submission_id: khanhnto-khanhnto_v66
developer_uid: chai_backend_admin
status: inactive
model_repo: khanhnto/khanhnto
reward_repo: rirv938/reward_gpt2_medium_preference_24m_e2
generation_params: {'temperature': 1.2, 'top_p': 0.7, 'top_k': 50, 'presence_penalty': 0.8, 'frequency_penalty': 0.2, 'stopping_words': ['\n', '<\\s>', '###'], 'max_input_tokens': 512, 'best_of': 8, 'max_output_tokens': 128}
formatter: {'memory_template': "### Instruction:\n\n{bot_name}'s Persona: {memory}.\n\nPlay the role of {bot_name}. Engage in a chat with {user_name} while stay in character. Do not write dialogues and narration for {user_name}. {bot_name} should response with messages of medium length.", 'prompt_template': '{prompt}\n\n', 'bot_template': '### Response:\n\n{bot_name}: {message}\n\n', 'user_template': '### Input:\n\n{user_name}: {message}\n\n', 'response_template': '### Response:\n\n{bot_name}:'}
reward_formatter: {'memory_template': 'Memory: {memory}\n', 'prompt_template': '{prompt}\n', 'bot_template': 'Bot: {message}\n', 'user_template': 'User: {message}\n', 'response_template': 'Bot:'}
timestamp: 2024-03-31T01:51:07+00:00
model_name: khanhnto-128
model_eval_status: success
safety_score: None
entertaining: 6.72
stay_in_character: 8.58
user_preference: 7.22
double_thumbs_up: 3351
thumbs_up: 4785
thumbs_down: 2316
num_battles: 314268
num_wins: 162122
win_ratio: 0.5158718036834803
celo_rating: 1168.14
Resubmit model
Running pipeline stage MKMLizer
Starting job with name khanhnto-khanhnto-v66-mkmlizer
Waiting for job on khanhnto-khanhnto-v66-mkmlizer to finish
khanhnto-khanhnto-v66-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
khanhnto-khanhnto-v66-mkmlizer: ║ _____ __ __ ║
khanhnto-khanhnto-v66-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
khanhnto-khanhnto-v66-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
khanhnto-khanhnto-v66-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
khanhnto-khanhnto-v66-mkmlizer: ║ /___/ ║
khanhnto-khanhnto-v66-mkmlizer: ║ ║
khanhnto-khanhnto-v66-mkmlizer: ║ Version: 0.6.11 ║
khanhnto-khanhnto-v66-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
khanhnto-khanhnto-v66-mkmlizer: ║ ║
khanhnto-khanhnto-v66-mkmlizer: ║ The license key for the current software has been verified as ║
khanhnto-khanhnto-v66-mkmlizer: ║ belonging to: ║
khanhnto-khanhnto-v66-mkmlizer: ║ ║
khanhnto-khanhnto-v66-mkmlizer: ║ Chai Research Corp. ║
khanhnto-khanhnto-v66-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
khanhnto-khanhnto-v66-mkmlizer: ║ Expiration: 2024-07-15 23:59:59 ║
khanhnto-khanhnto-v66-mkmlizer: ║ ║
khanhnto-khanhnto-v66-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
khanhnto-khanhnto-v66-mkmlizer: .gitattributes: 0%| | 0.00/1.52k [00:00<?, ?B/s] .gitattributes: 100%|██████████| 1.52k/1.52k [00:00<00:00, 18.8MB/s]
khanhnto-khanhnto-v66-mkmlizer: added_tokens.json: 0%| | 0.00/21.0 [00:00<?, ?B/s] added_tokens.json: 100%|██████████| 21.0/21.0 [00:00<00:00, 151kB/s]
khanhnto-khanhnto-v66-mkmlizer: config.json: 0%| | 0.00/702 [00:00<?, ?B/s] config.json: 100%|██████████| 702/702 [00:00<00:00, 5.68MB/s]
khanhnto-khanhnto-v66-mkmlizer: generation_config.json: 0%| | 0.00/137 [00:00<?, ?B/s] generation_config.json: 100%|██████████| 137/137 [00:00<00:00, 1.48MB/s]
khanhnto-khanhnto-v66-mkmlizer: model-00002-of-00006.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s] model-00002-of-00006.safetensors: 0%| | 21.0M/4.97G [00:00<00:29, 166MB/s] model-00002-of-00006.safetensors: 1%| | 41.9M/4.97G [00:00<00:26, 189MB/s] model-00002-of-00006.safetensors: 2%|▏ | 94.4M/4.97G [00:00<00:15, 311MB/s] model-00002-of-00006.safetensors: 3%|▎ | 126M/4.97G [00:00<00:17, 282MB/s] model-00002-of-00006.safetensors: 4%|▍ | 220M/4.97G [00:00<00:10, 452MB/s] model-00002-of-00006.safetensors: 7%|▋ | 325M/4.97G [00:00<00:07, 619MB/s] model-00002-of-00006.safetensors: 11%|█ | 545M/4.97G [00:00<00:04, 1.04GB/s] model-00002-of-00006.safetensors: 15%|█▌ | 755M/4.97G [00:00<00:03, 1.27GB/s] model-00002-of-00006.safetensors: 18%|█▊ | 891M/4.97G [00:01<00:03, 