Running pipeline stage MKMLizer
Starting job with name wespro-opendolphin-7b-slerp-v1-mkmlizer
Waiting for job on wespro-opendolphin-7b-slerp-v1-mkmlizer to finish
wespro-opendolphin-7b-slerp-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
wespro-opendolphin-7b-slerp-v1-mkmlizer: ║ _____ __ __ ║
wespro-opendolphin-7b-slerp-v1-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
wespro-opendolphin-7b-slerp-v1-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
wespro-opendolphin-7b-slerp-v1-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
wespro-opendolphin-7b-slerp-v1-mkmlizer: ║ /___/ ║
wespro-opendolphin-7b-slerp-v1-mkmlizer: ║ ║
wespro-opendolphin-7b-slerp-v1-mkmlizer: ║ Version: 0.6.11 ║
wespro-opendolphin-7b-slerp-v1-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
wespro-opendolphin-7b-slerp-v1-mkmlizer: ║ ║
wespro-opendolphin-7b-slerp-v1-mkmlizer: ║ The license key for the current software has been verified as ║
wespro-opendolphin-7b-slerp-v1-mkmlizer: ║ belonging to: ║
wespro-opendolphin-7b-slerp-v1-mkmlizer: ║ ║
wespro-opendolphin-7b-slerp-v1-mkmlizer: ║ Chai Research Corp. ║
wespro-opendolphin-7b-slerp-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
wespro-opendolphin-7b-slerp-v1-mkmlizer: ║ Expiration: 2024-07-15 23:59:59 ║
wespro-opendolphin-7b-slerp-v1-mkmlizer: ║ ║
wespro-opendolphin-7b-slerp-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
wespro-opendolphin-7b-slerp-v1-mkmlizer:
.gitattributes: 0%| | 0.00/1.52k [00:00<?, ?B/s]
.gitattributes: 100%|██████████| 1.52k/1.52k [00:00<00:00, 19.7MB/s]
wespro-opendolphin-7b-slerp-v1-mkmlizer:
README.md: 0%| | 0.00/1.80k [00:00<?, ?B/s]
README.md: 100%|██████████| 1.80k/1.80k [00:00<00:00, 29.5MB/s]
wespro-opendolphin-7b-slerp-v1-mkmlizer:
config.json: 0%| | 0.00/710 [00:00<?, ?B/s]
config.json: 100%|██████████| 710/710 [00:00<00:00, 11.7MB/s]
wespro-opendolphin-7b-slerp-v1-mkmlizer:
mergekit_config.yml: 0%| | 0.00/431 [00:00<?, ?B/s]
mergekit_config.yml: 100%|██████████| 431/431 [00:00<00:00, 7.15MB/s]
wespro-opendolphin-7b-slerp-v1-mkmlizer:
model-00002-of-00008.safetensors: 0%| | 0.00/1.95G [00:00<?, ?B/s]
model-00002-of-00008.safetensors: 1%| | 10.5M/1.95G [00:01<03:51, 8.37MB/s]
model-00002-of-00008.safetensors: 1%| | 21.0M/1.95G [00:01<02:03, 15.6MB/s]
model-00002-of-00008.safetensors: 2%|▏ | 31.5M/1.95G [00:01<01:41, 18.8MB/s]
model-00002-of-00008.safetensors: 2%|▏ | 41.9M/1.95G [00:02<01:14, 25.5MB/s]
model-00002-of-00008.safetensors: 3%|▎ | 52.4M/1.95G [00:02<01:00, 31.1MB/s]
model-00002-of-00008.safetensors: 4%|▍ | 73.4M/1.95G [00:02<00:36, 51.8MB/s]
model-00002-of-00008.safetensors: 6%|▌ | 115M/1.95G [00:02<00:17, 104MB/s]
model-00002-of-00008.safetensors: 10%|▉ | 189M/1.95G [00:02<00:08, 203MB/s]
model-00002-of-00008.safetensors: 14%|█▍ | 273M/1.95G [00:02<00:05, 306MB/s]
