submission_id: sanjiwatsuki-lelantos-ma_6831_v2
developer_uid: zonemercy
status: inactive
model_repo: SanjiWatsuki/Lelantos-Maid-DPO-7B
reward_repo: rirv938/reward_gpt2_medium_preference_24m_e2
generation_params: {'temperature': 1.0, 'top_p': 1.0, 'top_k': 40, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n', '</s>', '###'], 'max_input_tokens': 512, 'best_of': 16, 'max_output_tokens': 64}
formatter: {'memory_template': 'Role-play as {bot_name} based on the Persona: {memory}. Engage user with detailed, creative messages that invite further discussion. Stay in character, keep responses moderately sized for an energetic exchange.', 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:'}
timestamp: 2024-03-22T06:05:58+00:00
model_name: sanjiwatsuki-lelantos-ma_6831_v2
model_eval_status: success
safety_score: 0.92
entertaining: 6.96
stay_in_character: 8.71
user_preference: 7.14
double_thumbs_up: 1075
thumbs_up: 1643
thumbs_down: 737
num_battles: 111954
num_wins: 59244
win_ratio: 0.5291816281687122
celo_rating: 1178.3
Resubmit model
Running pipeline stage MKMLizer
Starting job with name sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer
Waiting for job on sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer to finish
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: ║ _____ __ __ ║
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: ║ /___/ ║
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: ║ ║
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: ║ Version: 0.6.11 ║
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: ║ ║
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: ║ The license key for the current software has been verified as ║
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: ║ belonging to: ║
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: ║ ║
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: ║ Chai Research Corp. ║
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: ║ Expiration: 2024-04-15 23:59:59 ║
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: ║ ║
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: .gitattributes: 0%| | 0.00/1.52k [00:00<?, ?B/s] .gitattributes: 100%|██████████| 1.52k/1.52k [00:00<00:00, 14.1MB/s]
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: README.md: 0%| | 0.00/867 [00:00<?, ?B/s] README.md: 100%|██████████| 867/867 [00:00<00:00, 7.77MB/s]
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: added_tokens.json: 0%| | 0.00/51.0 [00:00<?, ?B/s] added_tokens.json: 100%|██████████| 51.0/51.0 [00:00<00:00, 414kB/s]
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: config.json: 0%| | 0.00/652 [00:00<?, ?B/s] config.json: 100%|██████████| 652/652 [00:00<00:00, 10.7MB/s]
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: mergekit_config.yml: 0%| | 0.00/315 [00:00<?, ?B/s] mergekit_config.yml: 100%|██████████| 315/315 [00:00<00:00, 3.54MB/s]
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: model-00002-of-00008.safetensors: 0%| | 0.00/1.95G [00:00<?, ?B/s] model-00002-of-00008.safetensors: 1%| | 10.5M/1.95G [00:00<01:17, 24.8MB/s] model-00002-of-00008.safetensors: 1%| | 21.0M/1.95G [00:02<03:27, 9.29MB/s] model-00002-of-00008.safetensors: 2%|▏ | 31.5M/1.95G [00:02<02:12, 14.4MB/s] model-00002-of-00008.safetensors: 2%|▏ | 41.9M/1.95G [00:02<01:29, 21.2MB/s] model-00002-of-00008.safetensors: 3%|▎ | 52.4M/1.95G [00:02<01:05, 28.8MB/s] model-00002-of-00008.safetensors: 3%|▎ | 62.9M/1.95G [00:02<00:52, 