submission_id: cgato-thespis-converseslop-7b_v2
developer_uid: c.gato
status: inactive
model_repo: cgato/Thespis-ConverseSlop-7b-v0.8.2
reward_repo: rirv938/reward_gpt2_medium_preference_24m_e2
generation_params: {'temperature': 1.0, 'top_p': 1.0, 'top_k': 40, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n'], 'max_input_tokens': 512, 'best_of': 16, 'max_output_tokens': 64}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:'}
reward_formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:'}
timestamp: 2024-03-08T04:07:02+00:00
model_name: Thespis-Conversational-0-8-2
model_eval_status: success
safety_score: 0.76
entertaining: 7.04
stay_in_character: 8.6
user_preference: 7.4
double_thumbs_up: 1907
thumbs_up: 2900
thumbs_down: 1233
num_battles: 112604
num_wins: 59145
win_ratio: 0.5252477709495222
celo_rating: 1175.59
Resubmit model
Running pipeline stage MKMLizer
Starting job with name cgato-thespis-converseslop-7b-v2-mkmlizer
Waiting for job on cgato-thespis-converseslop-7b-v2-mkmlizer to finish
cgato-thespis-converseslop-7b-v2-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
cgato-thespis-converseslop-7b-v2-mkmlizer: ║ _____ __ __ ║
cgato-thespis-converseslop-7b-v2-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
cgato-thespis-converseslop-7b-v2-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
cgato-thespis-converseslop-7b-v2-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
cgato-thespis-converseslop-7b-v2-mkmlizer: ║ /___/ ║
cgato-thespis-converseslop-7b-v2-mkmlizer: ║ ║
cgato-thespis-converseslop-7b-v2-mkmlizer: ║ Version: 0.6.11 ║
cgato-thespis-converseslop-7b-v2-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
cgato-thespis-converseslop-7b-v2-mkmlizer: ║ ║
cgato-thespis-converseslop-7b-v2-mkmlizer: ║ The license key for the current software has been verified as ║
cgato-thespis-converseslop-7b-v2-mkmlizer: ║ belonging to: ║
cgato-thespis-converseslop-7b-v2-mkmlizer: ║ ║
cgato-thespis-converseslop-7b-v2-mkmlizer: ║ Chai Research Corp. ║
cgato-thespis-converseslop-7b-v2-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
cgato-thespis-converseslop-7b-v2-mkmlizer: ║ Expiration: 2024-04-15 23:59:59 ║
cgato-thespis-converseslop-7b-v2-mkmlizer: ║ ║
cgato-thespis-converseslop-7b-v2-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
cgato-thespis-converseslop-7b-v2-mkmlizer: .gitattributes: 0%| | 0.00/1.52k [00:00<?, ?B/s] .gitattributes: 100%|██████████| 1.52k/1.52k [00:00<00:00, 12.6MB/s]
cgato-thespis-converseslop-7b-v2-mkmlizer: README.md: 0%| | 0.00/66.0 [00:00<?, ?B/s] README.md: 100%|██████████| 66.0/66.0 [00:00<00:00, 819kB/s]
cgato-thespis-converseslop-7b-v2-mkmlizer: config.json: 0%| | 0.00/643 [00:00<?, ?B/s] config.json: 100%|██████████| 643/643 [00:00<00:00, 9.08MB/s]
cgato-thespis-converseslop-7b-v2-mkmlizer: generation_config.json: 0%| | 0.00/132 [00:00<?, ?B/s] generation_config.json: 100%|██████████| 132/132 [00:00<00:00, 2.16MB/s]