1.10GB/s] model-00002-of-00006.safetensors: 20%|██ | 1.01G/4.97G [00:01<00:03, 1.11GB/s] model-00002-of-00006.safetensors: 23%|██▎ | 1.12G/4.97G [00:01<00:03, 1.01GB/s] model-00002-of-00006.safetensors: 27%|██▋ | 1.32G/4.97G [00:01<00:02, 1.25GB/s] model-00002-of-00006.safetensors: 30%|██▉ | 1.48G/4.97G [00:01<00:02, 1.32GB/s] model-00002-of-00006.safetensors: 33%|███▎ | 1.63G/4.97G [00:01<00:03, 1.01GB/s] model-00002-of-00006.safetensors: 36%|███▌ | 1.77G/4.97G [00:01<00:02, 1.11GB/s] model-00002-of-00006.safetensors: 39%|███▊ | 1.92G/4.97G [00:02<00:02, 1.10GB/s] model-00002-of-00006.safetensors: 41%|████ | 2.04G/4.97G [00:02<00:02, 1.12GB/s] model-00002-of-00006.safetensors: 44%|████▎ | 2.17G/4.97G [00:02<00:02, 977MB/s] model-00002-of-00006.safetensors: 47%|████▋ | 2.33G/4.97G [00:02<00:02, 1.09GB/s] model-00002-of-00006.safetensors: 51%|█████ | 2.54G/4.97G [00:02<00:01, 1.31GB/s] model-00002-of-00006.safetensors: 56%|█████▋ | 2.80G/4.97G [00:02<00:01, 1.64GB/s] model-00002-of-00006.safetensors: 61%|██████ | 3.04G/4.97G [00:02<00:01, 1.83GB/s] model-00002-of-00006.safetensors: 68%|██████▊ | 3.39G/4.97G [00:02<00:00, 2.26GB/s] model-00002-of-00006.safetensors: 73%|███████▎ | 3.63G/4.97G [00:02<00:00, 2.27GB/s] model-00002-of-00006.safetensors: 78%|███████▊ | 3.87G/4.97G [00:03<00:00, 1.85GB/s] model-00002-of-00006.safetensors: 82%|████████▏ | 4.08G/4.97G [00:03<00:00, 1.57GB/s] model-00002-of-00006.safetensors: 88%|████████▊ | 4.38G/4.97G [00:03<00:00, 1.88GB/s] model-00002-of-00006.safetensors: 95%|█████████▍| 4.71G/4.97G [00:03<00:00, 2.20GB/s] model-00002-of-00006.safetensors: 100%|█████████▉| 4.97G/4.97G [00:03<00:00, 1.38GB/s]
khanhnto-khanhnto-v66-mkmlizer: model-00003-of-00006.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s] model-00003-of-00006.safetensors: 0%| | 10.5M/4.97G [00:00<01:08, 72.7MB/s] model-00003-of-00006.safetensors: 1%| | 31.5M/4.97G [00:00<00:39, 125MB/s] model-00003-of-00006.safetensors: 2%|▏ | 115M/4.97G [00:00<00:12, 385MB/s] model-00003-of-00006.safetensors: 3%|▎ | 157M/4.97G [00:00<00:15, 320MB/s] model-00003-of-00006.safetensors: 5%|▍ | 241M/4.97G [00:00<00:11, 424MB/s] model-00003-of-00006.safetensors: 7%|▋ | 336M/4.97G [00:00<00:08, 548MB/s] model-00003-of-00006.safetensors: 10%|█ | 503M/4.97G [00:00<00:06, 739MB/s] model-00003-of-00006.safetensors: 12%|█▏ | 587M/4.97G [00:01<00:06, 728MB/s] model-00003-of-00006.safetensors: 14%|█▎ | 682M/4.97G [00:01<00:05, 746MB/s] model-00003-of-00006.safetensors: 16%|█▌ | 786M/4.97G [00:01<00:05, 820MB/s] model-00003-of-00006.safetensors: 19%|█▉ | 933M/4.97G [00:01<00:04, 985MB/s] model-00003-of-00006.safetensors: 21%|██ | 1.05G/4.97G [00:01<00:03, 1.03GB/s] model-00003-of-00006.safetensors: 23%|██▎ | 1.16G/4.97G [00:01<00:03, 1.06GB/s] model-00003-of-00006.safetensors: 26%|██▌ | 1.28G/4.97G [00:01<00:05, 646MB/s] model-00003-of-00006.safetensors: 28%|██▊ | 1.37G/4.97G [00:02<00:06, 533MB/s] model-00003-of-00006.safetensors: 29%|██▉ | 1.45G/4.97G [00:02<00:07, 502MB/s] model-00003-of-00006.safetensors: 30%|███ | 1.51G/4.97G [00:02<00:06, 504MB/s] model-00003-of-00006.safetensors: 32%|███▏ | 1.59G/4.97G [00:02<00:06, 554MB/s] model-00003-of-00006.safetensors: 34%|███▎ | 1.67G/4.97G [00:02<00:05, 589MB/s] model-00003-of-00006.safetensors: 36%|███▌ | 1.78G/4.97G [00:02<00:04, 697MB/s] model-00003-of-00006.safetensors: 38%|███▊ | 1.87G/4.97G [00:02<00:04, 702MB/s] model-00003-of-00006.safetensors: 39%|███▉ | 1.95G/4.97G [00:03<00:04, 658MB/s] model-00003-of-00006.safetensors: 44%|████▎ | 2.17G/4.97G [00:03<00:02, 1.01GB/s] model-00003-of-00006.safetensors: 48%|████▊ | 2.38G/4.97G [00:03<00:02, 1.27GB/s] model-00003-of-00006.safetensors: 51%|█████ | 2.53G/4.97G [00:03<00:02, 1.09GB/s] model-00003-of-00006.safetensors: 53%|█████▎ | 2.65G/4.97G [00:03<00:03, 714MB/s] model-00003-of-00006.safetensors: 55%|█████▌ | 2.76G/4.97G [00:04<00:03, 688MB/s] model-00003-of-00006.safetensors: 57%|█████▋ | 2.85G/4.97G [00:04<00:02, 709MB/s] model-00003-of-00006.safetensors: 59%|█████▉ | 2.95G/4.97G [00:04<00:02, 748MB/s] model-00003-of-00006.safetensors: 