35.8MB/s] model-00002-of-00008.safetensors: 4%|▍ | 83.9M/1.95G [00:02<00:30, 60.5MB/s] model-00002-of-00008.safetensors: 9%|▉ | 178M/1.95G [00:02<00:08, 200MB/s] model-00002-of-00008.safetensors: 15%|█▍ | 283M/1.95G [00:03<00:04, 350MB/s] model-00002-of-00008.safetensors: 17%|█▋ | 336M/1.95G [00:03<00:04, 386MB/s] model-00002-of-00008.safetensors: 26%|██▌ | 503M/1.95G [00:03<00:02, 674MB/s] model-00002-of-00008.safetensors: 55%|█████▌ | 1.08G/1.95G [00:03<00:00, 1.90GB/s] model-00002-of-00008.safetensors: 67%|██████▋ | 1.31G/1.95G [00:04<00:00, 760MB/s] model-00002-of-00008.safetensors: 76%|███████▋ | 1.48G/1.95G [00:04<00:00, 614MB/s] model-00002-of-00008.safetensors: 83%|████████▎ | 1.62G/1.95G [00:04<00:00, 648MB/s] model-00002-of-00008.safetensors: 89%|████████▉ | 1.74G/1.95G [00:04<00:00, 701MB/s] model-00002-of-00008.safetensors: 100%|█████████▉| 1.95G/1.95G [00:04<00:00, 395MB/s]
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: model-00003-of-00008.safetensors: 0%| | 0.00/1.90G [00:00<?, ?B/s] model-00003-of-00008.safetensors: 1%| | 10.5M/1.90G [00:02<06:12, 5.06MB/s] model-00003-of-00008.safetensors: 2%|▏ | 31.5M/1.90G [00:02<01:43, 18.1MB/s] model-00003-of-00008.safetensors: 3%|▎ | 52.4M/1.90G [00:02<01:03, 28.9MB/s] model-00003-of-00008.safetensors: 3%|▎ | 62.9M/1.90G [00:02<00:56, 32.4MB/s] model-00003-of-00008.safetensors: 10%|▉ | 189M/1.90G [00:02<00:10, 160MB/s] model-00003-of-00008.safetensors: 18%|█▊ | 336M/1.90G [00:02<00:04, 328MB/s] model-00003-of-00008.safetensors: 24%|██▍ | 451M/1.90G [00:03<00:03, 454MB/s] model-00003-of-00008.safetensors: 29%|██▉ | 545M/1.90G [00:03<00:02, 527MB/s] model-00003-of-00008.safetensors: 60%|█████▉ | 1.13G/1.90G [00:03<00:00, 1.28GB/s] model-00003-of-00008.safetensors: 67%|██████▋ | 1.28G/1.90G [00:03<00:00, 802MB/s] model-00003-of-00008.safetensors: 74%|███████▎ | 1.39G/1.90G [00:04<00:00, 622MB/s] model-00003-of-00008.safetensors: 79%|███████▊ | 1.49G/1.90G [00:04<00:00, 657MB/s] model-00003-of-00008.safetensors: 84%|████████▎ | 1.58G/1.90G [00:04<00:00, 689MB/s] model-00003-of-00008.safetensors: 88%|████████▊ | 1.68G/1.90G [00:04<00:00, 692MB/s] model-00003-of-00008.safetensors: 100%|█████████▉| 1.90G/1.90G [00:04<00:00, 410MB/s]
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: model-00004-of-00008.safetensors: 0%| | 0.00/1.95G [00:00<?, ?B/s] model-00004-of-00008.safetensors: 1%| | 10.5M/1.95G [00:00<01:11, 27.2MB/s] model-00004-of-00008.safetensors: 1%| | 21.0M/1.95G [00:01<01:49, 17.5MB/s] model-00004-of-00008.safetensors: 2%|▏ | 31.5M/1.95G [00:01<01:35, 20.0MB/s] model-00004-of-00008.safetensors: 2%|▏ | 41.9M/1.95G [00:02<01:40, 19.0MB/s] model-00004-of-00008.safetensors: 3%|▎ | 52.4M/1.95G [00:02<01:23, 22.8MB/s] model-00004-of-00008.safetensors: 4%|▍ | 83.9M/1.95G [00:02<00:38, 48.5MB/s] model-00004-of-00008.safetensors: 8%|▊ | 147M/1.95G [00:02<00:15, 117MB/s] model-00004-of-00008.safetensors: 15%|█▍ | 283M/1.95G [00:02<00:05, 296MB/s] model-00004-of-00008.safetensors: 19%|█▉ | 377M/1.95G [00:02<00:04, 383MB/s] model-00004-of-00008.safetensors: 24%|██▍ | 472M/1.95G [00:03<00:03, 476MB/s] model-00004-of-00008.safetensors: 56%|█████▌ | 1.09G/1.95G [00:03<00:00, 1.08GB/s] model-00004-of-00008.safetensors: 61%|██████▏ | 1.20G/1.95G [00:03<00:00, 763MB/s] model-00004-of-00008.safetensors: 66%|██████▋ | 1.29G/1.95G [00:03<00:00, 767MB/s] model-00004-of-00008.safetensors: 71%|███████ | 1.37G/1.95G [00:04<00:01, 551MB/s] model-00004-of-00008.safetensors: 74%|███████▍ | 1.44G/1.95G [00:04<00:00, 544MB/s] model-00004-of-00008.safetensors: 79%|███████▉ | 1.54G/1.95G [00:04<00:00, 591MB/s] model-00004-of-00008.safetensors: 87%|████████▋ | 1.69G/1.95G [00:04<00:00, 767MB/s] model-00004-of-00008.safetensors: 100%|█████████▉| 1.95G/1.95G [00:04<00:00, 409MB/s]