model-00002-of-00008.safetensors: 16%|█▌ | 315M/1.95G [00:02<00:05, 319MB/s]
model-00002-of-00008.safetensors: 22%|██▏ | 430M/1.95G [00:03<00:03, 494MB/s]
model-00002-of-00008.safetensors: 59%|█████▉ | 1.15G/1.95G [00:03<00:00, 1.87GB/s]
model-00002-of-00008.safetensors: 70%|██████▉ | 1.35G/1.95G [00:03<00:00, 1.08GB/s]
model-00002-of-00008.safetensors: 77%|███████▋ | 1.50G/1.95G [00:03<00:00, 1.03GB/s]
model-00002-of-00008.safetensors: 84%|████████▍ | 1.63G/1.95G [00:04<00:00, 757MB/s]
model-00002-of-00008.safetensors: 89%|████████▉ | 1.74G/1.95G [00:04<00:00, 795MB/s]
model-00002-of-00008.safetensors: 100%|█████████▉| 1.95G/1.95G [00:04<00:00, 447MB/s]
wespro-opendolphin-7b-slerp-v1-mkmlizer:
model-00003-of-00008.safetensors: 0%| | 0.00/1.97G [00:00<?, ?B/s]
model-00003-of-00008.safetensors: 1%| | 10.5M/1.97G [00:02<06:55, 4.72MB/s]
model-00003-of-00008.safetensors: 1%| | 21.0M/1.97G [00:02<03:24, 9.56MB/s]
model-00003-of-00008.safetensors: 2%|▏ | 41.9M/1.97G [00:02<01:24, 22.8MB/s]
model-00003-of-00008.safetensors: 3%|▎ | 52.4M/1.97G [00:02<01:05, 29.2MB/s]
model-00003-of-00008.safetensors: 5%|▍ | 94.4M/1.97G [00:02<00:26, 70.7MB/s]
model-00003-of-00008.safetensors: 15%|█▌ | 304M/1.97G [00:03<00:04, 340MB/s]
model-00003-of-00008.safetensors: 20%|██ | 398M/1.97G [00:03<00:03, 434MB/s]
model-00003-of-00008.safetensors: 25%|██▍ | 493M/1.97G [00:03<00:03, 476MB/s]
model-00003-of-00008.safetensors: 54%|█████▎ | 1.06G/1.97G [00:03<00:00, 1.24GB/s]
model-00003-of-00008.safetensors: 61%|██████ | 1.21G/1.97G [00:04<00:01, 588MB/s]
model-00003-of-00008.safetensors: 67%|██████▋ | 1.32G/1.97G [00:04<00:01, 480MB/s]
model-00003-of-00008.safetensors: 71%|███████▏ | 1.41G/1.97G [00:04<00:01, 448MB/s]
model-00003-of-00008.safetensors: 76%|███████▌ | 1.50G/1.97G [00:05<00:00, 493MB/s]
model-00003-of-00008.safetensors: 80%|███████▉ | 1.58G/1.97G [00:05<00:00, 492MB/s]
model-00003-of-00008.safetensors: 84%|████████▎ | 1.65G/1.97G [00:05<00:00, 518MB/s]
model-00003-of-00008.safetensors: 100%|█████████▉| 1.97G/1.97G [00:05<00:00, 366MB/s]
Failed to get response for submission neversleep-noromaid-v0-_8068_v11: ('http://neversleep-noromaid-v0-8068-v11-predictor-default.tenant-chaiml-guanaco.knative.ord1.coreweave.cloud/v1/models/GPT-J-6B-lit-v2:predict', 'read tcp 127.0.0.1:41106->127.0.0.1:8080: read: connection reset by peer\n')
wespro-opendolphin-7b-slerp-v1-mkmlizer:
model-00004-of-00008.safetensors: 0%| | 0.00/1.98G [00:00<?, ?B/s]
model-00004-of-00008.safetensors: 1%| | 10.5M/1.98G [00:02<06:33, 5.01MB/s]
model-00004-of-00008.safetensors: 2%|▏ | 31.5M/1.98G [00:02<02:04, 15.6MB/s]
model-00004-of-00008.safetensors: 3%|▎ | 52.4M/1.98G [00:02<01:08, 28.3MB/s]
model-00004-of-00008.safetensors: 4%|▎ | 73.4M/1.98G [00:02<00:44, 43.0MB/s]
model-00004-of-00008.safetensors: 10%|▉ | 189M/1.98G [00:02<00:10, 165MB/s]