61%|██████ | 3.04G/4.97G [00:04<00:02, 646MB/s] model-00003-of-00006.safetensors: 63%|██████▎ | 3.12G/4.97G [00:04<00:02, 663MB/s] model-00003-of-00006.safetensors: 65%|██████▍ | 3.22G/4.97G [00:04<00:02, 696MB/s] model-00003-of-00006.safetensors: 66%|██████▋ | 3.30G/4.97G [00:04<00:02, 632MB/s] model-00003-of-00006.safetensors: 68%|██████▊ | 3.39G/4.97G [00:04<00:02, 659MB/s] model-00003-of-00006.safetensors: 70%|██████▉ | 3.46G/4.97G [00:05<00:02, 672MB/s] model-00003-of-00006.safetensors: 72%|███████▏ | 3.57G/4.97G [00:05<00:01, 748MB/s] model-00003-of-00006.safetensors: 75%|███████▍ | 3.72G/4.97G [00:05<00:01, 954MB/s] model-00003-of-00006.safetensors: 77%|███████▋ | 3.83G/4.97G [00:05<00:01, 846MB/s] model-00003-of-00006.safetensors: 79%|███████▉ | 3.93G/4.97G [00:05<00:01, 784MB/s] model-00003-of-00006.safetensors: 81%|████████ | 4.03G/4.97G [00:05<00:01, 767MB/s] model-00003-of-00006.safetensors: 83%|████████▎ | 4.13G/4.97G [00:05<00:01, 804MB/s] model-00003-of-00006.safetensors: 86%|████████▋ | 4.30G/4.97G [00:05<00:00, 1.01GB/s] model-00003-of-00006.safetensors: 89%|████████▉ | 4.43G/4.97G [00:06<00:00, 1.03GB/s] model-00003-of-00006.safetensors: 92%|█████████▏| 4.55G/4.97G [00:06<00:00, 1.08GB/s] model-00003-of-00006.safetensors: 96%|█████████▌| 4.76G/4.97G [00:06<00:00, 1.33GB/s] model-00003-of-00006.safetensors: 99%|█████████▉| 4.93G/4.97G [00:06<00:00, 1.33GB/s] model-00003-of-00006.safetensors: 100%|█████████▉| 4.97G/4.97G [00:06<00:00, 742MB/s]
khanhnto-khanhnto-v66-mkmlizer: model-00004-of-00006.safetensors: 0%| | 0.00/4.93G [00:00<?, ?B/s] model-00004-of-00006.safetensors: 0%| | 10.5M/4.93G [00:00<01:12, 67.5MB/s] model-00004-of-00006.safetensors: 0%| | 21.0M/4.93G [00:00<01:10, 69.8MB/s] model-00004-of-00006.safetensors: 3%|▎ | 126M/4.93G [00:00<00:11, 420MB/s] model-00004-of-00006.safetensors: 4%|▎ | 178M/4.93G [00:00<00:10, 442MB/s] model-00004-of-00006.safetensors: 5%|▌ | 252M/4.93G [00:00<00:10, 430MB/s] model-00004-of-00006.safetensors: 6%|▌ | 304M/4.93G [00:00<00:10, 434MB/s] model-00004-of-00006.safetensors: 7%|▋ | 357M/4.93G [00:00<00:10, 449MB/s] model-00004-of-00006.safetensors: 8%|▊ | 409M/4.93G [00:01<00:10, 419MB/s] model-00004-of-00006.safetensors: 9%|▉ | 461M/4.93G [00:01<00:13, 336MB/s] model-00004-of-00006.safetensors: 10%|█ | 503M/4.93G [00:01<00:18, 245MB/s] model-00004-of-00006.safetensors: 11%|█ | 535M/4.93G [00:01<00:24, 178MB/s] model-00004-of-00006.safetensors: 12%|█▏ | 587M/4.93G [00:02<00:19, 226MB/s] model-00004-of-00006.safetensors: 13%|█▎ | 640M/4.93G [00:02<00:16, 264MB/s] model-00004-of-00006.safetensors: 14%|█▍ | 682M/4.93G [00:02<00:17, 238MB/s] model-00004-of-00006.safetensors: 15%|█▍ | 724M/4.93G [00:02<00:17, 235MB/s] model-00004-of-00006.safetensors: 16%|█▌ | 765M/4.93G [00:02<00:16, 260MB/s] model-00004-of-00006.safetensors: 17%|█▋ | 828M/4.93G [00:02<00:12, 330MB/s] model-00004-of-00006.safetensors: 18%|█▊ | 891M/4.93G [00:02<00:11, 361MB/s] model-00004-of-00006.safetensors: 19%|█▉ | 933M/4.93G [00:03<00:12, 309MB/s] model-00004-of-00006.safetensors: 20%|█▉ | 975M/4.93G [00:03<00:13, 301MB/s] model-00004-of-00006.safetensors: 21%|██ | 1.03G/4.93G [00:03<00:11, 341MB/s] model-00004-of-00006.safetensors: 22%|██▏ | 1.10G/4.93G [00:03<00:09, 411MB/s] model-00004-of-00006.safetensors: 24%|██▎ | 1.16G/4.93G [00:03<00:09, 414MB/s] model-00004-of-00006.safetensors: 25%|██▍ | 1.22G/4.93G [00:03<00:11, 317MB/s] model-00004-of-00006.safetensors: 27%|██▋ | 1.33G/4.93G [00:04<00:07, 476MB/s] model-00004-of-00006.safetensors: 28%|██▊ | 1.39G/4.93G [00:04<00:09, 385MB/s] model-00004-of-00006.safetensors: 30%|██▉ | 1.46G/4.93G [00:04<00:08, 424MB/s] model-00004-of-00006.safetensors: 31%|███ | 1.51G/4.93G [00:04<00:07, 436MB/s] model-00004-of-00006.safetensors: 32%|███▏ | 1.56G/4.93G [00:04<00:10, 318MB/s] model-00004-of-00006.safetensors: 33%|███▎ | 1.60G/4.93G [00:04<00:10, 324MB/s] model-00004-of-00006.safetensors: 33%|███▎ | 1.65G/4.93G [00:05<00:09, 334MB/s] model-00004-of-00006.safetensors: 34%|███▍ | 1.69G/4.93G [00:05<00:09, 