Running pipeline stage MKMLizer
Starting job with name mlabonne-orpollama-3-8b-v1-mkmlizer
Waiting for job on mlabonne-orpollama-3-8b-v1-mkmlizer to finish
mlabonne-orpollama-3-8b-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
mlabonne-orpollama-3-8b-v1-mkmlizer: ║ _____ __ __ ║
mlabonne-orpollama-3-8b-v1-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
mlabonne-orpollama-3-8b-v1-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
mlabonne-orpollama-3-8b-v1-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
mlabonne-orpollama-3-8b-v1-mkmlizer: ║ /___/ ║
mlabonne-orpollama-3-8b-v1-mkmlizer: ║ ║
mlabonne-orpollama-3-8b-v1-mkmlizer: ║ Version: 0.6.11 ║
mlabonne-orpollama-3-8b-v1-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
mlabonne-orpollama-3-8b-v1-mkmlizer: ║ ║
mlabonne-orpollama-3-8b-v1-mkmlizer: ║ The license key for the current software has been verified as ║
mlabonne-orpollama-3-8b-v1-mkmlizer: ║ belonging to: ║
mlabonne-orpollama-3-8b-v1-mkmlizer: ║ ║
mlabonne-orpollama-3-8b-v1-mkmlizer: ║ Chai Research Corp. ║
mlabonne-orpollama-3-8b-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
mlabonne-orpollama-3-8b-v1-mkmlizer: ║ Expiration: 2024-07-15 23:59:59 ║
mlabonne-orpollama-3-8b-v1-mkmlizer: ║ ║
mlabonne-orpollama-3-8b-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
mlabonne-orpollama-3-8b-v1-mkmlizer:
.gitattributes: 0%| | 0.00/1.52k [00:00<?, ?B/s]
.gitattributes: 100%|██████████| 1.52k/1.52k [00:00<00:00, 17.3MB/s]
mlabonne-orpollama-3-8b-v1-mkmlizer:
README.md: 0%| | 0.00/5.18k [00:00<?, ?B/s]
README.md: 100%|██████████| 5.18k/5.18k [00:00<00:00, 37.2MB/s]
mlabonne-orpollama-3-8b-v1-mkmlizer:
config.json: 0%| | 0.00/723 [00:00<?, ?B/s]
config.json: 100%|██████████| 723/723 [00:00<00:00, 6.06MB/s]
mlabonne-orpollama-3-8b-v1-mkmlizer:
generation_config.json: 0%| | 0.00/147 [00:00<?, ?B/s]
generation_config.json: 100%|██████████| 147/147 [00:00<00:00, 2.26MB/s]
mlabonne-orpollama-3-8b-v1-mkmlizer:
model-00001-of-00004.safetensors: 0%| | 0.00/4.98G [00:00<?, ?B/s]
model-00001-of-00004.safetensors: 0%| | 10.5M/4.98G [00:00<05:47, 14.3MB/s]
model-00001-of-00004.safetensors: 0%| | 21.0M/4.98G [00:00<03:10, 26.0MB/s]
model-00001-of-00004.safetensors: 1%| | 31.5M/4.98G [00:01<02:25, 34.0MB/s]
model-00001-of-00004.safetensors: 1%|▏ | 62.9M/4.98G [00:01<01:06, 73.8MB/s]
model-00001-of-00004.safetensors: 2%|▏ | 105M/4.98G [00:01<00:36, 134MB/s]
model-00001-of-00004.safetensors: 3%|▎ | 126M/4.98G [00:01<00:33, 143MB/s]
model-00001-of-00004.safetensors: 4%|▎ | 178M/4.98G [00:01<00:27, 178MB/s]
model-00001-of-00004.safetensors: 4%|▍ | 210M/4.98G [00:01<00:23, 200MB/s]
model-00001-of-00004.safetensors: 5%|▌ | 262M/4.98G [00:01<00:18, 255MB/s]
model-00001-of-00004.safetensors: 6%|▌ | 304M/4.98G [00:02<00:16, 282MB/s]
model-00001-of-00004.safetensors: 7%|▋ | 336M/4.98G [00:02<00:19, 241MB/s]