model-00004-of-00008.safetensors: 16%|█▌ | 315M/1.98G [00:02<00:05, 298MB/s]
model-00004-of-00008.safetensors: 19%|█▉ | 377M/1.98G [00:03<00:04, 332MB/s]
model-00004-of-00008.safetensors: 24%|██▍ | 482M/1.98G [00:03<00:03, 452MB/s]
model-00004-of-00008.safetensors: 54%|█████▍ | 1.07G/1.98G [00:03<00:00, 1.23GB/s]
model-00004-of-00008.safetensors: 61%|██████ | 1.20G/1.98G [00:03<00:01, 722MB/s]
model-00004-of-00008.safetensors: 68%|██████▊ | 1.34G/1.98G [00:04<00:00, 807MB/s]
model-00004-of-00008.safetensors: 74%|███████▎ | 1.46G/1.98G [00:04<00:00, 662MB/s]
model-00004-of-00008.safetensors: 78%|███████▊ | 1.55G/1.98G [00:04<00:00, 627MB/s]
model-00004-of-00008.safetensors: 83%|████████▎ | 1.63G/1.98G [00:04<00:00, 550MB/s]
model-00004-of-00008.safetensors: 88%|████████▊ | 1.75G/1.98G [00:04<00:00, 634MB/s]
model-00004-of-00008.safetensors: 100%|█████████▉| 1.98G/1.98G [00:04<00:00, 400MB/s]
wespro-opendolphin-7b-slerp-v1-mkmlizer:
model-00005-of-00008.safetensors: 0%| | 0.00/1.95G [00:00<?, ?B/s]
model-00005-of-00008.safetensors: 1%| | 10.5M/1.95G [00:00<01:53, 17.0MB/s]
model-00005-of-00008.safetensors: 1%| | 21.0M/1.95G [00:01<02:16, 14.1MB/s]
model-00005-of-00008.safetensors: 2%|▏ | 31.5M/1.95G [00:02<02:24, 13.3MB/s]
model-00005-of-00008.safetensors: 2%|▏ | 41.9M/1.95G [00:02<01:37, 19.6MB/s]
model-00005-of-00008.safetensors: 3%|▎ | 62.9M/1.95G [00:02<00:53, 35.1MB/s]
model-00005-of-00008.safetensors: 8%|▊ | 147M/1.95G [00:02<00:14, 121MB/s]
model-00005-of-00008.safetensors: 15%|█▍ | 283M/1.95G [00:02<00:05, 285MB/s]
model-00005-of-00008.safetensors: 21%|██ | 409M/1.95G [00:02<00:03, 428MB/s]
model-00005-of-00008.safetensors: 25%|██▌ | 493M/1.95G [00:03<00:02, 494MB/s]
model-00005-of-00008.safetensors: 53%|█████▎ | 1.04G/1.95G [00:03<00:00, 1.50GB/s]
model-00005-of-00008.safetensors: 65%|██████▍ | 1.26G/1.95G [00:04<00:01, 427MB/s]
model-00005-of-00008.safetensors: 73%|███████▎ | 1.42G/1.95G [00:04<00:01, 461MB/s]
model-00005-of-00008.safetensors: 80%|████████ | 1.56G/1.95G [00:04<00:00, 540MB/s]
model-00005-of-00008.safetensors: 87%|████████▋ | 1.69G/1.95G [00:05<00:00, 556MB/s]
model-00005-of-00008.safetensors: 100%|█████████▉| 1.95G/1.95G [00:05<00:00, 372MB/s]
wespro-opendolphin-7b-slerp-v1-mkmlizer:
model-00006-of-00008.safetensors: 0%| | 0.00/1.92G [00:00<?, ?B/s]
model-00006-of-00008.safetensors: 1%| | 10.5M/1.92G [00:01<06:01, 5.29MB/s]
model-00006-of-00008.safetensors: 1%| | 21.0M/1.92G [00:02<02:40, 11.9MB/s]
model-00006-of-00008.safetensors: 2%|▏ | 31.5M/1.92G [00:02<01:34, 19.9MB/s]
model-00006-of-00008.safetensors: 3%|▎ | 52.4M/1.92G [00:02<01:03, 29.5MB/s]
model-00006-of-00008.safetensors: 4%|▍ | 73.4M/1.92G [00:02<00:40, 45.2MB/s]
model-00006-of-00008.safetensors: 7%|▋ | 136M/1.92G [00:02<00:15, 112MB/s]
model-00006-of-00008.safetensors: 14%|█▍ | 273M/1.92G [00:03<00:06, 274MB/s]
