submission_id: inv-exponenta-alpha-7b_v7
developer_uid: Inv
status: inactive
model_repo: Inv/Exponenta-Alpha-7B
reward_repo: ChaiML/reward_gpt2_medium_preference_24m_e2
generation_params: {'temperature': 1.0, 'top_p': 1.0, 'top_k': 55, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n', '</s>', '###'], 'max_input_tokens': 512, 'best_of': 16, 'max_output_tokens': 64}
formatter: {'memory_template': "Role-play as {bot_name} based on Persona: {memory}. Avoid repetition, don't loop. Develop the plot slowly, always stay in character. Describe all actions in full, elaborate, explicit, graphic, and vivid detail. Mention all relevant sensory perceptions.", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:'}
reward_formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:'}
timestamp: 2024-03-30T19:54:08+00:00
model_name: inv-exponenta-alpha-7b_v7
model_eval_status: success
safety_score: 0.98
entertaining: 7.0
stay_in_character: 8.6
user_preference: 7.44
double_thumbs_up: 697
thumbs_up: 863
thumbs_down: 377
num_battles: 68803
num_wins: 37161
win_ratio: 0.540107262764705
celo_rating: 1186.36
Resubmit model
Running pipeline stage MKMLizer
Starting job with name inv-exponenta-alpha-7b-v7-mkmlizer
Waiting for job on inv-exponenta-alpha-7b-v7-mkmlizer to finish
inv-exponenta-alpha-7b-v7-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
inv-exponenta-alpha-7b-v7-mkmlizer: ║ _____ __ __ ║
inv-exponenta-alpha-7b-v7-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
inv-exponenta-alpha-7b-v7-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
inv-exponenta-alpha-7b-v7-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
inv-exponenta-alpha-7b-v7-mkmlizer: ║ /___/ ║
inv-exponenta-alpha-7b-v7-mkmlizer: ║ ║
inv-exponenta-alpha-7b-v7-mkmlizer: ║ Version: 0.6.11 ║
inv-exponenta-alpha-7b-v7-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
inv-exponenta-alpha-7b-v7-mkmlizer: ║ ║
inv-exponenta-alpha-7b-v7-mkmlizer: ║ The license key for the current software has been verified as ║
inv-exponenta-alpha-7b-v7-mkmlizer: ║ belonging to: ║
inv-exponenta-alpha-7b-v7-mkmlizer: ║ ║
inv-exponenta-alpha-7b-v7-mkmlizer: ║ Chai Research Corp. ║
inv-exponenta-alpha-7b-v7-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
inv-exponenta-alpha-7b-v7-mkmlizer: ║ Expiration: 2024-07-15 23:59:59 ║
inv-exponenta-alpha-7b-v7-mkmlizer: ║ ║
inv-exponenta-alpha-7b-v7-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
inv-exponenta-alpha-7b-v7-mkmlizer: README.md: 0%| | 0.00/1.24k [00:00<?, ?B/s] README.md: 100%|██████████| 1.24k/1.24k [00:00<00:00, 14.8MB/s]
inv-exponenta-alpha-7b-v7-mkmlizer: config.json: 0%| | 0.00/641 [00:00<?, ?B/s] config.json: 100%|██████████| 641/641 [00:00<00:00, 8.15MB/s]
inv-exponenta-alpha-7b-v7-mkmlizer: mergekit_config.yml: 0%| | 0.00/552 [00:00<?, ?B/s] mergekit_config.yml: 100%|██████████| 552/552 [00:00<00:00, 5.30MB/s]