model-00001-of-00004.safetensors: 8%|▊ | 388M/4.98G [00:02<00:16, 283MB/s]
model-00001-of-00004.safetensors: 9%|▊ | 430M/4.98G [00:02<00:15, 295MB/s]
model-00001-of-00004.safetensors: 11%|█ | 535M/4.98G [00:02<00:12, 352MB/s]
model-00001-of-00004.safetensors: 12%|█▏ | 577M/4.98G [00:02<00:13, 338MB/s]
model-00001-of-00004.safetensors: 14%|█▍ | 692M/4.98G [00:03<00:08, 498MB/s]
model-00001-of-00004.safetensors: 15%|█▌ | 755M/4.98G [00:03<00:08, 487MB/s]
model-00001-of-00004.safetensors: 16%|█▌ | 807M/4.98G [00:03<00:09, 436MB/s]
model-00001-of-00004.safetensors: 18%|█▊ | 881M/4.98G [00:03<00:09, 430MB/s]
model-00001-of-00004.safetensors: 20%|█▉ | 986M/4.98G [00:03<00:07, 543MB/s]
model-00001-of-00004.safetensors: 29%|██▊ | 1.43G/4.98G [00:03<00:02, 1.42GB/s]
model-00001-of-00004.safetensors: 33%|███▎ | 1.65G/4.98G [00:03<00:02, 1.60GB/s]
model-00001-of-00004.safetensors: 38%|███▊ | 1.89G/4.98G [00:04<00:03, 1.02GB/s]
model-00001-of-00004.safetensors: 41%|████ | 2.03G/4.98G [00:04<00:04, 603MB/s]
model-00001-of-00004.safetensors: 43%|████▎ | 2.15G/4.98G [00:04<00:04, 650MB/s]
model-00001-of-00004.safetensors: 46%|████▌ | 2.29G/4.98G [00:05<00:03, 736MB/s]
model-00001-of-00004.safetensors: 48%|████▊ | 2.40G/4.98G [00:05<00:03, 687MB/s]
model-00001-of-00004.safetensors: 50%|█████ | 2.50G/4.98G [00:05<00:03, 728MB/s]
model-00001-of-00004.safetensors: 52%|█████▏ | 2.61G/4.98G [00:05<00:02, 808MB/s]
model-00001-of-00004.safetensors: 58%|█████▊ | 2.90G/4.98G [00:05<00:01, 1.26GB/s]
model-00001-of-00004.safetensors: 63%|██████▎ | 3.16G/4.98G [00:05<00:01, 1.55GB/s]
model-00001-of-00004.safetensors: 68%|██████▊ | 3.41G/4.98G [00:05<00:00, 1.68GB/s]
model-00001-of-00004.safetensors: 72%|███████▏ | 3.60G/4.98G [00:06<00:01, 896MB/s]
model-00001-of-00004.safetensors: 75%|███████▌ | 3.74G/4.98G [00:06<00:01, 795MB/s]
model-00001-of-00004.safetensors: 78%|███████▊ | 3.87G/4.98G [00:06<00:01, 792MB/s]
model-00001-of-00004.safetensors: 80%|████████ | 3.98G/4.98G [00:06<00:01, 783MB/s]
model-00001-of-00004.safetensors: 82%|████████▏ | 4.09G/4.98G [00:06<00:01, 823MB/s]
model-00001-of-00004.safetensors: 84%|████████▍ | 4.19G/4.98G [00:07<00:00, 866MB/s]
model-00001-of-00004.safetensors: 88%|████████▊ | 4.36G/4.98G [00:07<00:00, 1.04GB/s]
model-00001-of-00004.safetensors: 92%|█████████▏| 4.59G/4.98G [00:07<00:00, 1.35GB/s]
model-00001-of-00004.safetensors: 95%|█████████▌| 4.75G/4.98G [00:07<00:00, 1.31GB/s]
model-00001-of-00004.safetensors: 100%|█████████▉| 4.97G/4.98G [00:07<00:00, 1.05GB/s]
model-00001-of-00004.safetensors: 100%|█████████▉| 4.98G/4.98G [00:07<00:00, 644MB/s]
mlabonne-orpollama-3-8b-v1-mkmlizer:
model-00002-of-00004.safetensors: 0%| | 0.00/5.00G [00:00<?, ?B/s]
model-00002-of-00004.safetensors: 0%| | 10.5M/5.00G [00:01<13:53, 5.99MB/s]
model-00002-of-00004.safetensors: 1%| | 31.5M/5.00G [00:01<03:56, 21.1MB/s]