model-00006-of-00008.safetensors: 18%|█▊ | 346M/1.92G [00:03<00:04, 331MB/s]
model-00006-of-00008.safetensors: 23%|██▎ | 440M/1.92G [00:03<00:03, 430MB/s]
model-00006-of-00008.safetensors: 56%|█████▌ | 1.07G/1.92G [00:03<00:00, 1.48GB/s]
model-00006-of-00008.safetensors: 65%|██████▌ | 1.26G/1.92G [00:04<00:00, 718MB/s]
model-00006-of-00008.safetensors: 73%|███████▎ | 1.40G/1.92G [00:04<00:00, 605MB/s]
model-00006-of-00008.safetensors: 78%|███████▊ | 1.50G/1.92G [00:04<00:00, 550MB/s]
model-00006-of-00008.safetensors: 83%|████████▎ | 1.60G/1.92G [00:04<00:00, 540MB/s]
model-00006-of-00008.safetensors: 90%|████████▉ | 1.72G/1.92G [00:05<00:00, 633MB/s]
model-00006-of-00008.safetensors: 100%|█████████▉| 1.92G/1.92G [00:05<00:00, 375MB/s]
wespro-opendolphin-7b-slerp-v1-mkmlizer:
model-00008-of-00008.safetensors: 0%| | 0.00/789M [00:00<?, ?B/s]
model-00008-of-00008.safetensors: 0%| | 2.13M/789M [00:00<05:57, 2.20MB/s]
model-00008-of-00008.safetensors: 2%|▏ | 12.6M/789M [00:01<01:32, 8.36MB/s]
model-00008-of-00008.safetensors: 3%|▎ | 23.1M/789M [00:01<00:49, 15.5MB/s]
model-00008-of-00008.safetensors: 8%|▊ | 65.0M/789M [00:02<00:12, 56.5MB/s]
model-00008-of-00008.safetensors: 11%|█ | 86.0M/789M [00:02<00:09, 75.1MB/s]
model-00008-of-00008.safetensors: 24%|██▍ | 191M/789M [00:02<00:02, 220MB/s]
model-00008-of-00008.safetensors: 31%|███ | 243M/789M [00:02<00:02, 261MB/s]
model-00008-of-00008.safetensors: 99%|█████████▊| 778M/789M [00:02<00:00, 1.25GB/s]
model-00008-of-00008.safetensors: 100%|█████████▉| 789M/789M [00:02<00:00, 309MB/s]
wespro-opendolphin-7b-slerp-v1-mkmlizer:
model.safetensors.index.json: 0%| | 0.00/22.8k [00:00<?, ?B/s]
model.safetensors.index.json: 100%|██████████| 22.8k/22.8k [00:00<00:00, 130MB/s]
wespro-opendolphin-7b-slerp-v1-mkmlizer:
special_tokens_map.json: 0%| | 0.00/558 [00:00<?, ?B/s]
special_tokens_map.json: 100%|██████████| 558/558 [00:00<00:00, 5.96MB/s]
wespro-opendolphin-7b-slerp-v1-mkmlizer:
tokenizer.json: 0%| | 0.00/1.80M [00:00<?, ?B/s]
tokenizer.json: 100%|██████████| 1.80M/1.80M [00:00<00:00, 5.16MB/s]
tokenizer.json: 100%|██████████| 1.80M/1.80M [00:00<00:00, 5.15MB/s]
wespro-opendolphin-7b-slerp-v1-mkmlizer:
tokenizer_config.json: 0%| | 0.00/1.28k [00:00<?, ?B/s]
tokenizer_config.json: 100%|██████████| 1.28k/1.28k [00:00<00:00, 21.0MB/s]
wespro-opendolphin-7b-slerp-v1-mkmlizer: Downloaded to shared memory in 41.561s
wespro-opendolphin-7b-slerp-v1-mkmlizer: quantizing model to /dev/shm/model_cache
wespro-opendolphin-7b-slerp-v1-mkmlizer: Saving mkml model at /dev/shm/model_cache
wespro-opendolphin-7b-slerp-v1-mkmlizer: Reading /tmp/tmpogxmozng/model.safetensors.index.json
wespro-opendolphin-7b-slerp-v1-mkmlizer:
Profiling: 0%| | 0/291 [00:00<?, ?it/s]
Profiling: 0%| | 1/291 [00:00<01:40, 2.89it/s]
Profiling: 6%|▌ | 17/291 [00:00<00:05, 48.36it/s]
Profiling: 12%|█▏ | 36/291 [00:00<00:02, 89.69it/s]
