Running pipeline stage MKMLizer
Starting job with name zonemercy-cogent-nemo-v1-3266-v3-mkmlizer
Waiting for job on zonemercy-cogent-nemo-v1-3266-v3-mkmlizer to finish
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: ║ _____ __ __ ║
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: ║ /___/ ║
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: ║ ║
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: ║ Version: 0.9.9 ║
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: ║ https://mk1.ai ║
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: ║ ║
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: ║ The license key for the current software has been verified as ║
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: ║ belonging to: ║
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: ║ ║
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: ║ Chai Research Corp. ║
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: ║ Expiration: 2024-10-15 23:59:59 ║
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: ║ ║
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: Downloaded to shared memory in 57.997s
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmpvy8uku02, device:0
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: Saving flywheel model at /dev/shm/model_cache
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: quantized model in 40.502s
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: Processed model zonemercy/Cogent-Nemo-v1-1k1e5 in 98.500s
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: creating bucket guanaco-mkml-models
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/zonemercy-cogent-nemo-v1-3266-v3
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/zonemercy-cogent-nemo-v1-3266-v3/config.json
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/zonemercy-cogent-nemo-v1-3266-v3/special_tokens_map.json
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/zonemercy-cogent-nemo-v1-3266-v3/tokenizer_config.json
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/zonemercy-cogent-nemo-v1-3266-v3/tokenizer.json
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: loading reward model from ChaiML/gpt2_xl_pairwise_89m_step_347634
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer:
Loading 0: 0%| | 0/363 [00:00<?, ?it/s]
Loading 0: 1%|▏ | 5/363 [00:00<00:15, 23.29it/s]
Loading 0: 3%|▎ | 10/363 [00:00<00:12, 28.66it/s]
Loading 0: 4%|▍ | 14/363 [00:00<00:13, 25.38it/s]
Loading 0: 6%|▌ | 20/363 [00:00<00:09, 34.39it/s]
Loading 0: 7%|▋ | 24/363 [00:00<00:14, 22.95it/s]
Loading 0: 7%|▋ | 27/363 [00:01<00:14, 22.53it/s]
Loading 0: 9%|▊ | 31/363 [00:01<00:12, 26.13it/s]
Loading 0: 10%|▉ | 35/363 [00:01<00:11, 27.87it/s]
Loading 0: 11%|█ | 39/363 [00:01<00:11, 29.36it/s]
Loading 0: 12%|█▏ | 43/363 [00:01<00:11, 28.67it/s]
Loading 0: 13%|█▎ | 48/363 [00:01<00:10, 31.32it/s]
Loading 0: 14%|█▍ | 52/363 [00:01<00:10, 29.07it/s]
Loading 0: 15%|█▌ | 56/363 [00:02<00:10, 29.61it/s]
Loading 0: 17%|█▋ | 61/363 [00:02<00:12, 24.88it/s]
Loading 0: 18%|█▊ | 64/363 [00:02<00:13, 21.75it/s]
Loading 0: 20%|█▉ | 71/363 [00:02<00:10, 28.28it/s]
Loading 0: 21%|██ | 75/363 [00:02<00:10, 28.20it/s]
Loading 0: 21%|██▏ | 78/363 [00:02<00:10, 26.26it/s]
Loading 0: 23%|██▎ | 82/363 [00:03<00:09, 28.97it/s]
Loading 0: 24%|██▎ | 86/363 [00:03<00:10, 25.62it/s]
Loading 0: 26%|██▌ | 93/363 [00:03<00:08, 32.18it/s]
Loading 0: 27%|██▋ | 97/363 [00:03<00:08, 30.33it/s]
Loading 0: 28%|██▊ | 101/363 [00:03<00:11, 23.79it/s]
Loading 0: 29%|██▊ | 104/363 [00:03<00:12, 21.58it/s]
Loading 0: 30%|███ | 109/363 [00:04<00:09, 26.86it/s]