model-00002-of-00004.safetensors: 2%|▏ | 83.9M/5.00G [00:01<01:10, 69.3MB/s]
model-00002-of-00004.safetensors: 3%|▎ | 136M/5.00G [00:02<00:39, 123MB/s]
model-00002-of-00004.safetensors: 8%|▊ | 398M/5.00G [00:02<00:09, 484MB/s]
model-00002-of-00004.safetensors: 10%|█ | 514M/5.00G [00:02<00:08, 506MB/s]
model-00002-of-00004.safetensors: 12%|█▏ | 619M/5.00G [00:02<00:08, 503MB/s]
model-00002-of-00004.safetensors: 18%|█▊ | 923M/5.00G [00:02<00:04, 933MB/s]
model-00002-of-00004.safetensors: 24%|██▍ | 1.21G/5.00G [00:02<00:02, 1.30GB/s]
model-00002-of-00004.safetensors: 28%|██▊ | 1.41G/5.00G [00:03<00:04, 803MB/s]
model-00002-of-00004.safetensors: 31%|███ | 1.55G/5.00G [00:03<00:06, 556MB/s]
model-00002-of-00004.safetensors: 33%|███▎ | 1.67G/5.00G [00:04<00:06, 491MB/s]
model-00002-of-00004.safetensors: 35%|███▌ | 1.76G/5.00G [00:04<00:06, 502MB/s]
model-00002-of-00004.safetensors: 37%|███▋ | 1.85G/5.00G [00:04<00:06, 452MB/s]
model-00002-of-00004.safetensors: 39%|███▉ | 1.95G/5.00G [00:04<00:05, 529MB/s]
model-00002-of-00004.safetensors: 43%|████▎ | 2.16G/5.00G [00:04<00:03, 767MB/s]
model-00002-of-00004.safetensors: 52%|█████▏ | 2.61G/5.00G [00:04<00:01, 1.45GB/s]
model-00002-of-00004.safetensors: 57%|█████▋ | 2.87G/5.00G [00:04<00:01, 1.65GB/s]
model-00002-of-00004.safetensors: 62%|██████▏ | 3.09G/5.00G [00:06<00:03, 495MB/s]
model-00002-of-00004.safetensors: 65%|██████▌ | 3.26G/5.00G [00:06<00:03, 562MB/s]
model-00002-of-00004.safetensors: 68%|██████▊ | 3.41G/5.00G [00:06<00:02, 584MB/s]
model-00002-of-00004.safetensors: 71%|███████ | 3.53G/5.00G [00:06<00:02, 642MB/s]
model-00002-of-00004.safetensors: 79%|███████▉ | 3.94G/5.00G [00:06<00:00, 1.10GB/s]
model-00002-of-00004.safetensors: 83%|████████▎ | 4.14G/5.00G [00:07<00:01, 629MB/s]
model-00002-of-00004.safetensors: 86%|████████▌ | 4.29G/5.00G [00:07<00:01, 637MB/s]
model-00002-of-00004.safetensors: 88%|████████▊ | 4.41G/5.00G [00:08<00:00, 603MB/s]
model-00002-of-00004.safetensors: 90%|█████████ | 4.52G/5.00G [00:08<00:00, 546MB/s]
model-00002-of-00004.safetensors: 93%|█████████▎| 4.66G/5.00G [00:08<00:00, 647MB/s]
model-00002-of-00004.safetensors: 100%|█████████▉| 5.00G/5.00G [00:08<00:00, 585MB/s]
mlabonne-orpollama-3-8b-v1-mkmlizer:
model-00003-of-00004.safetensors: 0%| | 0.00/4.92G [00:00<?, ?B/s]
model-00003-of-00004.safetensors: 0%| | 10.5M/4.92G [00:01<09:09, 8.93MB/s]
model-00003-of-00004.safetensors: 1%| | 41.9M/4.92G [00:01<02:05, 39.0MB/s]
model-00003-of-00004.safetensors: 3%|▎ | 126M/4.92G [00:01<00:34, 138MB/s]
model-00003-of-00004.safetensors: 6%|▋ | 315M/4.92G [00:01<00:12, 375MB/s]
model-00003-of-00004.safetensors: 8%|▊ | 398M/4.92G [00:02<00:18, 248MB/s]
model-00003-of-00004.safetensors: 9%|▉ | 461M/4.92G [00:02<00:16, 271MB/s]
model-00003-of-00004.safetensors: 11%|█ | 545M/4.92G [00:02<00:12, 344MB/s]
model-00003-of-00004.safetensors: 15%|█▍ | 734M/4.92G [00:02<00:07, 569MB/s]