Profiling: 17%|█▋ | 50/291 [00:00<00:03, 79.54it/s]
Profiling: 24%|██▎ | 69/291 [00:00<00:02, 103.18it/s]
Profiling: 29%|██▊ | 83/291 [00:02<00:07, 28.66it/s]
Profiling: 35%|███▌ | 103/291 [00:02<00:04, 43.03it/s]
Profiling: 41%|████ | 120/291 [00:02<00:03, 52.14it/s]
Profiling: 46%|████▌ | 134/291 [00:02<00:02, 62.86it/s]
Profiling: 53%|█████▎ | 155/291 [00:02<00:01, 84.80it/s]
Profiling: 58%|█████▊ | 170/291 [00:02<00:01, 82.44it/s]
Profiling: 66%|██████▌ | 191/291 [00:02<00:00, 104.96it/s]
Profiling: 71%|███████ | 207/291 [00:04<00:02, 32.41it/s]
Profiling: 78%|███████▊ | 227/291 [00:04<00:01, 44.54it/s]
Profiling: 83%|████████▎ | 241/291 [00:04<00:00, 51.26it/s]
Profiling: 90%|█████████ | 263/291 [00:04<00:00, 70.57it/s]
Profiling: 96%|█████████▌| 278/291 [00:04<00:00, 77.14it/s]
Profiling: 100%|██████████| 291/291 [00:04<00:00, 59.32it/s]
wespro-opendolphin-7b-slerp-v1-mkmlizer: quantized model in 14.761s
wespro-opendolphin-7b-slerp-v1-mkmlizer: Processed model WesPro/OpenDolphin-7B-slerp in 57.214s
wespro-opendolphin-7b-slerp-v1-mkmlizer: creating bucket guanaco-mkml-models
wespro-opendolphin-7b-slerp-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
wespro-opendolphin-7b-slerp-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/wespro-opendolphin-7b-slerp-v1
wespro-opendolphin-7b-slerp-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/wespro-opendolphin-7b-slerp-v1/config.json
wespro-opendolphin-7b-slerp-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/wespro-opendolphin-7b-slerp-v1/tokenizer_config.json
wespro-opendolphin-7b-slerp-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/wespro-opendolphin-7b-slerp-v1/special_tokens_map.json
wespro-opendolphin-7b-slerp-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/wespro-opendolphin-7b-slerp-v1/tokenizer.json
wespro-opendolphin-7b-slerp-v1-mkmlizer: cp /dev/shm/model_cache/mkml_model.tensors s3://guanaco-mkml-models/wespro-opendolphin-7b-slerp-v1/mkml_model.tensors
wespro-opendolphin-7b-slerp-v1-mkmlizer: loading reward model from ChaiML/reward_gpt2_medium_preference_24m_e2
wespro-opendolphin-7b-slerp-v1-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:1067: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
wespro-opendolphin-7b-slerp-v1-mkmlizer: warnings.warn(
wespro-opendolphin-7b-slerp-v1-mkmlizer:
config.json: 0%| | 0.00/1.05k [00:00<?, ?B/s]
config.json: 100%|██████████| 1.05k/1.05k [00:00<00:00, 13.1MB/s]
wespro-opendolphin-7b-slerp-v1-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:690: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
wespro-opendolphin-7b-slerp-v1-mkmlizer: warnings.warn(
wespro-opendolphin-7b-slerp-v1-mkmlizer:
tokenizer_config.json: 0%| | 0.00/234 [00:00<?, ?B/s]
tokenizer_config.json: 100%|██████████| 234/234 [00:00<00:00, 2.33MB/s]
wespro-opendolphin-7b-slerp-v1-mkmlizer:
