉ | 3.00G/5.00G [00:06<00:01, 1.64GB/s] pytorch_model-00002-of-00003.bin: 64%|██████▍ | 3.20G/5.00G [00:06<00:01, 1.23GB/s] pytorch_model-00002-of-00003.bin: 67%|██████▋ | 3.37G/5.00G [00:07<00:02, 771MB/s] pytorch_model-00002-of-00003.bin: 70%|██████▉ | 3.49G/5.00G [00:07<00:02, 725MB/s] pytorch_model-00002-of-00003.bin: 72%|███████▏ | 3.60G/5.00G [00:07<00:02, 692MB/s] pytorch_model-00002-of-00003.bin: 75%|███████▌ | 3.75G/5.00G [00:07<00:01, 806MB/s] pytorch_model-00002-of-00003.bin: 77%|███████▋ | 3.86G/5.00G [00:08<00:01, 823MB/s] pytorch_model-00002-of-00003.bin: 81%|████████ | 4.06G/5.00G [00:08<00:00, 1.05GB/s] pytorch_model-00002-of-00003.bin: 85%|████████▍ | 4.25G/5.00G [00:08<00:00, 1.21GB/s] pytorch_model-00002-of-00003.bin: 88%|████████▊ | 4.39G/5.00G [00:08<00:00, 950MB/s] pytorch_model-00002-of-00003.bin: 90%|█████████ | 4.52G/5.00G [00:08<00:00, 883MB/s] pytorch_model-00002-of-00003.bin: 92%|█████████▏| 4.62G/5.00G [00:08<00:00, 873MB/s] pytorch_model-00002-of-00003.bin: 95%|█████████▍| 4.73G/5.00G [00:08<00:00, 899MB/s] pytorch_model-00002-of-00003.bin: 100%|█████████▉| 5.00G/5.00G [00:09<00:00, 554MB/s]
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: pytorch_model-00003-of-00003.bin: 0%| | 0.00/4.54G [00:00<?, ?B/s] pytorch_model-00003-of-00003.bin: 0%| | 10.5M/4.54G [00:02<19:36, 3.85MB/s] pytorch_model-00003-of-00003.bin: 1%| | 41.9M/4.54G [00:02<03:59, 18.8MB/s] pytorch_model-00003-of-00003.bin: 1%|▏ | 62.9M/4.54G [00:03<02:28, 30.2MB/s] pytorch_model-00003-of-00003.bin: 2%|▏ | 83.9M/4.54G [00:03<01:40, 44.4MB/s] pytorch_model-00003-of-00003.bin: 2%|▏ | 105M/4.54G [00:03<01:12, 61.5MB/s] pytorch_model-00003-of-00003.bin: 4%|▍ | 178M/4.54G [00:03<00:30, 144MB/s] pytorch_model-00003-of-00003.bin: 8%|▊ | 367M/4.54G [00:03<00:11, 373MB/s] pytorch_model-00003-of-00003.bin: 9%|▉ | 430M/4.54G [00:03<00:10, 391MB/s] pytorch_model-00003-of-00003.bin: 12%|█▏ | 535M/4.54G [00:03<00:08, 477MB/s] pytorch_model-00003-of-00003.bin: 24%|██▎ | 1.07G/4.54G [00:04<00:03, 1.02GB/s] pytorch_model-00003-of-00003.bin: 26%|██▌ | 1.17G/4.54G [00:04<00:06, 490MB/s] pytorch_model-00003-of-00003.bin: 27%|██▋ | 1.25G/4.54G [00:05<00:06, 471MB/s] pytorch_model-00003-of-00003.bin: 32%|███▏ | 1.47G/4.54G [00:05<00:04, 666MB/s] pytorch_model-00003-of-00003.bin: 35%|███▍ | 1.58G/4.54G [00:05<00:04, 705MB/s] pytorch_model-00003-of-00003.bin: 37%|███▋ | 1.69G/4.54G [00:05<00:04, 673MB/s] pytorch_model-00003-of-00003.bin: 40%|███▉ | 1.80G/4.54G [00:05<00:03, 718MB/s] pytorch_model-00003-of-00003.bin: 42%|████▏ | 1.90G/4.54G [00:05<00:03, 680MB/s] pytorch_model-00003-of-00003.bin: 46%|████▌ | 2.08G/4.54G [00:05<00:02, 838MB/s] pytorch_model-00003-of-00003.bin: 48%|████▊ | 2.18G/4.54G [00:06<00:03, 697MB/s] pytorch_model-00003-of-00003.bin: 56%|█████▌ | 2.54G/4.54G [00:06<00:01, 1.24GB/s] pytorch_model-00003-of-00003.bin: 60%|█████▉ | 2.71G/4.54G [00:06<00:02, 781MB/s] pytorch_model-00003-of-00003.bin: 62%|██████▏ | 2.83G/4.54G [00:07<00:02, 603MB/s] pytorch_model-00003-of-00003.bin: 65%|██████▍ | 2.94G/4.54G [00:07<00:03, 475MB/s] pytorch_model-00003-of-00003.bin: 67%|██████▋ | 3.02G/4.54G [00:07<00:03, 473MB/s] pytorch_model-00003-of-00003.bin: 68%|██████▊ | 3.09G/4.54G [00:07<00:02, 502MB/s] pytorch_model-00003-of-00003.bin: 70%|██████▉ | 3.17G/4.54G [00:07<00:03, 432MB/s] pytorch_model-00003-of-00003.bin: 71%|███████ | 3.23G/4.54G [00:08<00:03, 432MB/s] pytorch_model-00003-of-00003.bin: 72%|███████▏ | 3.28G/4.54G [00:08<00:02, 443MB/s] pytorch_model-00003-of-00003.bin: 75%|███████▌ | 3.42G/4.54G [00:08<00:01, 614MB/s] pytorch_model-00003-of-00003.bin: 83%|████████▎ | 3.77G/4.54G [00:08<00:00, 1.22GB/s] pytorch_model-00003-of-00003.bin: 87%|████████▋ | 3.93G/4.54G [00:08<00:00, 900MB/s] pytorch_model-00003-of-00003.bin: 89%|████████▉ | 4.06G/4.54G [00:08<00:00, 898MB/s] pytorch_model-00003-of-00003.bin: 93%|█████████▎| 4.20G/4.54G [00:08<00:00, 1.01GB/s] pytorch_model-00003-of-00003.bin: 95%|█████████▌| 4.33G/4.54G [00:09<00:00, 883MB/s] pytorch_model-00003-of-00003.bin: 100%|█████████▉| 4.54G/4.54G [00:09<00:00, 487MB/s]