model-00003-of-00004.safetensors: 17%|█▋ | 828M/4.92G [00:02<00:06, 617MB/s]
model-00003-of-00004.safetensors: 19%|█▉ | 923M/4.92G [00:02<00:07, 561MB/s]
model-00003-of-00004.safetensors: 20%|██ | 1.01G/4.92G [00:03<00:06, 610MB/s]
model-00003-of-00004.safetensors: 28%|██▊ | 1.39G/4.92G [00:03<00:02, 1.29GB/s]
model-00003-of-00004.safetensors: 33%|███▎ | 1.65G/4.92G [00:03<00:02, 1.52GB/s]
model-00003-of-00004.safetensors: 37%|███▋ | 1.84G/4.92G [00:03<00:03, 772MB/s]
model-00003-of-00004.safetensors: 40%|████ | 1.98G/4.92G [00:03<00:03, 791MB/s]
model-00003-of-00004.safetensors: 43%|████▎ | 2.11G/4.92G [00:04<00:03, 834MB/s]
model-00003-of-00004.safetensors: 45%|████▌ | 2.23G/4.92G [00:04<00:03, 874MB/s]
model-00003-of-00004.safetensors: 49%|████▉ | 2.42G/4.92G [00:04<00:02, 1.06GB/s]
model-00003-of-00004.safetensors: 55%|█████▍ | 2.68G/4.92G [00:04<00:01, 1.28GB/s]
model-00003-of-00004.safetensors: 58%|█████▊ | 2.84G/4.92G [00:04<00:02, 982MB/s]
model-00003-of-00004.safetensors: 65%|██████▌ | 3.21G/4.92G [00:04<00:01, 1.24GB/s]
model-00003-of-00004.safetensors: 68%|██████▊ | 3.36G/4.92G [00:05<00:01, 1.08GB/s]
model-00003-of-00004.safetensors: 71%|███████ | 3.48G/4.92G [00:05<00:01, 1.04GB/s]
model-00003-of-00004.safetensors: 73%|███████▎ | 3.61G/4.92G [00:05<00:01, 1.07GB/s]
model-00003-of-00004.safetensors: 76%|███████▌ | 3.73G/4.92G [00:05<00:01, 1.10GB/s]
model-00003-of-00004.safetensors: 78%|███████▊ | 3.85G/4.92G [00:05<00:01, 717MB/s]
model-00003-of-00004.safetensors: 81%|████████ | 3.96G/4.92G [00:05<00:01, 785MB/s]
model-00003-of-00004.safetensors: 83%|████████▎ | 4.07G/4.92G [00:06<00:01, 828MB/s]
model-00003-of-00004.safetensors: 88%|████████▊ | 4.32G/4.92G [00:06<00:00, 1.19GB/s]
model-00003-of-00004.safetensors: 91%|█████████ | 4.47G/4.92G [00:06<00:00, 1.11GB/s]
model-00003-of-00004.safetensors: 94%|█████████▎| 4.60G/4.92G [00:06<00:00, 950MB/s]
model-00003-of-00004.safetensors: 100%|█████████▉| 4.92G/4.92G [00:06<00:00, 848MB/s]
model-00003-of-00004.safetensors: 100%|█████████▉| 4.92G/4.92G [00:06<00:00, 705MB/s]
mlabonne-orpollama-3-8b-v1-mkmlizer:
model-00004-of-00004.safetensors: 0%| | 0.00/1.17G [00:00<?, ?B/s]
model-00004-of-00004.safetensors: 1%| | 10.5M/1.17G [00:01<01:56, 9.92MB/s]
model-00004-of-00004.safetensors: 3%|▎ | 31.5M/1.17G [00:01<00:34, 33.2MB/s]
model-00004-of-00004.safetensors: 9%|▉ | 105M/1.17G [00:01<00:08, 130MB/s]
model-00004-of-00004.safetensors: 21%|██ | 241M/1.17G [00:01<00:03, 257MB/s]
model-00004-of-00004.safetensors: 25%|██▌ | 294M/1.17G [00:01<00:03, 288MB/s]
model-00004-of-00004.safetensors: 29%|██▉ | 340M/1.17G [00:01<00:03, 258MB/s]
model-00004-of-00004.safetensors: 33%|███▎ | 382M/1.17G [00:02<00:05, 154MB/s]
model-00004-of-00004.safetensors: 40%|███▉ | 466M/1.17G [00:02<00:03, 233MB/s]
model-00004-of-00004.safetensors: 44%|████▍ | 518M/1.17G [00:02<00:02, 255MB/s]