vocab.json: 0%| | 0.00/1.04M [00:00<?, ?B/s]
vocab.json: 100%|██████████| 1.04M/1.04M [00:00<00:00, 28.1MB/s]
wespro-opendolphin-7b-slerp-v1-mkmlizer:
tokenizer.json: 0%| | 0.00/2.11M [00:00<?, ?B/s]
tokenizer.json: 100%|██████████| 2.11M/2.11M [00:00<00:00, 26.0MB/s]
wespro-opendolphin-7b-slerp-v1-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:472: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
wespro-opendolphin-7b-slerp-v1-mkmlizer: warnings.warn(
wespro-opendolphin-7b-slerp-v1-mkmlizer:
pytorch_model.bin: 0%| | 0.00/1.44G [00:00<?, ?B/s]
pytorch_model.bin: 1%| | 10.5M/1.44G [00:00<00:25, 57.0MB/s]
pytorch_model.bin: 2%|▏ | 31.5M/1.44G [00:00<00:16, 84.4MB/s]
pytorch_model.bin: 13%|█▎ | 189M/1.44G [00:00<00:02, 506MB/s]
pytorch_model.bin: 18%|█▊ | 262M/1.44G [00:00<00:02, 566MB/s]
pytorch_model.bin: 23%|██▎ | 336M/1.44G [00:01<00:03, 318MB/s]
pytorch_model.bin: 32%|███▏ | 461M/1.44G [00:01<00:02, 466MB/s]
pytorch_model.bin: 68%|██████▊ | 975M/1.44G [00:01<00:00, 1.38GB/s]
pytorch_model.bin: 100%|█████████▉| 1.44G/1.44G [00:01<00:00, 1.08GB/s]
wespro-opendolphin-7b-slerp-v1-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
wespro-opendolphin-7b-slerp-v1-mkmlizer: Bucket 's3://guanaco-reward-models/' created
wespro-opendolphin-7b-slerp-v1-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/wespro-opendolphin-7b-slerp-v1_reward
wespro-opendolphin-7b-slerp-v1-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/wespro-opendolphin-7b-slerp-v1_reward/config.json
wespro-opendolphin-7b-slerp-v1-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/wespro-opendolphin-7b-slerp-v1_reward/tokenizer_config.json
wespro-opendolphin-7b-slerp-v1-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/wespro-opendolphin-7b-slerp-v1_reward/special_tokens_map.json
wespro-opendolphin-7b-slerp-v1-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/wespro-opendolphin-7b-slerp-v1_reward/vocab.json
wespro-opendolphin-7b-slerp-v1-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/wespro-opendolphin-7b-slerp-v1_reward/merges.txt
wespro-opendolphin-7b-slerp-v1-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/wespro-opendolphin-7b-slerp-v1_reward/tokenizer.json
wespro-opendolphin-7b-slerp-v1-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/wespro-opendolphin-7b-slerp-v1_reward/reward.tensors
Job wespro-opendolphin-7b-slerp-v1-mkmlizer completed after 85.4s with status: succeeded
Stopping job with name wespro-opendolphin-7b-slerp-v1-mkmlizer
Pipeline stage MKMLizer completed in 91.35s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.13s
Running pipeline stage ISVCDeployer
Creating inference service wespro-opendolphin-7b-slerp-v1
Waiting for inference service wespro-opendolphin-7b-slerp-v1 to be ready
Tearing down inference service wespro-opendolphin-7b-slerp-v1
%s, retrying in %s seconds...