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: pytorch_model.bin.index.json: 0%| | 0.00/23.9k [00:00<?, ?B/s] pytorch_model.bin.index.json: 100%|██████████| 23.9k/23.9k [00:00<00:00, 127MB/s]
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: special_tokens_map.json: 0%| | 0.00/437 [00:00<?, ?B/s] special_tokens_map.json: 100%|██████████| 437/437 [00:00<00:00, 4.69MB/s]
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: tokenizer.model: 0%| | 0.00/493k [00:00<?, ?B/s] tokenizer.model: 100%|██████████| 493k/493k [00:00<00:00, 13.1MB/s]
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: tokenizer_config.json: 0%| | 0.00/1.51k [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 1.51k/1.51k [00:00<00:00, 13.4MB/s]
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: Downloaded to shared memory in 29.113s
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: quantizing model to /dev/shm/model_cache
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: Saving mkml model at /dev/shm/model_cache
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: Reading /tmp/tmplqwrvm4x/pytorch_model.bin.index.json
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: Profiling: 0%| | 0/291 [00:00<?, ?it/s] Profiling: 0%| | 1/291 [00:03<14:55, 3.09s/it] Profiling: 34%|███▎ | 98/291 [00:04<00:07, 25.61it/s] Profiling: 70%|███████ | 204/291 [00:06<00:02, 42.12it/s] Profiling: 100%|██████████| 291/291 [00:07<00:00, 46.70it/s] Profiling: 100%|██████████| 291/291 [00:07<00:00, 37.36it/s]
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: Processed model megumi21/Megumi-Chat-7B-v0.6 in 50.282s
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: creating bucket guanaco-mkml-models
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/megumi21-megumi-chat-7b-v0-6-v1
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/megumi21-megumi-chat-7b-v0-6-v1/special_tokens_map.json
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/megumi21-megumi-chat-7b-v0-6-v1/tokenizer_config.json
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.model s3://guanaco-mkml-models/megumi21-megumi-chat-7b-v0-6-v1/tokenizer.model
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/megumi21-megumi-chat-7b-v0-6-v1/config.json
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/megumi21-megumi-chat-7b-v0-6-v1/tokenizer.json
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: cp /dev/shm/model_cache/mkml_model.tensors s3://guanaco-mkml-models/megumi21-megumi-chat-7b-v0-6-v1/mkml_model.tensors
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: loading reward model from ChaiML/reward_gpt2_medium_preference_24m_e2
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:1067: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: warnings.warn(
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: config.json: 0%| | 0.00/1.05k [00:00<?, ?B/s] config.json: 100%|██████████| 1.05k/1.05k [00:00<00:00, 8.94MB/s]
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:690: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: warnings.warn(
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: tokenizer_config.json: 0%| | 0.00/234 [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 234/234 [00:00<00:00, 2.50MB/s]
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: vocab.json: 0%| | 0.00/1.04M [00:00<?, ?B/s] vocab.json: 100%|██████████| 1.04M/1.04M [00:00<00:00, 30.5MB/s]
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: tokenizer.json: 0%| | 0.00/2.11M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 2.11M/2.11M [00:00<00:00, 11.2MB/s] tokenizer.json: 100%|██████████| 2.11M/2.11M [00:00<00:00, 11.2MB/s]
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:472: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: warnings.warn(