Loading 0: 31%|███ | 113/363 [00:04<00:10, 24.87it/s]
Loading 0: 33%|███▎ | 120/363 [00:04<00:07, 31.06it/s]
Loading 0: 34%|███▍ | 124/363 [00:04<00:08, 29.82it/s]
Loading 0: 36%|███▌ | 129/363 [00:04<00:07, 31.81it/s]
Loading 0: 37%|███▋ | 133/363 [00:04<00:07, 30.13it/s]
Loading 0: 38%|███▊ | 137/363 [00:04<00:07, 29.42it/s]
Loading 0: 39%|███▉ | 142/363 [00:05<00:08, 25.44it/s]
Loading 0: 40%|███▉ | 145/363 [00:05<00:08, 24.31it/s]
Loading 0: 41%|████ | 149/363 [00:05<00:09, 22.86it/s]
Loading 0: 43%|████▎ | 156/363 [00:05<00:07, 29.36it/s]
Loading 0: 44%|████▍ | 160/363 [00:05<00:07, 28.73it/s]
Loading 0: 45%|████▌ | 165/363 [00:05<00:06, 31.24it/s]
Loading 0: 47%|████▋ | 169/363 [00:06<00:06, 30.13it/s]
Loading 0: 48%|████▊ | 174/363 [00:06<00:05, 31.91it/s]
Loading 0: 49%|████▉ | 178/363 [00:06<00:06, 30.54it/s]
Loading 0: 50%|█████ | 182/363 [00:06<00:07, 24.05it/s]
Loading 0: 51%|█████ | 185/363 [00:06<00:08, 21.23it/s]
Loading 0: 53%|█████▎ | 192/363 [00:07<00:06, 28.07it/s]
Loading 0: 54%|█████▍ | 196/363 [00:07<00:06, 27.29it/s]
Loading 0: 55%|█████▌ | 201/363 [00:07<00:05, 29.81it/s]
Loading 0: 56%|█████▋ | 205/363 [00:07<00:05, 28.77it/s]
Loading 0: 58%|█████▊ | 210/363 [00:07<00:04, 30.70it/s]
Loading 0: 59%|█████▉ | 214/363 [00:07<00:05, 29.30it/s]
Loading 0: 60%|██████ | 218/363 [00:07<00:04, 29.26it/s]
Loading 0: 61%|██████▏ | 223/363 [00:08<00:05, 25.00it/s]
Loading 0: 62%|██████▏ | 226/363 [00:08<00:05, 23.99it/s]
Loading 0: 63%|██████▎ | 230/363 [00:08<00:05, 23.28it/s]
Loading 0: 65%|██████▌ | 237/363 [00:08<00:04, 29.78it/s]
Loading 0: 66%|██████▋ | 241/363 [00:08<00:04, 28.82it/s]
Loading 0: 68%|██████▊ | 246/363 [00:08<00:03, 31.11it/s]
Loading 0: 69%|██████▉ | 250/363 [00:09<00:03, 29.66it/s]
Loading 0: 70%|███████ | 255/363 [00:09<00:03, 31.91it/s]
Loading 0: 71%|███████▏ | 259/363 [00:09<00:03, 30.19it/s]
Loading 0: 72%|███████▏ | 263/363 [00:09<00:04, 23.96it/s]
Loading 0: 73%|███████▎ | 266/363 [00:09<00:04, 21.43it/s]
Loading 0: 75%|███████▍ | 271/363 [00:09<00:03, 26.76it/s]
Loading 0: 76%|███████▌ | 275/363 [00:10<00:03, 24.50it/s]
Loading 0: 78%|███████▊ | 282/363 [00:10<00:02, 30.90it/s]
Loading 0: 79%|███████▉ | 286/363 [00:10<00:02, 29.08it/s]
Loading 0: 80%|████████ | 291/363 [00:10<00:02, 31.17it/s]
Loading 0: 81%|████████▏ | 295/363 [00:10<00:02, 29.74it/s]
Loading 0: 82%|████████▏ | 299/363 [00:10<00:02, 29.55it/s]
Loading 0: 84%|████████▎ | 304/363 [00:11<00:02, 25.40it/s]
Loading 0: 85%|████████▍ | 307/363 [00:11<00:02, 24.37it/s]
Loading 0: 86%|████████▌ | 311/363 [00:11<00:02, 23.06it/s]
Loading 0: 88%|████████▊ | 318/363 [00:11<00:01, 29.42it/s]
Loading 0: 89%|████████▊ | 322/363 [00:11<00:01, 28.79it/s]
Loading 0: 90%|█████████ | 327/363 [00:11<00:01, 30.70it/s]
Loading 0: 91%|█████████ | 331/363 [00:11<00:01, 29.56it/s]
Loading 0: 93%|█████████▎| 336/363 [00:12<00:00, 31.92it/s]
Loading 0: 94%|█████████▎| 340/363 [00:12<00:00, 29.94it/s]
Loading 0: 95%|█████████▍| 344/363 [00:19<00:09, 1.99it/s]
Loading 0: 96%|█████████▌| 348/363 [00:19<00:05, 2.67it/s]
Loading 0: 97%|█████████▋| 353/363 [00:19<00:02, 3.87it/s]
Loading 0: 98%|█████████▊| 357/363 [00:19<00:01, 5.01it/s]
/opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:957: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: warnings.warn(
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:785: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: warnings.warn(
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:469: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: warnings.warn(
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer:
Downloading shards: 0%| | 0/2 [00:00<?, ?it/s]