model-00004-of-00004.safetensors: 49%|████▉ | 570M/1.17G [00:02<00:02, 295MB/s]
model-00004-of-00004.safetensors: 61%|██████ | 707M/1.17G [00:03<00:00, 472MB/s]
model-00004-of-00004.safetensors: 100%|█████████▉| 1.17G/1.17G [00:03<00:00, 374MB/s]
mlabonne-orpollama-3-8b-v1-mkmlizer:
model.safetensors.index.json: 0%| | 0.00/23.9k [00:00<?, ?B/s]
model.safetensors.index.json: 100%|██████████| 23.9k/23.9k [00:00<00:00, 177MB/s]
mlabonne-orpollama-3-8b-v1-mkmlizer:
special_tokens_map.json: 0%| | 0.00/419 [00:00<?, ?B/s]
special_tokens_map.json: 100%|██████████| 419/419 [00:00<00:00, 6.48MB/s]
mlabonne-orpollama-3-8b-v1-mkmlizer:
tokenizer.json: 0%| | 0.00/9.08M [00:00<?, ?B/s]
tokenizer.json: 100%|██████████| 9.08M/9.08M [00:01<00:00, 7.22MB/s]
tokenizer.json: 100%|██████████| 9.08M/9.08M [00:01<00:00, 7.19MB/s]
mlabonne-orpollama-3-8b-v1-mkmlizer:
tokenizer_config.json: 0%| | 0.00/51.2k [00:00<?, ?B/s]
tokenizer_config.json: 100%|██████████| 51.2k/51.2k [00:00<00:00, 30.8MB/s]
mlabonne-orpollama-3-8b-v1-mkmlizer: Downloaded to shared memory in 29.632s
mlabonne-orpollama-3-8b-v1-mkmlizer: quantizing model to /dev/shm/model_cache
mlabonne-orpollama-3-8b-v1-mkmlizer: Saving mkml model at /dev/shm/model_cache
mlabonne-orpollama-3-8b-v1-mkmlizer: Reading /tmp/tmpxteansw7/model.safetensors.index.json
mlabonne-orpollama-3-8b-v1-mkmlizer:
Profiling: 0%| | 0/291 [00:00<?, ?it/s]
Profiling: 0%| | 1/291 [00:05<25:46, 5.33s/it]
Profiling: 4%|▍ | 13/291 [00:05<01:24, 3.31it/s]
Profiling: 10%|█ | 30/291 [00:05<00:28, 9.26it/s]
Profiling: 15%|█▌ | 45/291 [00:05<00:15, 16.08it/s]
Profiling: 20%|██ | 59/291 [00:05<00:09, 23.93it/s]
Profiling: 26%|██▌ | 76/291 [00:05<00:05, 35.90it/s]
Profiling: 31%|███ | 90/291 [00:06<00:05, 33.69it/s]
Profiling: 36%|███▌ | 104/291 [00:06<00:04, 43.85it/s]
Profiling: 42%|████▏ | 121/291 [00:06<00:02, 59.26it/s]
Profiling: 47%|████▋ | 138/291 [00:06<00:02, 75.24it/s]
Profiling: 54%|█████▎ | 156/291 [00:06<00:01, 91.50it/s]
Profiling: 59%|█████▉ | 173/291 [00:06<00:01, 104.35it/s]
Profiling: 65%|██████▍ | 188/291 [00:07<00:01, 67.04it/s]
Profiling: 69%|██████▉ | 202/291 [00:07<00:01, 77.45it/s]
Profiling: 76%|███████▌ | 220/291 [00:07<00:00, 93.59it/s]
Profiling: 82%|████████▏ | 238/291 [00:07<00:00, 107.85it/s]
Profiling: 88%|████████▊ | 256/291 [00:07<00:00, 120.40it/s]
Profiling: 94%|█████████▍| 274/291 [00:07<00:00, 130.95it/s]
Profiling: 100%|█████████▉| 290/291 [00:13<00:00, 8.86it/s]
Profiling: 100%|██████████| 291/291 [00:14<00:00, 20.78it/s]
mlabonne-orpollama-3-8b-v1-mkmlizer: Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
mlabonne-orpollama-3-8b-v1-mkmlizer: quantized model in 28.150s
mlabonne-orpollama-3-8b-v1-mkmlizer: Processed model mlabonne/OrpoLlama-3-8B in 59.477s
mlabonne-orpollama-3-8b-v1-mkmlizer: creating bucket guanaco-mkml-models