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: model-00005-of-00008.safetensors: 0%| | 0.00/1.95G [00:00<?, ?B/s] model-00005-of-00008.safetensors: 1%| | 10.5M/1.95G [00:00<01:09, 27.9MB/s] model-00005-of-00008.safetensors: 1%| | 21.0M/1.95G [00:00<00:39, 49.0MB/s] model-00005-of-00008.safetensors: 2%|▏ | 31.5M/1.95G [00:02<02:41, 11.9MB/s] model-00005-of-00008.safetensors: 3%|▎ | 52.4M/1.95G [00:02<01:21, 23.2MB/s] model-00005-of-00008.safetensors: 4%|▍ | 73.4M/1.95G [00:02<00:49, 37.8MB/s] model-00005-of-00008.safetensors: 9%|▉ | 178M/1.95G [00:02<00:12, 141MB/s] model-00005-of-00008.safetensors: 15%|█▍ | 283M/1.95G [00:02<00:06, 248MB/s] model-00005-of-00008.safetensors: 20%|██ | 398M/1.95G [00:02<00:04, 383MB/s] model-00005-of-00008.safetensors: 24%|██▍ | 472M/1.95G [00:02<00:03, 438MB/s] model-00005-of-00008.safetensors: 55%|█████▌ | 1.08G/1.95G [00:03<00:00, 1.03GB/s] model-00005-of-00008.safetensors: 61%|██████ | 1.18G/1.95G [00:03<00:01, 695MB/s] model-00005-of-00008.safetensors: 68%|██████▊ | 1.32G/1.95G [00:03<00:00, 758MB/s] model-00005-of-00008.safetensors: 73%|███████▎ | 1.42G/1.95G [00:04<00:00, 636MB/s] model-00005-of-00008.safetensors: 77%|███████▋ | 1.50G/1.95G [00:04<00:00, 631MB/s] model-00005-of-00008.safetensors: 82%|████████▏ | 1.59G/1.95G [00:04<00:00, 680MB/s] model-00005-of-00008.safetensors: 88%|████████▊ | 1.72G/1.95G [00:04<00:00, 787MB/s] model-00005-of-00008.safetensors: 100%|█████████▉| 1.95G/1.95G [00:04<00:00, 425MB/s]
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: model-00006-of-00008.safetensors: 0%| | 0.00/1.98G [00:00<?, ?B/s] model-00006-of-00008.safetensors: 1%| | 10.5M/1.98G [00:00<01:19, 24.8MB/s] model-00006-of-00008.safetensors: 1%| | 21.0M/1.98G [00:00<01:28, 22.1MB/s] model-00006-of-00008.safetensors: 2%|▏ | 31.5M/1.98G [00:01<02:02, 15.9MB/s] model-00006-of-00008.safetensors: 2%|▏ | 41.9M/1.98G [00:02<01:33, 20.8MB/s] model-00006-of-00008.safetensors: 3%|▎ | 52.4M/1.98G [00:02<01:34, 20.4MB/s] model-00006-of-00008.safetensors: 4%|▎ | 73.4M/1.98G [00:02<00:50, 37.7MB/s] model-00006-of-00008.safetensors: 5%|▌ | 105M/1.98G [00:02<00:27, 67.1MB/s] model-00006-of-00008.safetensors: 16%|█▋ | 325M/1.98G [00:02<00:04, 351MB/s] model-00006-of-00008.safetensors: 20%|██ | 398M/1.98G [00:03<00:04, 388MB/s] model-00006-of-00008.safetensors: 37%|███▋ | 724M/1.98G [00:03<00:01, 891MB/s] model-00006-of-00008.safetensors: 56%|█████▌ | 1.11G/1.98G [00:03<00:00, 1.47GB/s] model-00006-of-00008.safetensors: 67%|██████▋ | 1.32G/1.98G [00:04<00:00, 663MB/s] model-00006-of-00008.safetensors: 75%|███████▍ | 1.48G/1.98G [00:04<00:00, 631MB/s] model-00006-of-00008.safetensors: 81%|████████ | 1.60G/1.98G [00:04<00:00, 594MB/s] model-00006-of-00008.safetensors: 88%|████████▊ | 1.75G/1.98G [00:04<00:00, 678MB/s] model-00006-of-00008.safetensors: 100%|█████████▉| 1.98G/1.98G [00:04<00:00, 414MB/s]