inv-exponenta-alpha-7b-v7-mkmlizer: model-00001-of-00008.safetensors: 0%| | 0.00/1.98G [00:00<?, ?B/s] model-00001-of-00008.safetensors: 1%| | 10.5M/1.98G [00:00<02:52, 11.4MB/s] model-00001-of-00008.safetensors: 1%| | 21.0M/1.98G [00:01<01:23, 23.5MB/s] model-00001-of-00008.safetensors: 2%|▏ | 31.5M/1.98G [00:01<00:57, 34.0MB/s] model-00001-of-00008.safetensors: 2%|▏ | 41.9M/1.98G [00:01<00:50, 38.3MB/s] model-00001-of-00008.safetensors: 6%|▋ | 126M/1.98G [00:01<00:11, 161MB/s] model-00001-of-00008.safetensors: 8%|▊ | 157M/1.98G [00:01<00:10, 176MB/s] model-00001-of-00008.safetensors: 10%|█ | 199M/1.98G [00:01<00:08, 217MB/s] model-00001-of-00008.safetensors: 12%|█▏ | 231M/1.98G [00:01<00:07, 235MB/s] model-00001-of-00008.safetensors: 23%|██▎ | 461M/1.98G [00:02<00:02, 714MB/s] model-00001-of-00008.safetensors: 61%|██████ | 1.21G/1.98G [00:02<00:00, 2.36GB/s] model-00001-of-00008.safetensors: 75%|███████▌ | 1.49G/1.98G [00:02<00:00, 2.30GB/s] model-00001-of-00008.safetensors: 89%|████████▉ | 1.76G/1.98G [00:02<00:00, 1.76GB/s] model-00001-of-00008.safetensors: 100%|█████████▉| 1.98G/1.98G [00:02<00:00, 786MB/s]
inv-exponenta-alpha-7b-v7-mkmlizer: model-00002-of-00008.safetensors: 0%| | 0.00/1.95G [00:00<?, ?B/s] model-00002-of-00008.safetensors: 1%| | 10.5M/1.95G [00:00<02:45, 11.7MB/s] model-00002-of-00008.safetensors: 1%| | 21.0M/1.95G [00:01<01:21, 23.7MB/s] model-00002-of-00008.safetensors: 2%|▏ | 31.5M/1.95G [00:01<01:12, 26.2MB/s] model-00002-of-00008.safetensors: 2%|▏ | 41.9M/1.95G [00:01<00:57, 33.3MB/s] model-00002-of-00008.safetensors: 3%|▎ | 62.9M/1.95G [00:01<00:32, 57.5MB/s] model-00002-of-00008.safetensors: 10%|█ | 199M/1.95G [00:01<00:06, 281MB/s] model-00002-of-00008.safetensors: 35%|███▌ | 682M/1.95G [00:01<00:01, 1.17GB/s] model-00002-of-00008.safetensors: 57%|█████▋ | 1.10G/1.95G [00:01<00:00, 1.79GB/s] model-00002-of-00008.safetensors: 70%|██████▉ | 1.35G/1.95G [00:02<00:00, 1.78GB/s] model-00002-of-00008.safetensors: 81%|████████ | 1.58G/1.95G [00:02<00:00, 1.54GB/s] model-00002-of-00008.safetensors: 100%|█████████▉| 1.95G/1.95G [00:02<00:00, 787MB/s]
inv-exponenta-alpha-7b-v7-mkmlizer: model-00003-of-00008.safetensors: 0%| | 0.00/1.95G [00:00<?, ?B/s] model-00003-of-00008.safetensors: 1%| | 10.5M/1.95G [00:00<02:47, 11.5MB/s] model-00003-of-00008.safetensors: 1%| | 21.0M/1.95G [00:01<01:22, 23.4MB/s] model-00003-of-00008.safetensors: 2%|▏ | 31.5M/1.95G [00:01<01:42, 18.7MB/s] model-00003-of-00008.safetensors: 6%|▋ | 126M/1.95G [00:01<00:16, 114MB/s] model-00003-of-00008.safetensors: 26%|██▌ | 503M/1.95G [00:01<00:02, 583MB/s] model-00003-of-00008.safetensors: 55%|█████▌ | 1.08G/1.95G [00:02<00:00, 1.27GB/s] model-00003-of-00008.safetensors: 68%|██████▊ | 1.32G/1.95G [00:02<00:00, 1.44GB/s] model-00003-of-00008.safetensors: 80%|███████▉ | 1.55G/1.95G [00:02<00:00, 1.30GB/s] model-00003-of-00008.safetensors: 100%|█████████▉| 1.95G/1.95G [00:02<00:00, 766MB/s]
inv-exponenta-alpha-7b-v7-mkmlizer: model-00004-of-00008.safetensors: 0%| | 0.00/1.98G [00:00<?, ?B/s] model-00004-of-00008.safetensors: 1%| | 10.5M/1.98G [00:00<02:56, 11.1MB/s] model-00004-of-00008.safetensors: 2%|▏ | 31.5M/1.98G [00:01<00:58, 33.5MB/s] model-00004-of-00008.safetensors: 2%|▏ | 41.9M/1.98G [00:01<01:03, 30.5MB/s] model-00004-of-00008.safetensors: 4%|▎ | 73.4M/1.98G [00:01<00:29, 65.7MB/s] model-00004-of-00008.safetensors: 5%|▌ | 105M/1.98G [00:01<00:18, 102MB/s] model-00004-of-00008.safetensors: 19%|█▊ | 367M/1.98G [00:01<00:02, 543MB/s] model-00004-of-00008.safetensors: 52%|█████▏ | 1.04G/1.98G [00:01<00:00, 1.78GB/s] model-00004-of-00008.safetensors: 67%|██████▋ | 1.33G/1.98G [00:02<00:00, 1.68GB/s] model-00004-of-00008.safetensors: 80%|███████▉ | 1.58G/1.98G [00:02<00:00, 1.44GB/s] model-00004-of-00008.safetensors: 100%|█████████▉| 1.98G/1.98G [00:02<00:00, 737MB/s]