352MB/s] model-00004-of-00006.safetensors: 35%|███▌ | 1.74G/4.93G [00:05<00:08, 382MB/s] model-00004-of-00006.safetensors: 37%|███▋ | 1.82G/4.93G [00:05<00:06, 485MB/s] model-00004-of-00006.safetensors: 39%|███▉ | 1.92G/4.93G [00:05<00:05, 595MB/s] model-00004-of-00006.safetensors: 40%|████ | 1.99G/4.93G [00:05<00:04, 614MB/s] model-00004-of-00006.safetensors: 43%|████▎ | 2.11G/4.93G [00:05<00:03, 735MB/s] model-00004-of-00006.safetensors: 44%|████▍ | 2.19G/4.93G [00:05<00:03, 691MB/s] model-00004-of-00006.safetensors: 46%|████▌ | 2.26G/4.93G [00:05<00:04, 643MB/s] model-00004-of-00006.safetensors: 47%|████▋ | 2.34G/4.93G [00:06<00:04, 616MB/s] model-00004-of-00006.safetensors: 49%|████▉ | 2.41G/4.93G [00:06<00:04, 575MB/s] model-00004-of-00006.safetensors: 51%|█████ | 2.50G/4.93G [00:06<00:03, 618MB/s] model-00004-of-00006.safetensors: 52%|█████▏ | 2.57G/4.93G [00:06<00:03, 642MB/s] model-00004-of-00006.safetensors: 54%|█████▎ | 2.64G/4.93G [00:06<00:03, 648MB/s] model-00004-of-00006.safetensors: 55%|█████▌ | 2.72G/4.93G [00:06<00:03, 670MB/s] model-00004-of-00006.safetensors: 57%|█████▋ | 2.79G/4.93G [00:06<00:03, 624MB/s] model-00004-of-00006.safetensors: 58%|█████▊ | 2.86G/4.93G [00:06<00:03, 583MB/s] model-00004-of-00006.safetensors: 59%|█████▉ | 2.93G/4.93G [00:07<00:03, 579MB/s] model-00004-of-00006.safetensors: 61%|██████ | 3.00G/4.93G [00:07<00:03, 613MB/s] model-00004-of-00006.safetensors: 63%|██████▎ | 3.09G/4.93G [00:07<00:02, 616MB/s] model-00004-of-00006.safetensors: 64%|██████▍ | 3.16G/4.93G [00:07<00:02, 610MB/s] model-00004-of-00006.safetensors: 67%|██████▋ | 3.31G/4.93G [00:07<00:02, 773MB/s] model-00004-of-00006.safetensors: 69%|██████▉ | 3.40G/4.93G [00:07<00:02, 636MB/s] model-00004-of-00006.safetensors: 71%|███████ | 3.49G/4.93G [00:07<00:02, 704MB/s] model-00004-of-00006.safetensors: 72%|███████▏ | 3.58G/4.93G [00:08<00:02, 636MB/s] model-00004-of-00006.safetensors: 74%|███████▍ | 3.65G/4.93G [00:08<00:02, 642MB/s] model-00004-of-00006.safetensors: 76%|███████▌ | 3.75G/4.93G [00:08<00:01, 735MB/s] model-00004-of-00006.safetensors: 78%|███████▊ | 3.84G/4.93G [00:08<00:01, 708MB/s] model-00004-of-00006.safetensors: 79%|███████▉ | 3.92G/4.93G [00:08<00:01, 723MB/s] model-00004-of-00006.safetensors: 82%|████████▏ | 4.03G/4.93G [00:08<00:01, 783MB/s] model-00004-of-00006.safetensors: 83%|████████▎ | 4.12G/4.93G [00:08<00:01, 741MB/s] model-00004-of-00006.safetensors: 86%|████████▌ | 4.23G/4.93G [00:08<00:00, 774MB/s] model-00004-of-00006.safetensors: 88%|████████▊ | 4.33G/4.93G [00:08<00:00, 815MB/s] model-00004-of-00006.safetensors: 90%|████████▉ | 4.43G/4.93G [00:09<00:00, 831MB/s] model-00004-of-00006.safetensors: 94%|█████████▍| 4.63G/4.93G [00:09<00:00, 1.13GB/s] model-00004-of-00006.safetensors: 97%|█████████▋| 4.80G/4.93G [00:09<00:00, 1.24GB/s] model-00004-of-00006.safetensors: 100%|█████████▉| 4.93G/4.93G [00:09<00:00, 1.19GB/s] model-00004-of-00006.safetensors: 100%|█████████▉| 4.93G/4.93G [00:09<00:00, 520MB/s]
khanhnto-khanhnto-v66-mkmlizer: model-00005-of-00006.safetensors: 0%| | 0.00/4.93G [00:00<?, ?B/s] model-00005-of-00006.safetensors: 0%| | 21.0M/4.93G [00:00<01:53, 43.2MB/s] model-00005-of-00006.safetensors: 1%| | 52.4M/4.93G [00:00<01:15, 64.7MB/s] model-00005-of-00006.safetensors: 2%|▏ | 83.9M/4.93G [00:00<00:46, 104MB/s] model-00005-of-00006.safetensors: 3%|▎ | 136M/4.93G [00:01<00:29, 164MB/s] model-00005-of-00006.safetensors: 4%|▎ | 178M/4.93G [00:01<00:26, 179MB/s] model-00005-of-00006.safetensors: 4%|▍ | 210M/4.93G [00:01<00:38, 121MB/s] model-00005-of-00006.safetensors: 5%|▍ | 231M/4.93G [00:01<00:35, 132MB/s] model-00005-of-00006.safetensors: 5%|▌ | 252M/4.93G [00:02<00:34, 136MB/s] model-00005-of-00006.safetensors: 6%|▌ | 273M/4.93G [00:02<00:44, 104MB/s] model-00005-of-00006.safetensors: 6%|▌ | 294M/4.93G [00:02<00:46, 100MB/s] model-00005-of-00006.safetensors: 7%|▋ | 346M/4.93G [00:02<00:30, 150MB/s] model-00005-of-00006.safetensors: 7%|▋ | 367M/4.93G [00:02<00:30, 150MB/s] model-00005-of-00006.safetensors: 9%|▊ | 419M/4.93G [00:03<00:20, 