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: model-00007-of-00008.safetensors: 0%| | 0.00/1.98G [00:00<?, ?B/s] model-00007-of-00008.safetensors: 1%| | 10.5M/1.98G [00:01<05:43, 5.74MB/s] model-00007-of-00008.safetensors: 2%|▏ | 31.5M/1.98G [00:02<01:42, 19.0MB/s] model-00007-of-00008.safetensors: 2%|▏ | 41.9M/1.98G [00:02<01:28, 21.9MB/s] model-00007-of-00008.safetensors: 3%|▎ | 52.4M/1.98G [00:02<01:11, 27.1MB/s] model-00007-of-00008.safetensors: 4%|▍ | 83.9M/1.98G [00:02<00:32, 57.5MB/s] model-00007-of-00008.safetensors: 8%|▊ | 168M/1.98G [00:02<00:11, 161MB/s] model-00007-of-00008.safetensors: 15%|█▌ | 304M/1.98G [00:02<00:04, 345MB/s] model-00007-of-00008.safetensors: 20%|██ | 398M/1.98G [00:03<00:03, 453MB/s] model-00007-of-00008.safetensors: 29%|██▊ | 566M/1.98G [00:03<00:02, 704MB/s] model-00007-of-00008.safetensors: 56%|█████▌ | 1.11G/1.98G [00:03<00:00, 1.54GB/s] model-00007-of-00008.safetensors: 65%|██████▌ | 1.29G/1.98G [00:03<00:00, 745MB/s] model-00007-of-00008.safetensors: 72%|███████▏ | 1.42G/1.98G [00:04<00:00, 676MB/s] model-00007-of-00008.safetensors: 77%|███████▋ | 1.53G/1.98G [00:04<00:00, 648MB/s] model-00007-of-00008.safetensors: 82%|████████▏ | 1.62G/1.98G [00:04<00:00, 669MB/s] model-00007-of-00008.safetensors: 89%|████████▉ | 1.77G/1.98G [00:04<00:00, 797MB/s] model-00007-of-00008.safetensors: 100%|█████████▉| 1.98G/1.98G [00:04<00:00, 426MB/s]
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: model-00008-of-00008.safetensors: 0%| | 0.00/900M [00:00<?, ?B/s] model-00008-of-00008.safetensors: 1%| | 10.5M/900M [00:00<00:45, 19.3MB/s] model-00008-of-00008.safetensors: 2%|▏ | 21.0M/900M [00:01<01:18, 11.3MB/s] model-00008-of-00008.safetensors: 3%|▎ | 31.5M/900M [00:02<00:57, 15.2MB/s] model-00008-of-00008.safetensors: 8%|▊ | 71.4M/900M [00:02<00:17, 46.6MB/s] model-00008-of-00008.safetensors: 14%|█▍ | 124M/900M [00:02<00:08, 96.6MB/s] model-00008-of-00008.safetensors: 34%|███▎ | 302M/900M [00:02<00:01, 316MB/s] model-00008-of-00008.safetensors: 43%|████▎ | 386M/900M [00:02<00:01, 387MB/s] model-00008-of-00008.safetensors: 100%|█████████▉| 900M/900M [00:02<00:00, 326MB/s]
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: model.safetensors.index.json: 0%| | 0.00/22.8k [00:00<?, ?B/s] model.safetensors.index.json: 100%|██████████| 22.8k/22.8k [00:00<00:00, 135MB/s]
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: special_tokens_map.json: 0%| | 0.00/557 [00:00<?, ?B/s] special_tokens_map.json: 100%|██████████| 557/557 [00:00<00:00, 7.19MB/s]
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: tokenizer.json: 0%| | 0.00/1.80M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 1.80M/1.80M [00:00<00:00, 15.8MB/s] tokenizer.json: 100%|██████████| 1.80M/1.80M [00:00<00:00, 15.8MB/s]
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: tokenizer.model: 0%| | 0.00/493k [00:00<?, ?B/s] tokenizer.model: 100%|██████████| 493k/493k [00:00<00:00, 30.4MB/s]
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: tokenizer_config.json: 0%| | 0.00/1.38k [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 1.38k/1.38k [00:00<00:00, 19.1MB/s]
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: Downloaded to shared memory in 40.130s
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: quantizing model to /dev/shm/model_cache
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: Saving mkml model at /dev/shm/model_cache
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: Reading /tmp/tmp1bsoaxdc/model.safetensors.index.json