inv-exponenta-alpha-7b-v7-mkmlizer: model-00005-of-00008.safetensors: 0%| | 0.00/1.89G [00:00<?, ?B/s] model-00005-of-00008.safetensors: 1%| | 10.5M/1.89G [00:00<02:41, 11.6MB/s] model-00005-of-00008.safetensors: 1%| | 21.0M/1.89G [00:01<01:19, 23.6MB/s] model-00005-of-00008.safetensors: 2%|▏ | 31.5M/1.89G [00:01<01:22, 22.7MB/s] model-00005-of-00008.safetensors: 2%|▏ | 41.9M/1.89G [00:01<01:11, 25.9MB/s] model-00005-of-00008.safetensors: 6%|▌ | 115M/1.89G [00:01<00:15, 112MB/s] model-00005-of-00008.safetensors: 28%|██▊ | 535M/1.89G [00:02<00:01, 717MB/s] model-00005-of-00008.safetensors: 59%|█████▉ | 1.12G/1.89G [00:02<00:00, 1.61GB/s] model-00005-of-00008.safetensors: 75%|███████▌ | 1.42G/1.89G [00:02<00:00, 1.61GB/s] model-00005-of-00008.safetensors: 88%|████████▊ | 1.67G/1.89G [00:02<00:00, 1.43GB/s] model-00005-of-00008.safetensors: 100%|█████████▉| 1.89G/1.89G [00:02<00:00, 725MB/s]
inv-exponenta-alpha-7b-v7-mkmlizer: model-00006-of-00008.safetensors: 0%| | 0.00/1.92G [00:00<?, ?B/s] model-00006-of-00008.safetensors: 1%| | 10.5M/1.92G [00:00<02:44, 11.6MB/s] model-00006-of-00008.safetensors: 1%| | 21.0M/1.92G [00:01<01:21, 23.5MB/s] model-00006-of-00008.safetensors: 2%|▏ | 31.5M/1.92G [00:01<01:10, 27.0MB/s] model-00006-of-00008.safetensors: 2%|▏ | 41.9M/1.92G [00:01<00:57, 32.4MB/s] model-00006-of-00008.safetensors: 3%|▎ | 62.9M/1.92G [00:01<00:33, 55.5MB/s] model-00006-of-00008.safetensors: 9%|▊ | 168M/1.92G [00:01<00:08, 218MB/s] model-00006-of-00008.safetensors: 41%|████ | 786M/1.92G [00:01<00:00, 1.35GB/s] model-00006-of-00008.safetensors: 58%|█████▊ | 1.12G/1.92G [00:02<00:00, 1.77GB/s] model-00006-of-00008.safetensors: 72%|███████▏ | 1.38G/1.92G [00:02<00:00, 1.88GB/s] model-00006-of-00008.safetensors: 85%|████████▌ | 1.64G/1.92G [00:02<00:00, 1.55GB/s] model-00006-of-00008.safetensors: 100%|█████████▉| 1.92G/1.92G [00:02<00:00, 783MB/s]
inv-exponenta-alpha-7b-v7-mkmlizer: model-00007-of-00008.safetensors: 0%| | 0.00/1.95G [00:00<?, ?B/s] model-00007-of-00008.safetensors: 1%| | 10.5M/1.95G [00:00<02:45, 11.7MB/s] model-00007-of-00008.safetensors: 1%| | 21.0M/1.95G [00:01<01:21, 23.5MB/s] model-00007-of-00008.safetensors: 2%|▏ | 31.5M/1.95G [00:01<01:18, 24.5MB/s] model-00007-of-00008.safetensors: 3%|▎ | 52.4M/1.95G [00:01<00:44, 42.8MB/s] model-00007-of-00008.safetensors: 5%|▍ | 94.4M/1.95G [00:01<00:19, 92.9MB/s] model-00007-of-00008.safetensors: 33%|███▎ | 650M/1.95G [00:01<00:01, 987MB/s] model-00007-of-00008.safetensors: 60%|█████▉ | 1.16G/1.95G [00:01<00:00, 1.76GB/s] model-00007-of-00008.safetensors: 75%|███████▌ | 1.46G/1.95G [00:02<00:00, 1.65GB/s] model-00007-of-00008.safetensors: 88%|████████▊ | 1.72G/1.95G [00:02<00:00, 1.46GB/s] model-00007-of-00008.safetensors: 100%|█████████▉| 1.95G/1.95G [00:02<00:00, 793MB/s]