218MB/s] model-00005-of-00006.safetensors: 9%|▉ | 451M/4.93G [00:03<00:22, 200MB/s] model-00005-of-00006.safetensors: 10%|▉ | 493M/4.93G [00:03<00:20, 219MB/s] model-00005-of-00006.safetensors: 11%|█ | 524M/4.93G [00:03<00:22, 200MB/s] model-00005-of-00006.safetensors: 11%|█▏ | 556M/4.93G [00:03<00:22, 193MB/s] model-00005-of-00006.safetensors: 12%|█▏ | 587M/4.93G [00:03<00:22, 196MB/s] model-00005-of-00006.safetensors: 12%|█▏ | 608M/4.93G [00:04<00:22, 191MB/s] model-00005-of-00006.safetensors: 13%|█▎ | 629M/4.93G [00:04<00:28, 149MB/s] model-00005-of-00006.safetensors: 14%|█▍ | 682M/4.93G [00:04<00:21, 198MB/s] model-00005-of-00006.safetensors: 14%|█▍ | 713M/4.93G [00:04<00:19, 218MB/s] model-00005-of-00006.safetensors: 15%|█▌ | 744M/4.93G [00:04<00:18, 225MB/s] model-00005-of-00006.safetensors: 16%|█▌ | 776M/4.93G [00:04<00:19, 211MB/s] model-00005-of-00006.safetensors: 16%|█▋ | 807M/4.93G [00:05<00:20, 201MB/s] model-00005-of-00006.safetensors: 18%|█▊ | 870M/4.93G [00:05<00:14, 279MB/s] model-00005-of-00006.safetensors: 19%|█▉ | 933M/4.93G [00:05<00:11, 350MB/s] model-00005-of-00006.safetensors: 20%|█▉ | 986M/4.93G [00:05<00:12, 315MB/s] model-00005-of-00006.safetensors: 21%|██ | 1.03G/4.93G [00:05<00:12, 304MB/s] model-00005-of-00006.safetensors: 22%|██▏ | 1.07G/4.93G [00:05<00:13, 287MB/s] model-00005-of-00006.safetensors: 23%|██▎ | 1.12G/4.93G [00:05<00:13, 273MB/s] model-00005-of-00006.safetensors: 24%|██▎ | 1.16G/4.93G [00:06<00:14, 253MB/s] model-00005-of-00006.safetensors: 25%|██▌ | 1.24G/4.93G [00:06<00:11, 329MB/s] model-00005-of-00006.safetensors: 26%|██▌ | 1.28G/4.93G [00:06<00:11, 308MB/s] model-00005-of-00006.safetensors: 27%|██▋ | 1.32G/4.93G [00:06<00:11, 316MB/s] model-00005-of-00006.safetensors: 28%|██▊ | 1.39G/4.93G [00:06<00:09, 391MB/s] model-00005-of-00006.safetensors: 30%|██▉ | 1.48G/4.93G [00:06<00:07, 493MB/s] model-00005-of-00006.safetensors: 31%|███ | 1.54G/4.93G [00:06<00:06, 489MB/s] model-00005-of-00006.safetensors: 33%|███▎ | 1.64G/4.93G [00:07<00:05, 578MB/s] model-00005-of-00006.safetensors: 35%|███▍ | 1.71G/4.93G [00:07<00:05, 612MB/s] model-00005-of-00006.safetensors: 36%|███▌ | 1.78G/4.93G [00:07<00:05, 571MB/s] model-00005-of-00006.safetensors: 38%|███▊ | 1.88G/4.93G [00:07<00:05, 598MB/s] model-00005-of-00006.safetensors: 40%|███▉ | 1.97G/4.93G [00:07<00:04, 625MB/s] model-00005-of-00006.safetensors: 42%|████▏ | 2.09G/4.93G [00:07<00:03, 738MB/s] model-00005-of-00006.safetensors: 44%|████▍ | 2.17G/4.93G [00:07<00:04, 691MB/s] model-00005-of-00006.safetensors: 45%|████▌ | 2.24G/4.93G [00:07<00:04, 659MB/s] model-00005-of-00006.safetensors: 47%|████▋ | 2.32G/4.93G [00:08<00:04, 620MB/s] model-00005-of-00006.safetensors: 48%|████▊ | 2.39G/4.93G [00:08<00:04, 582MB/s] model-00005-of-00006.safetensors: 50%|████▉ | 2.46G/4.93G [00:08<00:04, 609MB/s] model-00005-of-00006.safetensors: 52%|█████▏ | 2.57G/4.93G [00:08<00:03, 697MB/s] model-00005-of-00006.safetensors: 54%|█████▎ | 2.64G/4.93G [00:08<00:03, 575MB/s] model-00005-of-00006.safetensors: 56%|█████▌ | 2.76G/4.93G [00:08<00:03, 615MB/s] model-00005-of-00006.safetensors: 57%|█████▋ | 2.83G/4.93G [00:08<00:03, 603MB/s] model-00005-of-00006.safetensors: 60%|██████ | 2.97G/4.93G [00:09<00:02, 770MB/s] model-00005-of-00006.safetensors: 63%|██████▎ | 3.09G/4.93G [00:09<00:02, 885MB/s] model-00005-of-00006.safetensors: 65%|██████▍ | 3.20G/4.93G [00:09<00:02, 848MB/s] model-00005-of-00006.safetensors: 67%|██████▋ | 3.29G/4.93G [00:09<00:01, 837MB/s] model-00005-of-00006.safetensors: 69%|██████▉ | 3.43G/4.93G [00:09<00:01, 912MB/s] model-00005-of-00006.safetensors: 71%|███████▏ | 3.52G/4.93G [00:09<00:01, 901MB/s] model-00005-of-00006.safetensors: 75%|███████▌ | 3.70G/4.93G [00:09<00:01, 1.12GB/s] model-00005-of-00006.safetensors: 78%|███████▊ | 3.83G/4.93G [00:09<00:01, 1.02GB/s] model-00005-of-00006.safetensors: 81%|████████ | 4.01G/4.93G [00:10<00:00, 1.17GB/s] model-00005-of-00006.safetensors: 87%|████████▋ | 4.27G/4.93G [00:10<00:00, 1.54GB/s] model-00005-of-00006.safetensors: 92%|█████████▏| 4.56G/4.93G [00:10<00:00, 1.89GB/s] model-00005-of-00006.safetensors: 97%|█████████▋| 4.80G/4.93G [00:10<00:00, 1.97GB/s] model-00005-of-00006.safetensors: 100%|█████████▉| 4.93G/4.93G [00:11<00:00, 439MB/s]