cgato-thespis-converseslop-7b-v2-mkmlizer: pytorch_model-00001-of-00003.bin: 0%| | 0.00/4.94G [00:00<?, ?B/s] pytorch_model-00001-of-00003.bin: 0%| | 10.5M/4.94G [00:00<01:12, 67.8MB/s] pytorch_model-00001-of-00003.bin: 0%| | 21.0M/4.94G [00:00<01:07, 73.4MB/s] pytorch_model-00001-of-00003.bin: 1%| | 41.9M/4.94G [00:00<00:58, 83.4MB/s] pytorch_model-00001-of-00003.bin: 3%|▎ | 157M/4.94G [00:00<00:13, 357MB/s] pytorch_model-00001-of-00003.bin: 5%|▍ | 231M/4.94G [00:00<00:10, 458MB/s] pytorch_model-00001-of-00003.bin: 6%|▌ | 304M/4.94G [00:00<00:09, 473MB/s] pytorch_model-00001-of-00003.bin: 9%|▊ | 430M/4.94G [00:00<00:06, 674MB/s] pytorch_model-00001-of-00003.bin: 11%|█ | 535M/4.94G [00:01<00:05, 772MB/s] pytorch_model-00001-of-00003.bin: 15%|█▍ | 734M/4.94G [00:01<00:03, 1.10GB/s] pytorch_model-00001-of-00003.bin: 21%|██ | 1.04G/4.94G [00:01<00:02, 1.64GB/s] pytorch_model-00001-of-00003.bin: 25%|██▍ | 1.22G/4.94G [00:01<00:02, 1.52GB/s] pytorch_model-00001-of-00003.bin: 28%|██▊ | 1.38G/4.94G [00:01<00:02, 1.42GB/s] pytorch_model-00001-of-00003.bin: 31%|███ | 1.54G/4.94G [00:01<00:03, 1.06GB/s] pytorch_model-00001-of-00003.bin: 35%|███▍ | 1.72G/4.94G [00:01<00:02, 1.18GB/s] pytorch_model-00001-of-00003.bin: 40%|████ | 1.98G/4.94G [00:02<00:01, 1.50GB/s] pytorch_model-00001-of-00003.bin: 44%|████▍ | 2.17G/4.94G [00:02<00:01, 1.59GB/s] pytorch_model-00001-of-00003.bin: 48%|████▊ | 2.35G/4.94G [00:02<00:01, 1.58GB/s] pytorch_model-00001-of-00003.bin: 53%|█████▎ | 2.61G/4.94G [00:02<00:01, 1.83GB/s] pytorch_model-00001-of-00003.bin: 58%|█████▊ | 2.85G/4.94G [00:02<00:01, 1.98GB/s] pytorch_model-00001-of-00003.bin: 62%|██████▏ | 3.07G/4.94G [00:02<00:00, 2.01GB/s] pytorch_model-00001-of-00003.bin: 66%|██████▋ | 3.28G/4.94G [00:02<00:01, 1.22GB/s] pytorch_model-00001-of-00003.bin: 70%|██████▉ | 3.45G/4.94G [00:03<00:01, 1.25GB/s] pytorch_model-00001-of-00003.bin: 73%|███████▎ | 3.61G/4.94G [00:03<00:01, 1.18GB/s] pytorch_model-00001-of-00003.bin: 77%|███████▋ | 3.81G/4.94G [00:03<00:00, 1.30GB/s] pytorch_model-00001-of-00003.bin: 80%|████████ | 3.96G/4.94G [00:03<00:00, 1.23GB/s] pytorch_model-00001-of-00003.bin: 83%|████████▎ | 4.10G/4.94G [00:03<00:00, 1.23GB/s] pytorch_model-00001-of-00003.bin: 86%|████████▌ | 4.24G/4.94G [00:03<00:00, 1.23GB/s] pytorch_model-00001-of-00003.bin: 92%|█████████▏| 4.52G/4.94G [00:03<00:00, 1.59GB/s] pytorch_model-00001-of-00003.bin: 96%|█████████▌| 4.74G/4.94G [00:03<00:00, 1.74GB/s] pytorch_model-00001-of-00003.bin: 100%|█████████▉| 4.93G/4.94G [00:04<00:00, 524MB/s] pytorch_model-00001-of-00003.bin: 100%|█████████▉| 4.94G/4.94G [00:05<00:00, 827MB/s]
cgato-thespis-converseslop-7b-v2-mkmlizer: pytorch_model-00002-of-00003.bin: 0%| | 0.00/5.00G [00:00<?, ?B/s] pytorch_model-00002-of-00003.bin: 0%| | 10.5M/5.00G [00:00<02:13, 37.5MB/s] pytorch_model-00002-of-00003.bin: 0%| | 21.0M/5.00G [00:00<01:23, 59.9MB/s] pytorch_model-00002-of-00003.bin: 2%|▏ | 94.4M/5.00G [00:00<00:17, 277MB/s] pytorch_model-00002-of-00003.bin: 3%|▎ | 136M/5.00G [00:00<00:17, 270MB/s] pytorch_model-00002-of-00003.bin: 5%|▌ | 