Creating inference service wespro-opendolphin-7b-slerp-v1
Waiting for inference service wespro-opendolphin-7b-slerp-v1 to be ready
Tearing down inference service wespro-opendolphin-7b-slerp-v1
%s, retrying in %s seconds...
Creating inference service wespro-opendolphin-7b-slerp-v1
Waiting for inference service wespro-opendolphin-7b-slerp-v1 to be ready
Inference service wespro-opendolphin-7b-slerp-v1 ready after 40.43626856803894s
Pipeline stage ISVCDeployer completed in 79.83s
Running pipeline stage StressChecker
Received healthy response to inference request in 1.0941529273986816s
Received healthy response to inference request in 1.0622851848602295s
Received healthy response to inference request in 0.8572006225585938s
Received healthy response to inference request in 1.0092980861663818s
Received healthy response to inference request in 0.8873834609985352s
5 requests
0 failed requests
5th percentile: 0.8632371902465821
10th percentile: 0.8692737579345703
20th percentile: 0.8813468933105468
30th percentile: 0.9117663860321045
40th percentile: 0.9605322360992432
50th percentile: 1.0092980861663818
60th percentile: 1.0304929256439208
70th percentile: 1.05168776512146
80th percentile: 1.0686587333679198
90th percentile: 1.0814058303833007
95th percentile: 1.0877793788909913
99th percentile: 1.0928782176971437
mean time: 0.9820640563964844
Pipeline stage StressChecker completed in 5.85s
Running pipeline stage DaemonicModelEvalScorer
Pipeline stage DaemonicModelEvalScorer completed in 0.05s
Running pipeline stage DaemonicSafetyScorer
Running M-Eval for topic stay_in_character
Pipeline stage DaemonicSafetyScorer completed in 0.06s
M-Eval Dataset for topic stay_in_character is loaded
wespro-opendolphin-7b-slerp_v1 status is now deployed due to DeploymentManager action
wespro-opendolphin-7b-slerp_v1 status is now inactive due to auto deactivation removed underperforming models
admin requested tearing down of wespro-opendolphin-7b-slerp_v1
Running pipeline stage ISVCDeleter
Checking if service wespro-opendolphin-7b-slerp-v1 is running
Tearing down inference service wespro-opendolphin-7b-slerp-v1
Toredown service wespro-opendolphin-7b-slerp-v1
Pipeline stage ISVCDeleter completed in 3.10s
Running pipeline stage MKMLModelDeleter
Cleaning model data from S3
Cleaning model data from model cache
Deleting key wespro-opendolphin-7b-slerp-v1/config.json from bucket guanaco-mkml-models
Deleting key wespro-opendolphin-7b-slerp-v1/mkml_model.tensors from bucket guanaco-mkml-models
Deleting key wespro-opendolphin-7b-slerp-v1/special_tokens_map.json from bucket guanaco-mkml-models
Deleting key wespro-opendolphin-7b-slerp-v1/tokenizer.json from bucket guanaco-mkml-models
Deleting key wespro-opendolphin-7b-slerp-v1/tokenizer_config.json from bucket guanaco-mkml-models
Cleaning model data from model cache
Deleting key wespro-opendolphin-7b-slerp-v1_reward/config.json from bucket guanaco-reward-models
Deleting key wespro-opendolphin-7b-slerp-v1_reward/merges.txt from bucket guanaco-reward-models
Deleting key wespro-opendolphin-7b-slerp-v1_reward/reward.tensors from bucket guanaco-reward-models
Deleting key wespro-opendolphin-7b-slerp-v1_reward/special_tokens_map.json from bucket guanaco-reward-models
Deleting key wespro-opendolphin-7b-slerp-v1_reward/tokenizer.json from bucket guanaco-reward-models
Deleting key wespro-opendolphin-7b-slerp-v1_reward/tokenizer_config.json from bucket guanaco-reward-models
Deleting key wespro-opendolphin-7b-slerp-v1_reward/vocab.json from bucket guanaco-reward-models
Pipeline stage MKMLModelDeleter completed in 1.81s
wespro-opendolphin-7b-slerp_v1 status is now torndown due to DeploymentManager action