mlabonne-orpollama-3-8b-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
mlabonne-orpollama-3-8b-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/mlabonne-orpollama-3-8b-v1
mlabonne-orpollama-3-8b-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/mlabonne-orpollama-3-8b-v1/tokenizer_config.json
mlabonne-orpollama-3-8b-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/mlabonne-orpollama-3-8b-v1/config.json
mlabonne-orpollama-3-8b-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/mlabonne-orpollama-3-8b-v1/special_tokens_map.json
mlabonne-orpollama-3-8b-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/mlabonne-orpollama-3-8b-v1/tokenizer.json
mlabonne-orpollama-3-8b-v1-mkmlizer: cp /dev/shm/model_cache/mkml_model.tensors s3://guanaco-mkml-models/mlabonne-orpollama-3-8b-v1/mkml_model.tensors
mlabonne-orpollama-3-8b-v1-mkmlizer: loading reward model from ChaiML/reward_gpt2_medium_preference_24m_e2
mlabonne-orpollama-3-8b-v1-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:1067: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
mlabonne-orpollama-3-8b-v1-mkmlizer: warnings.warn(
mlabonne-orpollama-3-8b-v1-mkmlizer:
config.json: 0%| | 0.00/1.05k [00:00<?, ?B/s]
config.json: 100%|██████████| 1.05k/1.05k [00:00<00:00, 12.4MB/s]
mlabonne-orpollama-3-8b-v1-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:690: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
mlabonne-orpollama-3-8b-v1-mkmlizer: warnings.warn(
mlabonne-orpollama-3-8b-v1-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:472: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
mlabonne-orpollama-3-8b-v1-mkmlizer: warnings.warn(
mlabonne-orpollama-3-8b-v1-mkmlizer:
pytorch_model.bin: 0%| | 0.00/1.44G [00:00<?, ?B/s]
pytorch_model.bin: 1%|▏ | 21.0M/1.44G [00:00<00:28, 49.1MB/s]
pytorch_model.bin: 2%|▏ | 31.5M/1.44G [00:00<00:25, 55.4MB/s]
pytorch_model.bin: 12%|█▏ | 178M/1.44G [00:00<00:03, 393MB/s]
pytorch_model.bin: 25%|██▍ | 357M/1.44G [00:00<00:01, 747MB/s]
pytorch_model.bin: 53%|█████▎ | 765M/1.44G [00:00<00:00, 1.62GB/s]
pytorch_model.bin: 68%|██████▊ | 986M/1.44G [00:01<00:00, 1.37GB/s]
pytorch_model.bin: 93%|█████████▎| 1.34G/1.44G [00:01<00:00, 1.85GB/s]
pytorch_model.bin: 100%|█████████▉| 1.44G/1.44G [00:01<00:00, 1.14GB/s]
mlabonne-orpollama-3-8b-v1-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
mlabonne-orpollama-3-8b-v1-mkmlizer: Saving duration: 0.330s
mlabonne-orpollama-3-8b-v1-mkmlizer: Processed model ChaiML/reward_gpt2_medium_preference_24m_e2 in 5.533s
mlabonne-orpollama-3-8b-v1-mkmlizer: creating bucket guanaco-reward-models
mlabonne-orpollama-3-8b-v1-mkmlizer: Bucket 's3://guanaco-reward-models/' created
mlabonne-orpollama-3-8b-v1-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/mlabonne-orpollama-3-8b-v1_reward
mlabonne-orpollama-3-8b-v1-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/mlabonne-orpollama-3-8b-v1_reward/special_tokens_map.json