262M/5.00G [00:00<00:09, 503MB/s] pytorch_model-00002-of-00003.bin: 8%|▊ | 398M/5.00G [00:00<00:06, 689MB/s] pytorch_model-00002-of-00003.bin: 10%|█ | 524M/5.00G [00:01<00:06, 669MB/s] pytorch_model-00002-of-00003.bin: 14%|█▎ | 682M/5.00G [00:01<00:04, 867MB/s] pytorch_model-00002-of-00003.bin: 16%|█▌ | 786M/5.00G [00:01<00:05, 815MB/s] pytorch_model-00002-of-00003.bin: 18%|█▊ | 881M/5.00G [00:01<00:05, 788MB/s] pytorch_model-00002-of-00003.bin: 21%|██▏ | 1.07G/5.00G [00:01<00:03, 989MB/s] pytorch_model-00002-of-00003.bin: 25%|██▍ | 1.24G/5.00G [00:01<00:03, 1.16GB/s] pytorch_model-00002-of-00003.bin: 27%|██▋ | 1.36G/5.00G [00:01<00:03, 1.11GB/s] pytorch_model-00002-of-00003.bin: 30%|██▉ | 1.49G/5.00G [00:01<00:03, 979MB/s] pytorch_model-00002-of-00003.bin: 33%|███▎ | 1.63G/5.00G [00:02<00:03, 1.07GB/s] pytorch_model-00002-of-00003.bin: 35%|███▌ | 1.77G/5.00G [00:02<00:02, 1.17GB/s] pytorch_model-00002-of-00003.bin: 41%|████ | 2.03G/5.00G [00:02<00:01, 1.52GB/s] pytorch_model-00002-of-00003.bin: 44%|████▍ | 2.20G/5.00G [00:02<00:02, 1.12GB/s] pytorch_model-00002-of-00003.bin: 47%|████▋ | 2.35G/5.00G [00:02<00:02, 1.20GB/s] pytorch_model-00002-of-00003.bin: 50%|████▉ | 2.49G/5.00G [00:02<00:02, 980MB/s] pytorch_model-00002-of-00003.bin: 52%|█████▏ | 2.61G/5.00G [00:02<00:02, 1.01GB/s] pytorch_model-00002-of-00003.bin: 55%|█████▍ | 2.73G/5.00G [00:03<00:02, 923MB/s] pytorch_model-00002-of-00003.bin: 57%|█████▋ | 2.83G/5.00G [00:03<00:02, 856MB/s] pytorch_model-00002-of-00003.bin: 61%|██████ | 3.03G/5.00G [00:03<00:01, 1.08GB/s] pytorch_model-00002-of-00003.bin: 63%|██████▎ | 3.16G/5.00G [00:03<00:01, 930MB/s] pytorch_model-00002-of-00003.bin: 67%|██████▋ | 3.37G/5.00G [00:03<00:01, 1.16GB/s] pytorch_model-00002-of-00003.bin: 71%|███████▏ | 3.57G/5.00G [00:03<00:01, 1.23GB/s] pytorch_model-00002-of-00003.bin: 74%|███████▍ | 3.70G/5.00G [00:04<00:01, 1.07GB/s] pytorch_model-00002-of-00003.bin: 77%|███████▋ | 3.83G/5.00G [00:04<00:01, 1.08GB/s] pytorch_model-00002-of-00003.bin: 80%|████████ | 4.02G/5.00G [00:04<00:00, 1.24GB/s] pytorch_model-00002-of-00003.bin: 84%|████████▍ | 4.19G/5.00G [00:04<00:00, 1.37GB/s] pytorch_model-00002-of-00003.bin: 87%|████████▋ | 4.34G/5.00G [00:04<00:00, 1.32GB/s] pytorch_model-00002-of-00003.bin: 91%|█████████▏| 4.57G/5.00G [00:04<00:00, 1.57GB/s] pytorch_model-00002-of-00003.bin: 100%|█████████▉| 4.98G/5.00G [00:04<00:00, 2.12GB/s] pytorch_model-00002-of-00003.bin: 100%|█████████▉| 5.00G/5.00G [00:04<00:00, 1.04GB/s]
cgato-thespis-converseslop-7b-v2-mkmlizer: pytorch_model-00003-of-00003.bin: 0%| | 0.00/4.54G [00:00<?, ?B/s] pytorch_model-00003-of-00003.bin: 0%| | 10.5M/4.54G [00:00<02:00, 37.5MB/s] pytorch_model-00003-of-00003.bin: 1%| | 52.4M/4.54G [00:00<00:29, 151MB/s] pytorch_model-00003-of-00003.bin: 4%|▍ | 178M/4.54G [00:00<00:09, 438MB/s] pytorch_model-00003-of-00003.bin: 5%|▌ | 241M/4.54G [00:00<00:10, 429MB/s] pytorch_model-00003-of-00003.bin: 7%|▋ | 315M/4.54G [00:00<00:08, 507MB/s] pytorch_model-00003-of-00003.bin: 