inv-exponenta-alpha-7b-v7-mkmlizer: model-00008-of-00008.safetensors: 0%| | 0.00/872M [00:00<?, ?B/s] model-00008-of-00008.safetensors: 1%| | 10.5M/872M [00:01<01:52, 7.68MB/s] model-00008-of-00008.safetensors: 3%|▎ | 23.1M/872M [00:01<01:00, 14.1MB/s] model-00008-of-00008.safetensors: 4%|▍ | 33.6M/872M [00:03<01:16, 11.0MB/s] model-00008-of-00008.safetensors: 9%|▊ | 75.5M/872M [00:03<00:25, 31.2MB/s] model-00008-of-00008.safetensors: 25%|██▌ | 222M/872M [00:03<00:04, 131MB/s] model-00008-of-00008.safetensors: 100%|█████████▉| 872M/872M [00:03<00:00, 241MB/s]
inv-exponenta-alpha-7b-v7-mkmlizer: model.safetensors.index.json: 0%| | 0.00/22.8k [00:00<?, ?B/s] model.safetensors.index.json: 100%|██████████| 22.8k/22.8k [00:00<00:00, 5.97MB/s]
inv-exponenta-alpha-7b-v7-mkmlizer: special_tokens_map.json: 0%| | 0.00/414 [00:00<?, ?B/s] special_tokens_map.json: 100%|██████████| 414/414 [00:00<00:00, 3.79MB/s]
inv-exponenta-alpha-7b-v7-mkmlizer: tokenizer.json: 0%| | 0.00/1.80M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 1.80M/1.80M [00:00<00:00, 6.23MB/s] tokenizer.json: 100%|██████████| 1.80M/1.80M [00:00<00:00, 6.21MB/s]
inv-exponenta-alpha-7b-v7-mkmlizer: tokenizer.model: 0%| | 0.00/493k [00:00<?, ?B/s] tokenizer.model: 100%|██████████| 493k/493k [00:00<00:00, 2.36MB/s] tokenizer.model: 100%|██████████| 493k/493k [00:00<00:00, 2.35MB/s]
inv-exponenta-alpha-7b-v7-mkmlizer: tokenizer_config.json: 0%| | 0.00/967 [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 967/967 [00:00<00:00, 6.86MB/s]
inv-exponenta-alpha-7b-v7-mkmlizer: Downloaded to shared memory in 30.576s
inv-exponenta-alpha-7b-v7-mkmlizer: quantizing model to /dev/shm/model_cache
inv-exponenta-alpha-7b-v7-mkmlizer: Saving mkml model at /dev/shm/model_cache
inv-exponenta-alpha-7b-v7-mkmlizer: Reading /tmp/tmpmdewhsxp/model.safetensors.index.json
inv-exponenta-alpha-7b-v7-mkmlizer: Profiling: 0%| | 0/291 [00:00<?, ?it/s] Profiling: 0%| | 1/291 [00:00<00:34, 8.49it/s] Profiling: 4%|▍ | 13/291 [00:00<00:04, 67.36it/s] Profiling: 8%|▊ | 24/291 [00:00<00:03, 83.91it/s] Profiling: 13%|█▎ | 39/291 [00:00<00:03, 75.68it/s] Profiling: 18%|█▊ | 52/291 [00:00<00:02, 89.97it/s] Profiling: 24%|██▍ | 70/291 [00:00<00:01, 110.72it/s] Profiling: 28%|██▊ | 82/291 [00:00<00:02, 86.99it/s] Profiling: 34%|███▎ | 98/291 [00:01<00:01, 99.11it/s] Profiling: 40%|███▉ | 115/291 [00:01<00:01, 112.74it/s] Profiling: 44%|████▍ | 128/291 [00:01<00:01, 86.07it/s] Profiling: 49%|████▉ | 144/291 [00:01<00:01, 99.09it/s] Profiling: 54%|█████▍ | 158/291 [00:01<00:01, 107.77it/s] Profiling: 59%|█████▉ | 171/291 [00:03<00:04, 25.52it/s] Profiling: 64%|██████▎ | 185/291 [00:03<00:03, 33.73it/s] Profiling: 68%|██████▊ | 197/291 [00:04<00:04, 19.88it/s] Profiling: 71%|███████ | 207/291 [00:04<00:03, 24.61it/s] Profiling: 77%|███████▋ | 224/291 [00:04<00:01, 35.71it/s] Profiling: 81%|████████ | 235/291 [00:04<00:01, 40.10it/s] Profiling: 86%|████████▋ | 251/291 [00:05<00:00, 54.14it/s] Profiling: 92%|█████████▏| 268/291 [00:05<00:00, 70.65it/s] Profiling: 97%|█████████▋| 281/291 [00:05<00:00, 71.13it/s] Profiling: 100%|██████████| 291/291 [00:05<00:00, 53.44it/s]