mlabonne-orpollama-3-8b-v1-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/mlabonne-orpollama-3-8b-v1_reward/config.json
mlabonne-orpollama-3-8b-v1-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/mlabonne-orpollama-3-8b-v1_reward/tokenizer_config.json
mlabonne-orpollama-3-8b-v1-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/mlabonne-orpollama-3-8b-v1_reward/vocab.json
mlabonne-orpollama-3-8b-v1-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/mlabonne-orpollama-3-8b-v1_reward/merges.txt
mlabonne-orpollama-3-8b-v1-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/mlabonne-orpollama-3-8b-v1_reward/tokenizer.json
mlabonne-orpollama-3-8b-v1-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/mlabonne-orpollama-3-8b-v1_reward/reward.tensors
Job mlabonne-orpollama-3-8b-v1-mkmlizer completed after 85.31s with status: succeeded
Stopping job with name mlabonne-orpollama-3-8b-v1-mkmlizer
Pipeline stage MKMLizer completed in 85.97s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.22s
Running pipeline stage ISVCDeployer
Creating inference service mlabonne-orpollama-3-8b-v1
Waiting for inference service mlabonne-orpollama-3-8b-v1 to be ready
Inference service mlabonne-orpollama-3-8b-v1 ready after 40.3184609413147s
Pipeline stage ISVCDeployer completed in 47.61s
Running pipeline stage StressChecker
Received healthy response to inference request in 1.3579916954040527s
Received healthy response to inference request in 0.5169179439544678s
Received healthy response to inference request in 0.6942873001098633s
Received healthy response to inference request in 1.1340279579162598s
Received healthy response to inference request in 1.1185345649719238s
5 requests
0 failed requests
5th percentile: 0.5523918151855469
10th percentile: 0.587865686416626
20th percentile: 0.6588134288787841
30th percentile: 0.7791367530822754
40th percentile: 0.9488356590270997
50th percentile: 1.1185345649719238
60th percentile: 1.1247319221496581
70th percentile: 1.1309292793273926
80th percentile: 1.1788207054138184
90th percentile: 1.2684062004089356
95th percentile: 1.313198947906494
99th percentile: 1.349033145904541
mean time: 0.9643518924713135
Pipeline stage StressChecker completed in 5.63s
Running pipeline stage DaemonicModelEvalScorer
Pipeline stage DaemonicModelEvalScorer completed in 0.04s
Running pipeline stage DaemonicSafetyScorer
Running M-Eval for topic stay_in_character
Pipeline stage DaemonicSafetyScorer completed in 0.05s
M-Eval Dataset for topic stay_in_character is loaded
mlabonne-orpollama-3-8b_v1 status is now deployed due to DeploymentManager action
mlabonne-orpollama-3-8b_v1 status is now rejected due to its M-Eval score being less than the acceptable minimum 6.5 to serve to users. Please consider iterating on your model's ability to adhere to prompts to improve this score.