Downloading shards: 50%|█████ | 1/2 [00:05<00:05, 5.47s/it]
Downloading shards: 100%|██████████| 2/2 [00:08<00:00, 3.95s/it]
Downloading shards: 100%|██████████| 2/2 [00:08<00:00, 4.17s/it]
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer:
Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]
Loading checkpoint shards: 50%|█████ | 1/2 [00:00<00:00, 2.34it/s]
Loading checkpoint shards: 100%|██████████| 2/2 [00:00<00:00, 3.89it/s]
Loading checkpoint shards: 100%|██████████| 2/2 [00:00<00:00, 3.54it/s]
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: Saving duration: 1.327s
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: Processed model ChaiML/gpt2_xl_pairwise_89m_step_347634 in 13.205s
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: creating bucket guanaco-reward-models
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: Bucket 's3://guanaco-reward-models/' created
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/zonemercy-cogent-nemo-v1-3266-v3_reward
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/zonemercy-cogent-nemo-v1-3266-v3_reward/config.json
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/zonemercy-cogent-nemo-v1-3266-v3_reward/tokenizer_config.json
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/zonemercy-cogent-nemo-v1-3266-v3_reward/special_tokens_map.json
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/zonemercy-cogent-nemo-v1-3266-v3_reward/merges.txt
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/zonemercy-cogent-nemo-v1-3266-v3_reward/vocab.json
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/zonemercy-cogent-nemo-v1-3266-v3_reward/tokenizer.json
zonemercy-cogent-nemo-v1-3266-v3-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/zonemercy-cogent-nemo-v1-3266-v3_reward/reward.tensors
Job zonemercy-cogent-nemo-v1-3266-v3-mkmlizer completed after 146.36s with status: succeeded
Stopping job with name zonemercy-cogent-nemo-v1-3266-v3-mkmlizer
Pipeline stage MKMLizer completed in 147.38s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.12s
Running pipeline stage ISVCDeployer
Creating inference service zonemercy-cogent-nemo-v1-3266-v3
Waiting for inference service zonemercy-cogent-nemo-v1-3266-v3 to be ready
Running pipeline stage MKMLizer
Starting job with name cycy233-l3-e-v2-c1-v30-mkmlizer
Waiting for job on cycy233-l3-e-v2-c1-v30-mkmlizer to finish
cycy233-l3-e-v2-c1-v30-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
cycy233-l3-e-v2-c1-v30-mkmlizer: ║ _____ __ __ ║
cycy233-l3-e-v2-c1-v30-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
cycy233-l3-e-v2-c1-v30-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
cycy233-l3-e-v2-c1-v30-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
cycy233-l3-e-v2-c1-v30-mkmlizer: ║ /___/ ║
cycy233-l3-e-v2-c1-v30-mkmlizer: ║ ║
cycy233-l3-e-v2-c1-v30-mkmlizer: ║ Version: 0.9.9 ║
cycy233-l3-e-v2-c1-v30-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
cycy233-l3-e-v2-c1-v30-mkmlizer: ║ https://mk1.ai ║
cycy233-l3-e-v2-c1-v30-mkmlizer: ║ ║
cycy233-l3-e-v2-c1-v30-mkmlizer: ║ The license key for the current software has been verified as ║
cycy233-l3-e-v2-c1-v30-mkmlizer: ║ belonging to: ║
cycy233-l3-e-v2-c1-v30-mkmlizer: ║ ║
cycy233-l3-e-v2-c1-v30-mkmlizer: ║ Chai Research Corp. ║
cycy233-l3-e-v2-c1-v30-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
cycy233-l3-e-v2-c1-v30-mkmlizer: ║ Expiration: 2024-10-15 23:59:59 ║
cycy233-l3-e-v2-c1-v30-mkmlizer: ║ ║
cycy233-l3-e-v2-c1-v30-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
cycy233-l3-e-v2-c1-v30-mkmlizer: Downloaded to shared memory in 22.199s