9%|▉ | 409M/4.54G [00:00<00:06, 620MB/s] pytorch_model-00003-of-00003.bin: 11%|█ | 503M/4.54G [00:01<00:05, 707MB/s] pytorch_model-00003-of-00003.bin: 15%|█▌ | 682M/4.54G [00:01<00:03, 986MB/s] pytorch_model-00003-of-00003.bin: 17%|█▋ | 786M/4.54G [00:01<00:05, 719MB/s] pytorch_model-00003-of-00003.bin: 21%|██ | 944M/4.54G [00:01<00:04, 893MB/s] pytorch_model-00003-of-00003.bin: 23%|██▎ | 1.05G/4.54G [00:01<00:04, 766MB/s] pytorch_model-00003-of-00003.bin: 25%|██▌ | 1.15G/4.54G [00:01<00:04, 825MB/s] pytorch_model-00003-of-00003.bin: 28%|██▊ | 1.28G/4.54G [00:01<00:03, 888MB/s] pytorch_model-00003-of-00003.bin: 30%|███ | 1.38G/4.54G [00:01<00:03, 874MB/s] pytorch_model-00003-of-00003.bin: 33%|███▎ | 1.48G/4.54G [00:02<00:03, 810MB/s] pytorch_model-00003-of-00003.bin: 35%|███▍ | 1.58G/4.54G [00:02<00:03, 866MB/s] pytorch_model-00003-of-00003.bin: 38%|███▊ | 1.73G/4.54G [00:02<00:02, 1.02GB/s] pytorch_model-00003-of-00003.bin: 42%|████▏ | 1.93G/4.54G [00:02<00:02, 1.24GB/s] pytorch_model-00003-of-00003.bin: 48%|████▊ | 2.18G/4.54G [00:02<00:01, 1.58GB/s] pytorch_model-00003-of-00003.bin: 53%|█████▎ | 2.39G/4.54G [00:02<00:01, 1.71GB/s] pytorch_model-00003-of-00003.bin: 57%|█████▋ | 2.60G/4.54G [00:02<00:01, 1.81GB/s] pytorch_model-00003-of-00003.bin: 64%|██████▎ | 2.88G/4.54G [00:02<00:00, 2.10GB/s] pytorch_model-00003-of-00003.bin: 68%|██████▊ | 3.10G/4.54G [00:02<00:00, 1.98GB/s] pytorch_model-00003-of-00003.bin: 73%|███████▎ | 3.32G/4.54G [00:03<00:00, 1.96GB/s] pytorch_model-00003-of-00003.bin: 78%|███████▊ | 3.52G/4.54G [00:03<00:00, 1.85GB/s] pytorch_model-00003-of-00003.bin: 82%|████████▏ | 3.71G/4.54G [00:03<00:00, 1.82GB/s] pytorch_model-00003-of-00003.bin: 86%|████████▌ | 3.90G/4.54G [00:03<00:00, 1.45GB/s] pytorch_model-00003-of-00003.bin: 89%|████████▉ | 4.06G/4.54G [00:04<00:00, 683MB/s] pytorch_model-00003-of-00003.bin: 92%|█████████▏| 4.19G/4.54G [00:04<00:00, 764MB/s] pytorch_model-00003-of-00003.bin: 96%|█████████▌| 4.34G/4.54G [00:04<00:00, 875MB/s] pytorch_model-00003-of-00003.bin: 100%|█████████▉| 4.54G/4.54G [00:04<00:00, 1.03GB/s]
cgato-thespis-converseslop-7b-v2-mkmlizer: pytorch_model.bin.index.json: 0%| | 0.00/23.9k [00:00<?, ?B/s] pytorch_model.bin.index.json: 100%|██████████| 23.9k/23.9k [00:00<00:00, 127MB/s]
cgato-thespis-converseslop-7b-v2-mkmlizer: special_tokens_map.json: 0%| | 0.00/437 [00:00<?, ?B/s] special_tokens_map.json: 100%|██████████| 437/437 [00:00<00:00, 4.89MB/s]
cgato-thespis-converseslop-7b-v2-mkmlizer: tokenizer.model: 0%| | 0.00/493k [00:00<?, ?B/s] tokenizer.model: 100%|██████████| 493k/493k [00:00<00:00, 61.9MB/s]
cgato-thespis-converseslop-7b-v2-mkmlizer: tokenizer_config.json: 0%| | 0.00/1.02k [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 1.02k/1.02k [00:00<00:00, 16.6MB/s]
cgato-thespis-converseslop-7b-v2-mkmlizer: Downloaded to shared memory in 17.011s
cgato-thespis-converseslop-7b-v2-mkmlizer: quantizing model to /dev/shm/model_cache
cgato-thespis-converseslop-7b-v2-mkmlizer: Saving mkml model at /dev/shm/model_cache