khanhnto-khanhnto-v66-mkmlizer: model-00006-of-00006.safetensors: 0%| | 0.00/1.25G [00:00<?, ?B/s] model-00006-of-00006.safetensors: 1%| | 10.5M/1.25G [00:00<00:20, 60.4MB/s] model-00006-of-00006.safetensors: 5%|▌ | 62.9M/1.25G [00:00<00:04, 266MB/s] model-00006-of-00006.safetensors: 12%|█▏ | 147M/1.25G [00:00<00:02, 468MB/s] model-00006-of-00006.safetensors: 17%|█▋ | 210M/1.25G [00:00<00:02, 478MB/s] model-00006-of-00006.safetensors: 22%|██▏ | 270M/1.25G [00:00<00:01, 511MB/s] model-00006-of-00006.safetensors: 27%|██▋ | 333M/1.25G [00:00<00:02, 450MB/s] model-00006-of-00006.safetensors: 31%|███ | 385M/1.25G [00:00<00:02, 411MB/s] model-00006-of-00006.safetensors: 35%|███▌ | 438M/1.25G [00:01<00:02, 316MB/s] model-00006-of-00006.safetensors: 39%|███▊ | 480M/1.25G [00:01<00:02, 306MB/s] model-00006-of-00006.safetensors: 42%|████▏ | 522M/1.25G [00:02<00:05, 124MB/s] model-00006-of-00006.safetensors: 45%|████▌ | 564M/1.25G [00:02<00:04, 154MB/s] model-00006-of-00006.safetensors: 58%|█████▊ | 721M/1.25G [00:02<00:01, 331MB/s] model-00006-of-00006.safetensors: 68%|██████▊ | 847M/1.25G [00:02<00:00, 466MB/s] model-00006-of-00006.safetensors: 75%|███████▍ | 931M/1.25G [00:02<00:00, 522MB/s] model-00006-of-00006.safetensors: 83%|████████▎ | 1.04G/1.25G [00:02<00:00, 615MB/s] model-00006-of-00006.safetensors: 91%|█████████ | 1.13G/1.25G [00:02<00:00, 667MB/s] model-00006-of-00006.safetensors: 98%|█████████▊| 1.22G/1.25G [00:03<00:00, 381MB/s] model-00006-of-00006.safetensors: 100%|█████████▉| 1.25G/1.25G [00:03<00:00, 349MB/s]
khanhnto-khanhnto-v66-mkmlizer: model.safetensors.index.json: 0%| | 0.00/29.9k [00:00<?, ?B/s] model.safetensors.index.json: 100%|██████████| 29.9k/29.9k [00:00<00:00, 187MB/s]
khanhnto-khanhnto-v66-mkmlizer: special_tokens_map.json: 0%| | 0.00/548 [00:00<?, ?B/s] special_tokens_map.json: 100%|██████████| 548/548 [00:00<00:00, 4.42MB/s]
khanhnto-khanhnto-v66-mkmlizer: tokenizer.json: 0%| | 0.00/1.84M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 1.84M/1.84M [00:00<00:00, 35.4MB/s]
khanhnto-khanhnto-v66-mkmlizer: tokenizer.model: 0%| | 0.00/500k [00:00<?, ?B/s] tokenizer.model: 100%|██████████| 500k/500k [00:00<00:00, 59.1MB/s]
khanhnto-khanhnto-v66-mkmlizer: tokenizer_config.json: 0%| | 0.00/1.02k [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 1.02k/1.02k [00:00<00:00, 16.9MB/s]
khanhnto-khanhnto-v66-mkmlizer: Downloaded to shared memory in 43.138s
khanhnto-khanhnto-v66-mkmlizer: quantizing model to /dev/shm/model_cache
khanhnto-khanhnto-v66-mkmlizer: Saving mkml model at /dev/shm/model_cache
khanhnto-khanhnto-v66-mkmlizer: Reading /tmp/tmpe__jorzm/model.safetensors.index.json
khanhnto-khanhnto-v66-mkmlizer: Profiling: 0%| | 0/363 [00:00<?, ?it/s] Profiling: 0%| | 1/363 [00:01<09:59, 1.66s/it] Profiling: 2%|▏ | 9/363 [00:01<00:51, 6.87it/s] Profiling: 5%|▍ | 18/363 [00:01<00:22, 15.17it/s] Profiling: 7%|▋ | 27/363 [00:01<00:13, 24.32it/s] Profiling: 10%|▉ | 36/363 [00:02<00:09, 33.84it/s] Profiling: 12%|█▏ | 45/363 [00:02<00:07, 43.31it/s] Profiling: 15%|█▍ | 54/363 [00:02<00:05, 52.00it/s] Profiling: 17%|█▋ | 63/363 [00:02<00:05, 59.38it/s] Profiling: 20%|█▉ | 72/363 [00:02<00:07, 38.55it/s] Profiling: 22%|██▏ | 81/363 [00:02<00:06, 46.35it/s] Profiling: 25%|██▍ | 90/363 [00:03<00:05, 53.99it/s] Profiling: 27%|██▋ | 99/363 [00:03<00:04, 59.89it/s] Profiling: 30%|██▉ | 108/363 [00:03<00:03, 65.05it/s] Profiling: 33%|███▎ | 118/363 [00:03<00:03, 72.41it/s] Profiling: 35%|███▍ | 127/363 [00:03<00:03, 73.43it/s] Profiling: 37%|███▋ | 136/363 [00:03<00:03, 75.62it/s] Profiling: 40%|███▉ | 145/363 [00:03<00:04, 43.99it/s] Profiling: 42%|████▏ | 154/363 [00:04<00:04, 51.55it/s] Profiling: 45%|████▍ | 163/363 [00:04<00:03, 58.53it/s] Profiling: 47%|████▋ | 172/363 [00:04<00:02, 64.74it/s] Profiling: 50%|████▉ | 181/363 [00:04<00:02, 69.86it/s] Profiling: 52%|█████▏ | 190/363 [00:04<00:02, 73.77it/s] Profiling: 55%|█████▍ | 199/363 [00:04<00:02, 76.61it/s] Profiling: 57%|█████▋ | 208/363 [00:04<00:01, 78.32it/s] Profiling: 60%|█████▉ | 217/363 [00:05<00:02, 49.03it/s] Profiling: 62%|██████▏ | 226/363 [00:05<00:02, 56.57it/s] Profiling: 65%|██████▍ | 235/363 [00:05<00:02, 63.39it/s] Profiling: 67%|██████▋ | 244/363 [00:05<00:01, 68.66it/s] Profiling: 70%|██████▉ | 253/363 [00:05<00:01, 73.32it/s] Profiling: 72%|███████▏ | 262/363 [00:05<00:01, 76.52it/s] Profiling: 75%|███████▍ | 271/363 [00:05<00:01, 79.30it/s] Profiling: 77%|███████▋ | 280/363 [00:06<00:01, 50.38it/s] Profiling: 80%|███████▉ | 289/363 [00:06<00:01, 57.50it/s] Profiling: 82%|████████▏ | 298/363 [00:06<00:01, 63.76it/s] Profiling: 85%|████████▍ | 307/363 [00:06<00:00, 68.44it/s] Profiling: 87%|████████▋ | 315/363 [00:06<00:00, 70.54it/s] Profiling: 89%|████████▉ | 324/363 [00:06<00:00, 74.01it/s] Profiling: 92%|█████████▏| 333/363 [00:06<00:00, 76.62it/s] Profiling: 94%|█████████▍| 342/363 [00:06<00:00, 76.75it/s] Profiling: 96%|█████████▋| 350/363 [00:08<00:00, 13.16it/s] Profiling: 98%|█████████▊| 357/363 [00:08<00:00, 16.44it/s] Profiling: 100%|██████████| 363/363 [00:08<00:00, 40.69it/s]
khanhnto-khanhnto-v66-mkmlizer: quantized model in 29.185s
khanhnto-khanhnto-v66-mkmlizer: Processed model khanhnto/khanhnto in 74.214s
khanhnto-khanhnto-v66-mkmlizer: creating bucket guanaco-mkml-models
khanhnto-khanhnto-v66-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
khanhnto-khanhnto-v66-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/khanhnto-khanhnto-v66
khanhnto-khanhnto-v66-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/khanhnto-khanhnto-v66/config.json
khanhnto-khanhnto-v66-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/khanhnto-khanhnto-v66/special_tokens_map.json
khanhnto-khanhnto-v66-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/khanhnto-khanhnto-v66/tokenizer_config.json
khanhnto-khanhnto-v66-mkmlizer: cp /dev/shm/model_cache/added_tokens.json s3://guanaco-mkml-models/khanhnto-khanhnto-v66/added_tokens.json
khanhnto-khanhnto-v66-mkmlizer: cp /dev/shm/model_cache/tokenizer.model s3://guanaco-mkml-models/khanhnto-khanhnto-v66/tokenizer.model
khanhnto-khanhnto-v66-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/khanhnto-khanhnto-v66/tokenizer.json
khanhnto-khanhnto-v66-mkmlizer: cp /dev/shm/model_cache/mkml_model.tensors s3://guanaco-mkml-models/khanhnto-khanhnto-v66/mkml_model.tensors
khanhnto-khanhnto-v66-mkmlizer: loading reward model from rirv938/reward_gpt2_medium_preference_24m_e2
khanhnto-khanhnto-v66-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:1067: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
khanhnto-khanhnto-v66-mkmlizer: warnings.warn(
khanhnto-khanhnto-v66-mkmlizer: config.json: 0%| | 0.00/1.05k [00:00<?, ?B/s] config.json: 100%|██████████| 1.05k/1.05k [00:00<00:00, 13.9MB/s]
khanhnto-khanhnto-v66-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:690: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
khanhnto-khanhnto-v66-mkmlizer: warnings.warn(
khanhnto-khanhnto-v66-mkmlizer: tokenizer_config.json: 0%| | 0.00/234 [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 234/234 [00:00<00:00, 2.83MB/s]
khanhnto-khanhnto-v66-mkmlizer: vocab.json: 0%| | 0.00/1.04M [00:00<?, ?B/s] vocab.json: 100%|██████████| 1.04M/1.04M [00:00<00:00, 26.9MB/s]
khanhnto-khanhnto-v66-mkmlizer: tokenizer.json: 0%| | 0.00/2.11M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 2.11M/2.11M [00:00<00:00, 32.6MB/s]
khanhnto-khanhnto-v66-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:472: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
khanhnto-khanhnto-v66-mkmlizer: warnings.warn(