cycy233-l3-e-v2-c1-v30-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmpfx4l70xf, device:0
cycy233-l3-e-v2-c1-v30-mkmlizer: Saving flywheel model at /dev/shm/model_cache
cycy233-l3-e-v2-c1-v30-mkmlizer: quantized model in 26.551s
cycy233-l3-e-v2-c1-v30-mkmlizer: Processed model cycy233/L3-e-v2-c1 in 48.750s
cycy233-l3-e-v2-c1-v30-mkmlizer: creating bucket guanaco-mkml-models
cycy233-l3-e-v2-c1-v30-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
cycy233-l3-e-v2-c1-v30-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/cycy233-l3-e-v2-c1-v30
cycy233-l3-e-v2-c1-v30-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/cycy233-l3-e-v2-c1-v30/config.json
cycy233-l3-e-v2-c1-v30-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/cycy233-l3-e-v2-c1-v30/special_tokens_map.json
cycy233-l3-e-v2-c1-v30-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/cycy233-l3-e-v2-c1-v30/tokenizer_config.json
cycy233-l3-e-v2-c1-v30-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/cycy233-l3-e-v2-c1-v30/tokenizer.json
cycy233-l3-e-v2-c1-v30-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/cycy233-l3-e-v2-c1-v30/flywheel_model.0.safetensors
cycy233-l3-e-v2-c1-v30-mkmlizer: loading reward model from cycy233/reward
cycy233-l3-e-v2-c1-v30-mkmlizer:
Loading 0: 0%| | 0/291 [00:00<?, ?it/s]
Loading 0: 2%|▏ | 5/291 [00:00<00:07, 36.54it/s]
Loading 0: 4%|▍ | 13/291 [00:00<00:04, 57.67it/s]
Loading 0: 7%|▋ | 20/291 [00:00<00:05, 53.13it/s]
Loading 0: 9%|▉ | 26/291 [00:00<00:04, 53.40it/s]
Loading 0: 11%|█ | 32/291 [00:00<00:05, 46.25it/s]
Loading 0: 14%|█▍ | 41/291 [00:00<00:05, 49.07it/s]
Loading 0: 17%|█▋ | 50/291 [00:00<00:04, 50.44it/s]
Loading 0: 20%|█▉ | 58/291 [00:01<00:04, 56.70it/s]
Loading 0: 22%|██▏ | 64/291 [00:01<00:04, 52.30it/s]
Loading 0: 24%|██▍ | 70/291 [00:01<00:04, 52.92it/s]
Loading 0: 26%|██▌ | 76/291 [00:01<00:04, 53.55it/s]
Loading 0: 28%|██▊ | 82/291 [00:01<00:04, 48.54it/s]
Loading 0: 30%|██▉ | 87/291 [00:01<00:06, 31.49it/s]
Loading 0: 32%|███▏ | 94/291 [00:02<00:05, 38.23it/s]
Loading 0: 34%|███▍ | 100/291 [00:02<00:04, 39.31it/s]
Loading 0: 36%|███▌ | 105/291 [00:02<00:04, 40.47it/s]
Loading 0: 38%|███▊ | 112/291 [00:02<00:03, 46.05it/s]
Loading 0: 41%|████ | 118/291 [00:02<00:03, 43.66it/s]
Loading 0: 42%|████▏ | 123/291 [00:02<00:03, 43.90it/s]
Loading 0: 45%|████▍ | 130/291 [00:02<00:03, 48.58it/s]
Loading 0: 47%|████▋ | 136/291 [00:02<00:03, 46.35it/s]
Loading 0: 48%|████▊ | 141/291 [00:03<00:03, 45.10it/s]
Loading 0: 51%|█████ | 147/291 [00:03<00:02, 48.45it/s]
Loading 0: 52%|█████▏ | 152/291 [00:03<00:02, 47.25it/s]
Loading 0: 54%|█████▍ | 158/291 [00:03<00:03, 42.72it/s]
Loading 0: 57%|█████▋ | 166/291 [00:03<00:02, 50.09it/s]
Loading 0: 59%|█████▉ | 172/291 [00:03<00:02, 46.93it/s]
Loading 0: 62%|██████▏ | 179/291 [00:03<00:02, 50.41it/s]
Loading 0: 64%|██████▎ | 185/291 [00:03<00:02, 51.56it/s]
Loading 0: 66%|██████▌ | 191/291 [00:04<00:03, 32.50it/s]
Loading 0: 67%|██████▋ | 196/291 [00:04<00:02, 34.50it/s]
Loading 0: 69%|██████▉ | 202/291 [00:04<00:02, 39.00it/s]
Loading 0: 71%|███████▏ | 208/291 [00:04<00:02, 39.56it/s]
Loading 0: 73%|███████▎ | 213/291 [00:04<00:01, 41.03it/s]
Loading 0: 76%|███████▌ | 220/291 [00:04<00:01, 46.79it/s]
Loading 0: 78%|███████▊ | 226/291 [00:05<00:01, 44.12it/s]
Loading 0: 79%|███████▉ | 231/291 [00:05<00:01, 44.46it/s]
Loading 0: 82%|████████▏ | 238/291 [00:05<00:01, 49.75it/s]
Loading 0: 84%|████████▍ | 244/291 [00:05<00:01, 46.55it/s]
Loading 0: 86%|████████▌ | 249/291 [00:05<00:00, 44.73it/s]
Loading 0: 88%|████████▊ | 255/291 [00:05<00:00, 47.20it/s]
Loading 0: 89%|████████▉ | 260/291 [00:05<00:00, 47.60it/s]