cgato-thespis-converseslop-7b-v2-mkmlizer: Reading /tmp/tmpd8xd00zc/pytorch_model.bin.index.json
cgato-thespis-converseslop-7b-v2-mkmlizer: Profiling: 0%| | 0/291 [00:00<?, ?it/s] Profiling: 0%| | 1/291 [00:02<14:24, 2.98s/it] Profiling: 34%|███▎ | 98/291 [00:04<00:06, 30.67it/s] Profiling: 70%|███████ | 204/291 [00:05<00:01, 53.65it/s] Profiling: 100%|██████████| 291/291 [00:06<00:00, 57.75it/s] Profiling: 100%|██████████| 291/291 [00:06<00:00, 45.14it/s]
cgato-thespis-converseslop-7b-v2-mkmlizer: quantized model in 17.679s
cgato-thespis-converseslop-7b-v2-mkmlizer: Processed model cgato/Thespis-ConverseSlop-7b-v0.8.2 in 35.598s
cgato-thespis-converseslop-7b-v2-mkmlizer: creating bucket guanaco-mkml-models
cgato-thespis-converseslop-7b-v2-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
cgato-thespis-converseslop-7b-v2-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/cgato-thespis-converseslop-7b-v2
cgato-thespis-converseslop-7b-v2-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/cgato-thespis-converseslop-7b-v2/config.json
cgato-thespis-converseslop-7b-v2-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/cgato-thespis-converseslop-7b-v2/special_tokens_map.json
cgato-thespis-converseslop-7b-v2-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/cgato-thespis-converseslop-7b-v2/tokenizer_config.json
cgato-thespis-converseslop-7b-v2-mkmlizer: cp /dev/shm/model_cache/tokenizer.model s3://guanaco-mkml-models/cgato-thespis-converseslop-7b-v2/tokenizer.model
cgato-thespis-converseslop-7b-v2-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/cgato-thespis-converseslop-7b-v2/tokenizer.json
cgato-thespis-converseslop-7b-v2-mkmlizer: cp /dev/shm/model_cache/mkml_model.tensors s3://guanaco-mkml-models/cgato-thespis-converseslop-7b-v2/mkml_model.tensors
cgato-thespis-converseslop-7b-v2-mkmlizer: loading reward model from rirv938/reward_gpt2_medium_preference_24m_e2
cgato-thespis-converseslop-7b-v2-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:1067: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
cgato-thespis-converseslop-7b-v2-mkmlizer: warnings.warn(
cgato-thespis-converseslop-7b-v2-mkmlizer: config.json: 0%| | 0.00/1.05k [00:00<?, ?B/s] config.json: 100%|██████████| 1.05k/1.05k [00:00<00:00, 13.1MB/s]
cgato-thespis-converseslop-7b-v2-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:690: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
cgato-thespis-converseslop-7b-v2-mkmlizer: warnings.warn(
cgato-thespis-converseslop-7b-v2-mkmlizer: tokenizer_config.json: 0%| | 0.00/234 [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 234/234 [00:00<00:00, 3.06MB/s]
cgato-thespis-converseslop-7b-v2-mkmlizer: vocab.json: 0%| | 0.00/1.04M [00:00<?, ?B/s] vocab.json: 100%|██████████| 1.04M/1.04M [00:00<00:00, 12.0MB/s]
cgato-thespis-converseslop-7b-v2-mkmlizer: tokenizer.json: 0%| | 0.00/2.11M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 2.11M/2.11M [00:00<00:00, 69.6MB/s]