inv-exponenta-alpha-7b-v7-mkmlizer: quantized model in 18.314s
inv-exponenta-alpha-7b-v7-mkmlizer: Processed model Inv/Exponenta-Alpha-7B in 49.900s
inv-exponenta-alpha-7b-v7-mkmlizer: creating bucket guanaco-mkml-models
inv-exponenta-alpha-7b-v7-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
inv-exponenta-alpha-7b-v7-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/inv-exponenta-alpha-7b-v7
inv-exponenta-alpha-7b-v7-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/inv-exponenta-alpha-7b-v7/config.json
inv-exponenta-alpha-7b-v7-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/inv-exponenta-alpha-7b-v7/special_tokens_map.json
inv-exponenta-alpha-7b-v7-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/inv-exponenta-alpha-7b-v7/tokenizer_config.json
inv-exponenta-alpha-7b-v7-mkmlizer: cp /dev/shm/model_cache/tokenizer.model s3://guanaco-mkml-models/inv-exponenta-alpha-7b-v7/tokenizer.model
inv-exponenta-alpha-7b-v7-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/inv-exponenta-alpha-7b-v7/tokenizer.json
inv-exponenta-alpha-7b-v7-mkmlizer: cp /dev/shm/model_cache/mkml_model.tensors s3://guanaco-mkml-models/inv-exponenta-alpha-7b-v7/mkml_model.tensors
inv-exponenta-alpha-7b-v7-mkmlizer: loading reward model from ChaiML/reward_gpt2_medium_preference_24m_e2
inv-exponenta-alpha-7b-v7-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:1067: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
inv-exponenta-alpha-7b-v7-mkmlizer: warnings.warn(
inv-exponenta-alpha-7b-v7-mkmlizer: config.json: 0%| | 0.00/1.05k [00:00<?, ?B/s] config.json: 100%|██████████| 1.05k/1.05k [00:00<00:00, 7.66MB/s]
inv-exponenta-alpha-7b-v7-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:690: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
inv-exponenta-alpha-7b-v7-mkmlizer: warnings.warn(
inv-exponenta-alpha-7b-v7-mkmlizer: tokenizer_config.json: 0%| | 0.00/234 [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 234/234 [00:00<00:00, 2.15MB/s]
inv-exponenta-alpha-7b-v7-mkmlizer: vocab.json: 0%| | 0.00/1.04M [00:00<?, ?B/s] vocab.json: 100%|██████████| 1.04M/1.04M [00:00<00:00, 4.56MB/s] vocab.json: 100%|██████████| 1.04M/1.04M [00:00<00:00, 4.55MB/s]
inv-exponenta-alpha-7b-v7-mkmlizer: tokenizer.json: 0%| | 0.00/2.11M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 2.11M/2.11M [00:00<00:00, 24.1MB/s]
inv-exponenta-alpha-7b-v7-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:472: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
inv-exponenta-alpha-7b-v7-mkmlizer: warnings.warn(
inv-exponenta-alpha-7b-v7-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
inv-exponenta-alpha-7b-v7-mkmlizer: Saving duration: 0.298s
inv-exponenta-alpha-7b-v7-mkmlizer: Processed model ChaiML/reward_gpt2_medium_preference_24m_e2 in 9.080s
inv-exponenta-alpha-7b-v7-mkmlizer: creating bucket guanaco-reward-models
inv-exponenta-alpha-7b-v7-mkmlizer: Bucket 's3://guanaco-reward-models/' created
inv-exponenta-alpha-7b-v7-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/inv-exponenta-alpha-7b-v7_reward
inv-exponenta-alpha-7b-v7-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/inv-exponenta-alpha-7b-v7_reward/config.json