khanhnto-khanhnto-v66-mkmlizer: pytorch_model.bin: 0%| | 0.00/1.44G [00:00<?, ?B/s] pytorch_model.bin: 1%| | 10.5M/1.44G [00:00<00:15, 90.7MB/s] pytorch_model.bin: 4%|▍ | 62.9M/1.44G [00:00<00:07, 178MB/s] pytorch_model.bin: 6%|▌ | 83.9M/1.44G [00:00<00:08, 168MB/s] pytorch_model.bin: 10%|█ | 147M/1.44G [00:00<00:04, 284MB/s] pytorch_model.bin: 15%|█▍ | 210M/1.44G [00:00<00:03, 364MB/s] pytorch_model.bin: 18%|█▊ | 262M/1.44G [00:00<00:03, 343MB/s] pytorch_model.bin: 25%|██▌ | 367M/1.44G [00:01<00:02, 514MB/s] pytorch_model.bin: 30%|██▉ | 430M/1.44G [00:01<00:01, 516MB/s] pytorch_model.bin: 34%|███▍ | 493M/1.44G [00:01<00:01, 541MB/s] pytorch_model.bin: 43%|████▎ | 619M/1.44G [00:01<00:01, 720MB/s] pytorch_model.bin: 51%|█████ | 734M/1.44G [00:01<00:00, 832MB/s] pytorch_model.bin: 59%|█████▉ | 849M/1.44G [00:01<00:00, 920MB/s] pytorch_model.bin: 66%|██████▌ | 954M/1.44G [00:01<00:00, 816MB/s] pytorch_model.bin: 73%|███████▎ | 1.05G/1.44G [00:01<00:00, 812MB/s] pytorch_model.bin: 79%|███████▉ | 1.14G/1.44G [00:01<00:00, 819MB/s] pytorch_model.bin: 95%|█████████▌| 1.37G/1.44G [00:02<00:00, 1.16GB/s] pytorch_model.bin: 100%|█████████▉| 1.44G/1.44G [00:02<00:00, 606MB/s]
khanhnto-khanhnto-v66-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
khanhnto-khanhnto-v66-mkmlizer: Saving duration: 0.307s
khanhnto-khanhnto-v66-mkmlizer: Processed model rirv938/reward_gpt2_medium_preference_24m_e2 in 5.675s
khanhnto-khanhnto-v66-mkmlizer: creating bucket guanaco-reward-models
khanhnto-khanhnto-v66-mkmlizer: Bucket 's3://guanaco-reward-models/' created
khanhnto-khanhnto-v66-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/khanhnto-khanhnto-v66_reward
khanhnto-khanhnto-v66-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/khanhnto-khanhnto-v66_reward/tokenizer_config.json
khanhnto-khanhnto-v66-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/khanhnto-khanhnto-v66_reward/special_tokens_map.json
khanhnto-khanhnto-v66-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/khanhnto-khanhnto-v66_reward/config.json
khanhnto-khanhnto-v66-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/khanhnto-khanhnto-v66_reward/vocab.json
khanhnto-khanhnto-v66-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/khanhnto-khanhnto-v66_reward/merges.txt
khanhnto-khanhnto-v66-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/khanhnto-khanhnto-v66_reward/tokenizer.json
khanhnto-khanhnto-v66-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/khanhnto-khanhnto-v66_reward/reward.tensors
Job khanhnto-khanhnto-v66-mkmlizer completed after 106.5s with status: succeeded
Stopping job with name khanhnto-khanhnto-v66-mkmlizer
Pipeline stage MKMLizer completed in 110.63s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.11s
Running pipeline stage ISVCDeployer
Creating inference service khanhnto-khanhnto-v66
Waiting for inference service khanhnto-khanhnto-v66 to be ready
Inference service khanhnto-khanhnto-v66 ready after 50.261152505874634s
Pipeline stage ISVCDeployer completed in 57.81s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.084848642349243s
Received healthy response to inference request in 1.5831642150878906s
Received healthy response to inference request in 1.480475902557373s
Received healthy response to inference request in 2.0272467136383057s
Received healthy response to inference request in 2.032297372817993s
5 requests
0 failed requests
5th percentile: 1.5010135650634766
10th percentile: 1.5215512275695802
20th percentile: 1.562626552581787
30th percentile: 1.6719807147979737
40th percentile: 1.8496137142181397
50th percentile: 2.0272467136383057
60th percentile: 2.0292669773101806
70th percentile: 2.0312872409820555
80th percentile: 2.042807626724243
90th percentile: 2.063828134536743
95th percentile: 2.0743383884429933
99th percentile: 2.082746591567993
mean time: 1.841606569290161
Pipeline stage StressChecker completed in 10.09s
Running pipeline stage DaemonicModelEvalScorer
Pipeline stage DaemonicModelEvalScorer completed in 0.04s
Running pipeline stage DaemonicSafetyScorer
Running M-Eval for topic stay_in_character
Pipeline stage DaemonicSafetyScorer completed in 0.06s
M-Eval Dataset for topic stay_in_character is loaded
khanhnto-khanhnto_v66 status is now deployed due to DeploymentManager action
khanhnto-khanhnto_v66 status is now inactive due to auto deactivation removed underperforming models

Usage Metrics

Latency Metrics