cgato-thespis-converseslop-7b-v2-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:472: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
cgato-thespis-converseslop-7b-v2-mkmlizer: warnings.warn(
cgato-thespis-converseslop-7b-v2-mkmlizer: pytorch_model.bin: 0%| | 0.00/1.44G [00:00<?, ?B/s] pytorch_model.bin: 1%| | 10.5M/1.44G [00:00<00:21, 65.4MB/s] pytorch_model.bin: 2%|▏ | 31.5M/1.44G [00:00<00:13, 101MB/s] pytorch_model.bin: 5%|▌ | 73.4M/1.44G [00:00<00:06, 197MB/s] pytorch_model.bin: 7%|▋ | 105M/1.44G [00:00<00:10, 134MB/s] pytorch_model.bin: 14%|█▍ | 199M/1.44G [00:00<00:04, 290MB/s] pytorch_model.bin: 22%|██▏ | 315M/1.44G [00:01<00:02, 474MB/s] pytorch_model.bin: 59%|█████▉ | 849M/1.44G [00:01<00:00, 1.61GB/s] pytorch_model.bin: 88%|████████▊ | 1.27G/1.44G [00:01<00:00, 2.26GB/s] pytorch_model.bin: 100%|█████████▉| 1.44G/1.44G [00:01<00:00, 964MB/s]
cgato-thespis-converseslop-7b-v2-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
cgato-thespis-converseslop-7b-v2-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/cgato-thespis-converseslop-7b-v2_reward/reward.tensors
Job cgato-thespis-converseslop-7b-v2-mkmlizer completed after 64.06s with status: succeeded
Stopping job with name cgato-thespis-converseslop-7b-v2-mkmlizer
Pipeline stage MKMLizer completed in 69.88s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.40s
Running pipeline stage ISVCDeployer
Creating inference service cgato-thespis-converseslop-7b-v2
Waiting for inference service cgato-thespis-converseslop-7b-v2 to be ready
Inference service cgato-thespis-converseslop-7b-v2 ready after 40.27319693565369s
Pipeline stage ISVCDeployer completed in 48.18s
Running pipeline stage StressChecker
Received healthy response to inference request in 1.6561775207519531s
Received healthy response to inference request in 1.2065834999084473s
Received healthy response to inference request in 1.1954574584960938s
Received healthy response to inference request in 1.1939692497253418s
Received healthy response to inference request in 2.5859391689300537s
5 requests
0 failed requests
5th percentile: 1.1942668914794923
10th percentile: 1.1945645332336425
20th percentile: 1.1951598167419433
30th percentile: 1.1976826667785645
40th percentile: 1.2021330833435058
50th percentile: 1.2065834999084473
60th percentile: 1.3864211082458495
70th percentile: 1.5662587165832518
80th percentile: 1.8421298503875734
90th percentile: 2.2140345096588137
95th percentile: 2.3999868392944332
99th percentile: 2.5487487030029294
mean time: 1.567625379562378
Pipeline stage StressChecker completed in 8.78s
Running pipeline stage DaemonicModelEvalScorer
Pipeline stage DaemonicModelEvalScorer completed in 0.06s
Running pipeline stage DaemonicSafetyScorer
Pipeline stage DaemonicSafetyScorer completed in 0.05s
Running M-Eval for topic stay_in_character
M-Eval Dataset for topic stay_in_character is loaded
cgato-thespis-converseslop-7b_v2 status is now inactive due to auto deactivation removed underperforming models

Usage Metrics

Latency Metrics