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: pytorch_model.bin: 0%| | 0.00/1.44G [00:00<?, ?B/s] pytorch_model.bin: 1%| | 10.5M/1.44G [00:00<00:22, 65.0MB/s] pytorch_model.bin: 2%|▏ | 31.5M/1.44G [00:00<00:34, 40.9MB/s] pytorch_model.bin: 6%|▌ | 83.9M/1.44G [00:01<00:22, 60.7MB/s] pytorch_model.bin: 12%|█▏ | 168M/1.44G [00:01<00:08, 144MB/s] pytorch_model.bin: 39%|███▉ | 566M/1.44G [00:01<00:01, 647MB/s] pytorch_model.bin: 76%|███████▌ | 1.10G/1.44G [00:01<00:00, 1.38GB/s] pytorch_model.bin: 96%|█████████▋| 1.39G/1.44G [00:01<00:00, 1.49GB/s] pytorch_model.bin: 100%|█████████▉| 1.44G/1.44G [00:01<00:00, 726MB/s]
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: Saving duration: 0.285s
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: Processed model ChaiML/reward_gpt2_medium_preference_24m_e2 in 6.262s
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: creating bucket guanaco-reward-models
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: Bucket 's3://guanaco-reward-models/' created
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/megumi21-megumi-chat-7b-v0-6-v1_reward
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/megumi21-megumi-chat-7b-v0-6-v1_reward/special_tokens_map.json
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/megumi21-megumi-chat-7b-v0-6-v1_reward/config.json
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/megumi21-megumi-chat-7b-v0-6-v1_reward/tokenizer_config.json
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/megumi21-megumi-chat-7b-v0-6-v1_reward/vocab.json
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/megumi21-megumi-chat-7b-v0-6-v1_reward/merges.txt
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/megumi21-megumi-chat-7b-v0-6-v1_reward/tokenizer.json
megumi21-megumi-chat-7b-v0-6-v1-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/megumi21-megumi-chat-7b-v0-6-v1_reward/reward.tensors
Job megumi21-megumi-chat-7b-v0-6-v1-mkmlizer completed after 74.49s with status: succeeded
Stopping job with name megumi21-megumi-chat-7b-v0-6-v1-mkmlizer
Pipeline stage MKMLizer completed in 79.61s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.11s
Running pipeline stage ISVCDeployer
Creating inference service megumi21-megumi-chat-7b-v0-6-v1
Waiting for inference service megumi21-megumi-chat-7b-v0-6-v1 to be ready
Exception raised while processing tagging_function
Traceback (most recent call last): File "/code/guanaco/guanaco_services/src/guanaco_model_service/chat_api.py", line 274, in resolve_chat_api conversation_tag = self.tagging_function(conversation_state) File "/home/zongyi/gitlab/zztools/zztools/llm/guanaco/submit_routing_model.py", line 176, in last_user_message_length TypeError: 'ConversationMessage' object is not subscriptable
Inference service megumi21-megumi-chat-7b-v0-6-v1 ready after 40.29205799102783s
Pipeline stage ISVCDeployer completed in 47.99s
Running pipeline stage StressChecker
Received healthy response to inference request in 1.9064652919769287s
Received healthy response to inference request in 1.1859607696533203s
Received healthy response to inference request in 1.087599754333496s
Received healthy response to inference request in 1.122429609298706s
Received healthy response to inference request in 1.1713762283325195s
5 requests
0 failed requests
5th percentile: 1.0945657253265382
10th percentile: 1.10153169631958
20th percentile: 1.115463638305664
30th percentile: 1.1322189331054688
40th percentile: 1.1517975807189942
50th percentile: 1.1713762283325195
60th percentile: 1.1772100448608398
70th percentile: 1.18304386138916
80th percentile: 1.3300616741180422
90th percentile: 1.6182634830474854
95th percentile: 1.7623643875122068
99th percentile: 1.8776451110839842
mean time: 1.294766330718994
Pipeline stage StressChecker completed in 7.28s
Running pipeline stage DaemonicModelEvalScorer
Pipeline stage DaemonicModelEvalScorer completed in 0.04s
Running pipeline stage DaemonicSafetyScorer
Running M-Eval for topic stay_in_character
Pipeline stage DaemonicSafetyScorer completed in 0.04s
M-Eval Dataset for topic stay_in_character is loaded
megumi21-megumi-chat-7b-v0-6_v1 status is now deployed due to DeploymentManager action
megumi21-megumi-chat-7b-v0-6_v1 status is now inactive due to auto deactivation removed underperforming models

Usage Metrics

Latency Metrics