Loading 0: 91%|█████████▏| 266/291 [00:05<00:00, 42.91it/s]
Loading 0: 94%|█████████▍| 273/291 [00:06<00:00, 49.06it/s]
Loading 0: 96%|█████████▌| 279/291 [00:06<00:00, 50.95it/s]
Loading 0: 98%|█████████▊| 285/291 [00:06<00:00, 45.56it/s]
Loading 0: 100%|█████████▉| 290/291 [00:11<00:00, 3.30it/s]
/opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:957: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
cycy233-l3-e-v2-c1-v30-mkmlizer: warnings.warn(
cycy233-l3-e-v2-c1-v30-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:785: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
cycy233-l3-e-v2-c1-v30-mkmlizer: warnings.warn(
cycy233-l3-e-v2-c1-v30-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
cycy233-l3-e-v2-c1-v30-mkmlizer: Saving duration: 0.136s
cycy233-l3-e-v2-c1-v30-mkmlizer: Processed model cycy233/reward in 5.382s
cycy233-l3-e-v2-c1-v30-mkmlizer: creating bucket guanaco-reward-models
cycy233-l3-e-v2-c1-v30-mkmlizer: Bucket 's3://guanaco-reward-models/' created
cycy233-l3-e-v2-c1-v30-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/cycy233-l3-e-v2-c1-v30_reward
cycy233-l3-e-v2-c1-v30-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/cycy233-l3-e-v2-c1-v30_reward/special_tokens_map.json
cycy233-l3-e-v2-c1-v30-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/cycy233-l3-e-v2-c1-v30_reward/config.json
cycy233-l3-e-v2-c1-v30-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/cycy233-l3-e-v2-c1-v30_reward/tokenizer_config.json
cycy233-l3-e-v2-c1-v30-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/cycy233-l3-e-v2-c1-v30_reward/merges.txt
cycy233-l3-e-v2-c1-v30-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/cycy233-l3-e-v2-c1-v30_reward/vocab.json
cycy233-l3-e-v2-c1-v30-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/cycy233-l3-e-v2-c1-v30_reward/tokenizer.json
cycy233-l3-e-v2-c1-v30-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/cycy233-l3-e-v2-c1-v30_reward/reward.tensors
Job cycy233-l3-e-v2-c1-v30-mkmlizer completed after 86.08s with status: succeeded
Stopping job with name cycy233-l3-e-v2-c1-v30-mkmlizer
Pipeline stage MKMLizer completed in 86.77s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.14s
Running pipeline stage ISVCDeployer
Creating inference service cycy233-l3-e-v2-c1-v30
Waiting for inference service cycy233-l3-e-v2-c1-v30 to be ready
Inference service zonemercy-cogent-nemo-v1-3266-v3 ready after 191.31359672546387s
Pipeline stage ISVCDeployer completed in 193.24s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.4538414478302s
Received healthy response to inference request in 1.6306359767913818s
Received healthy response to inference request in 1.6856236457824707s
Received healthy response to inference request in 1.785656213760376s
Received healthy response to inference request in 1.706754446029663s
5 requests
0 failed requests
5th percentile: 1.6416335105895996
10th percentile: 1.6526310443878174
20th percentile: 1.674626111984253
30th percentile: 1.6898498058319091
40th percentile: 1.6983021259307862
50th percentile: 1.706754446029663
60th percentile: 1.7383151531219483
70th percentile: 1.7698758602142335
80th percentile: 1.919293260574341
90th percentile: 2.1865673542022703
95th percentile: 2.3202044010162353
99th percentile: 2.427114038467407
mean time: 1.8525023460388184
Pipeline stage StressChecker completed in 11.22s
zonemercy-cogent-nemo-v1_3266_v3 status is now deployed due to DeploymentManager action
zonemercy-cogent-nemo-v1_3266_v3 status is now inactive due to auto deactivation removed underperforming models
zonemercy-cogent-nemo-v1_3266_v3 status is now torndown due to DeploymentManager action