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: Profiling: 0%| | 0/291 [00:00<?, ?it/s] Profiling: 0%| | 1/291 [00:01<06:34, 1.36s/it] Profiling: 6%|▌ | 17/291 [00:01<00:17, 15.83it/s] Profiling: 12%|█▏ | 36/291 [00:01<00:07, 32.83it/s] Profiling: 21%|██ | 61/291 [00:01<00:03, 61.16it/s] Profiling: 27%|██▋ | 79/291 [00:01<00:02, 73.17it/s] Profiling: 33%|███▎ | 95/291 [00:02<00:02, 87.59it/s] Profiling: 39%|███▉ | 113/291 [00:02<00:01, 91.21it/s] Profiling: 47%|████▋ | 136/291 [00:02<00:01, 118.20it/s] Profiling: 54%|█████▎ | 156/291 [00:02<00:01, 116.55it/s] Profiling: 60%|██████ | 175/291 [00:02<00:00, 130.39it/s] Profiling: 68%|██████▊ | 197/291 [00:02<00:00, 127.99it/s] Profiling: 74%|███████▍ | 215/291 [00:02<00:00, 138.46it/s] Profiling: 81%|████████▏ | 237/291 [00:03<00:00, 129.48it/s] Profiling: 88%|████████▊ | 257/291 [00:03<00:00, 142.60it/s] Profiling: 95%|█████████▍| 275/291 [00:04<00:00, 38.44it/s] Profiling: 100%|██████████| 291/291 [00:04<00:00, 62.87it/s]
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: quantized model in 14.406s
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: Processed model SanjiWatsuki/Lelantos-Maid-DPO-7B in 55.385s
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: creating bucket guanaco-mkml-models
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/sanjiwatsuki-lelantos-ma-6831-v2
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/sanjiwatsuki-lelantos-ma-6831-v2/special_tokens_map.json
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/sanjiwatsuki-lelantos-ma-6831-v2/config.json
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/sanjiwatsuki-lelantos-ma-6831-v2/tokenizer_config.json
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: cp /dev/shm/model_cache/tokenizer.model s3://guanaco-mkml-models/sanjiwatsuki-lelantos-ma-6831-v2/tokenizer.model
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: cp /dev/shm/model_cache/added_tokens.json s3://guanaco-mkml-models/sanjiwatsuki-lelantos-ma-6831-v2/added_tokens.json
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/sanjiwatsuki-lelantos-ma-6831-v2/tokenizer.json
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: cp /dev/shm/model_cache/mkml_model.tensors s3://guanaco-mkml-models/sanjiwatsuki-lelantos-ma-6831-v2/mkml_model.tensors
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: loading reward model from rirv938/reward_gpt2_medium_preference_24m_e2
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:1067: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: warnings.warn(
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: config.json: 0%| | 0.00/1.05k [00:00<?, ?B/s] config.json: 100%|██████████| 1.05k/1.05k [00:00<00:00, 9.97MB/s]
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:690: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: warnings.warn(
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: tokenizer_config.json: 0%| | 0.00/234 [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 234/234 [00:00<00:00, 2.80MB/s]
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: vocab.json: 0%| | 0.00/1.04M [00:00<?, ?B/s] vocab.json: 100%|██████████| 1.04M/1.04M [00:00<00:00, 34.3MB/s]
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: tokenizer.json: 0%| | 0.00/2.11M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 2.11M/2.11M [00:00<00:00, 86.1MB/s]
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:472: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: warnings.warn(