inv-exponenta-alpha-7b-v7-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/inv-exponenta-alpha-7b-v7_reward/special_tokens_map.json
inv-exponenta-alpha-7b-v7-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/inv-exponenta-alpha-7b-v7_reward/tokenizer_config.json
inv-exponenta-alpha-7b-v7-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/inv-exponenta-alpha-7b-v7_reward/merges.txt
inv-exponenta-alpha-7b-v7-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/inv-exponenta-alpha-7b-v7_reward/vocab.json
inv-exponenta-alpha-7b-v7-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/inv-exponenta-alpha-7b-v7_reward/tokenizer.json
inv-exponenta-alpha-7b-v7-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/inv-exponenta-alpha-7b-v7_reward/reward.tensors
Job inv-exponenta-alpha-7b-v7-mkmlizer completed after 106.92s with status: succeeded
Stopping job with name inv-exponenta-alpha-7b-v7-mkmlizer
Pipeline stage MKMLizer completed in 111.26s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.09s
Running pipeline stage ISVCDeployer
Creating inference service inv-exponenta-alpha-7b-v7
Waiting for inference service inv-exponenta-alpha-7b-v7 to be ready
Exception raised while processing tagging_function
Traceback (most recent call last): File "/code/guanaco/guanaco_services/src/guanaco_model_service/chat_api.py", line 274, in resolve_chat_api conversation_tag = self.tagging_function(conversation_state) File "/home/zongyi/gitlab/zztools/zztools/llm/guanaco/submit_routing_model.py", line 176, in last_user_message_length TypeError: 'ConversationMessage' object is not subscriptable
Inference service inv-exponenta-alpha-7b-v7 ready after 40.245270013809204s
Pipeline stage ISVCDeployer completed in 48.00s
Running pipeline stage StressChecker
Received healthy response to inference request in 1.5373635292053223s
Received healthy response to inference request in 1.1898102760314941s
Received healthy response to inference request in 1.2197833061218262s
Received healthy response to inference request in 1.1929078102111816s
Received healthy response to inference request in 1.205906867980957s
5 requests
0 failed requests
5th percentile: 1.1904297828674317
10th percentile: 1.191049289703369
20th percentile: 1.192288303375244
30th percentile: 1.1955076217651368
40th percentile: 1.200707244873047
50th percentile: 1.205906867980957
60th percentile: 1.2114574432373046
70th percentile: 1.2170080184936523
80th percentile: 1.2832993507385255
90th percentile: 1.4103314399719238
95th percentile: 1.473847484588623
99th percentile: 1.5246603202819824
mean time: 1.2691543579101563
Pipeline stage StressChecker completed in 7.20s
Running pipeline stage DaemonicModelEvalScorer
Pipeline stage DaemonicModelEvalScorer completed in 0.04s
Running pipeline stage DaemonicSafetyScorer
Running M-Eval for topic stay_in_character
Pipeline stage DaemonicSafetyScorer completed in 0.04s
M-Eval Dataset for topic stay_in_character is loaded
inv-exponenta-alpha-7b_v7 status is now deployed due to DeploymentManager action
inv-exponenta-alpha-7b_v7 status is now inactive due to auto deactivation removed underperforming models

Usage Metrics

Latency Metrics