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: pytorch_model.bin: 0%| | 0.00/1.44G [00:00<?, ?B/s] pytorch_model.bin: 2%|▏ | 31.5M/1.44G [00:00<00:04, 290MB/s] pytorch_model.bin: 8%|▊ | 115M/1.44G [00:00<00:02, 552MB/s] pytorch_model.bin: 13%|█▎ | 189M/1.44G [00:00<00:02, 612MB/s] pytorch_model.bin: 17%|█▋ | 252M/1.44G [00:00<00:02, 471MB/s] pytorch_model.bin: 24%|██▍ | 346M/1.44G [00:00<00:01, 573MB/s] pytorch_model.bin: 34%|███▍ | 493M/1.44G [00:00<00:01, 817MB/s] pytorch_model.bin: 49%|████▉ | 713M/1.44G [00:00<00:00, 1.20GB/s] pytorch_model.bin: 78%|███████▊ | 1.12G/1.44G [00:00<00:00, 2.03GB/s] pytorch_model.bin: 100%|█████████▉| 1.44G/1.44G [00:05<00:00, 278MB/s]
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: creating bucket guanaco-reward-models
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: Bucket 's3://guanaco-reward-models/' created
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/sanjiwatsuki-lelantos-ma-6831-v2_reward
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/sanjiwatsuki-lelantos-ma-6831-v2_reward/config.json
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/sanjiwatsuki-lelantos-ma-6831-v2_reward/special_tokens_map.json
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/sanjiwatsuki-lelantos-ma-6831-v2_reward/tokenizer_config.json
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/sanjiwatsuki-lelantos-ma-6831-v2_reward/vocab.json
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/sanjiwatsuki-lelantos-ma-6831-v2_reward/merges.txt
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/sanjiwatsuki-lelantos-ma-6831-v2_reward/tokenizer.json
sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/sanjiwatsuki-lelantos-ma-6831-v2_reward/reward.tensors
Job sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer completed after 95.74s with status: succeeded
Stopping job with name sanjiwatsuki-lelantos-ma-6831-v2-mkmlizer
Pipeline stage MKMLizer completed in 99.65s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.19s
Running pipeline stage ISVCDeployer
Creating inference service sanjiwatsuki-lelantos-ma-6831-v2
Waiting for inference service sanjiwatsuki-lelantos-ma-6831-v2 to be ready
Inference service sanjiwatsuki-lelantos-ma-6831-v2 ready after 40.25601077079773s
Pipeline stage ISVCDeployer completed in 47.42s
Running pipeline stage StressChecker
Received healthy response to inference request in 1.6864731311798096s
Received healthy response to inference request in 0.972985029220581s
Received healthy response to inference request in 0.9228677749633789s
Received healthy response to inference request in 1.1694509983062744s
Received healthy response to inference request in 1.090559959411621s
5 requests
0 failed requests
5th percentile: 0.9328912258148193
10th percentile: 0.9429146766662597
20th percentile: 0.9629615783691406
30th percentile: 0.9965000152587891
40th percentile: 1.043529987335205
50th percentile: 1.090559959411621
60th percentile: 1.1221163749694825
70th percentile: 1.1536727905273438
80th percentile: 1.2728554248809816
90th percentile: 1.4796642780303955
95th percentile: 1.5830687046051024
99th percentile: 1.6657922458648682
mean time: 1.168467378616333
Pipeline stage StressChecker completed in 7.05s
Running pipeline stage DaemonicModelEvalScorer
Pipeline stage DaemonicModelEvalScorer completed in 0.06s
Running pipeline stage DaemonicSafetyScorer
Pipeline stage DaemonicSafetyScorer completed in 0.04s
Running M-Eval for topic stay_in_character
M-Eval Dataset for topic stay_in_character is loaded
sanjiwatsuki-lelantos-ma_6831_v2 status is now inactive due to auto deactivation removed underperforming models

Usage Metrics

Latency Metrics