developer_uid: zhenzhe
submission_id: white-bird-1-sft-label1-400_v2
model_name: white-bird-1-sft-label1-400_v2
model_group: white-bird/1_sft_label1_
status: torndown
timestamp: 2025-03-01T21:27:02+00:00
num_battles: 15091
num_wins: 6377
celo_rating: 1225.21
family_friendly_score: 0.6286
family_friendly_standard_error: 0.006833184323578576
submission_type: basic
model_repo: white-bird/1_sft_label1_400
model_architecture: MistralForCausalLM
model_num_parameters: 12772070400.0
best_of: 8
max_input_tokens: 1024
max_output_tokens: 64
reward_model: default
latencies: [{'batch_size': 1, 'throughput': 0.61097558106218, 'latency_mean': 1.6366539299488068, 'latency_p50': 1.6368283033370972, 'latency_p90': 1.8121762990951538}, {'batch_size': 3, 'throughput': 1.1287583026515116, 'latency_mean': 2.646208870410919, 'latency_p50': 2.6403943300247192, 'latency_p90': 2.966480755805969}, {'batch_size': 5, 'throughput': 1.3766655109892985, 'latency_mean': 3.6158030319213865, 'latency_p50': 3.590532422065735, 'latency_p90': 4.062172555923462}, {'batch_size': 6, 'throughput': 1.4417559121736951, 'latency_mean': 4.141463015079498, 'latency_p50': 4.120229721069336, 'latency_p90': 4.713908457756042}, {'batch_size': 8, 'throughput': 1.5104474586942909, 'latency_mean': 5.261349103450775, 'latency_p50': 5.2850189208984375, 'latency_p90': 5.851735591888428}, {'batch_size': 10, 'throughput': 1.5442369489523937, 'latency_mean': 6.431092520952225, 'latency_p50': 6.437983751296997, 'latency_p90': 7.389802074432373}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: white-bird-1-sft-label1-400_v2
is_internal_developer: False
language_model: white-bird/1_sft_label1_400
model_size: 13B
ranking_group: single
throughput_3p7s: 1.39
us_pacific_date: 2025-03-01
win_ratio: 0.4225697435557617
generation_params: {'temperature': 0.95, 'top_p': 0.95, 'min_p': 0.05, 'top_k': 80, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['####', 'Bot:', '\n', '</s>', 'You:', 'User:', 'Anonymous', 'Me:'], 'max_input_tokens': 1024, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': False}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name white-bird-1-sft-label1-400-v2-mkmlizer
Waiting for job on white-bird-1-sft-label1-400-v2-mkmlizer to finish
white-bird-1-sft-label1-400-v2-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
white-bird-1-sft-label1-400-v2-mkmlizer: ║ _____ __ __ ║
white-bird-1-sft-label1-400-v2-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
white-bird-1-sft-label1-400-v2-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
white-bird-1-sft-label1-400-v2-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
white-bird-1-sft-label1-400-v2-mkmlizer: ║ /___/ ║
white-bird-1-sft-label1-400-v2-mkmlizer: ║ ║
white-bird-1-sft-label1-400-v2-mkmlizer: ║ Version: 0.12.8 ║
white-bird-1-sft-label1-400-v2-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
white-bird-1-sft-label1-400-v2-mkmlizer: ║ https://mk1.ai ║
white-bird-1-sft-label1-400-v2-mkmlizer: ║ ║
white-bird-1-sft-label1-400-v2-mkmlizer: ║ The license key for the current software has been verified as ║
white-bird-1-sft-label1-400-v2-mkmlizer: ║ belonging to: ║
white-bird-1-sft-label1-400-v2-mkmlizer: ║ ║
white-bird-1-sft-label1-400-v2-mkmlizer: ║ Chai Research Corp. ║
white-bird-1-sft-label1-400-v2-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
white-bird-1-sft-label1-400-v2-mkmlizer: ║ Expiration: 2025-04-15 23:59:59 ║
white-bird-1-sft-label1-400-v2-mkmlizer: ║ ║
white-bird-1-sft-label1-400-v2-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
white-bird-1-sft-label1-400-v2-mkmlizer: Downloaded to shared memory in 43.424s
white-bird-1-sft-label1-400-v2-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmptjq24seq, device:0
white-bird-1-sft-label1-400-v2-mkmlizer: Saving flywheel model at /dev/shm/model_cache
white-bird-1-sft-label1-400-v2-mkmlizer: quantized model in 35.303s
white-bird-1-sft-label1-400-v2-mkmlizer: Processed model white-bird/1_sft_label1_400 in 78.727s
white-bird-1-sft-label1-400-v2-mkmlizer: creating bucket guanaco-mkml-models
white-bird-1-sft-label1-400-v2-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
white-bird-1-sft-label1-400-v2-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/white-bird-1-sft-label1-400-v2
white-bird-1-sft-label1-400-v2-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/white-bird-1-sft-label1-400-v2/config.json
white-bird-1-sft-label1-400-v2-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/white-bird-1-sft-label1-400-v2/special_tokens_map.json
white-bird-1-sft-label1-400-v2-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/white-bird-1-sft-label1-400-v2/tokenizer_config.json
white-bird-1-sft-label1-400-v2-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/white-bird-1-sft-label1-400-v2/tokenizer.json
white-bird-1-sft-label1-400-v2-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/white-bird-1-sft-label1-400-v2/flywheel_model.0.safetensors
white-bird-1-sft-label1-400-v2-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:11, 30.09it/s] Loading 0: 4%|▎ | 13/363 [00:00<00:06, 51.70it/s] Loading 0: 5%|▌ | 19/363 [00:00<00:07, 49.12it/s] Loading 0: 7%|▋ | 25/363 [00:00<00:06, 49.44it/s] Loading 0: 9%|▊ | 31/363 [00:00<00:06, 51.45it/s] Loading 0: 10%|█ | 37/363 [00:00<00:06, 46.61it/s] Loading 0: 12%|█▏ | 42/363 [00:00<00:06, 46.08it/s] Loading 0: 13%|█▎ | 49/363 [00:01<00:06, 51.55it/s] Loading 0: 15%|█▌ | 55/363 [00:01<00:06, 48.83it/s] Loading 0: 17%|█▋ | 61/363 [00:01<00:07, 37.93it/s] Loading 0: 18%|█▊ | 66/363 [00:01<00:07, 38.03it/s] Loading 0: 20%|█▉ | 72/363 [00:01<00:06, 42.69it/s] Loading 0: 21%|██▏ | 78/363 [00:01<00:06, 43.48it/s] Loading 0: 23%|██▎ | 83/363 [00:01<00:06, 44.03it/s] Loading 0: 25%|██▍ | 90/363 [00:01<00:05, 48.60it/s] Loading 0: 26%|██▋ | 96/363 [00:02<00:05, 47.57it/s] Loading 0: 28%|██▊ | 101/363 [00:02<00:05, 46.93it/s] Loading 0: 30%|███ | 109/363 [00:02<00:04, 55.50it/s] Loading 0: 32%|███▏ | 115/363 [00:02<00:04, 50.29it/s] Loading 0: 33%|███▎ | 121/363 [00:02<00:05, 47.12it/s] Loading 0: 35%|███▍ | 126/363 [00:02<00:05, 47.29it/s] Loading 0: 36%|███▋ | 132/363 [00:02<00:05, 45.69it/s] Loading 0: 38%|███▊ | 137/363 [00:02<00:05, 42.24it/s] Loading 0: 39%|███▉ | 142/363 [00:03<00:06, 32.33it/s] Loading 0: 40%|████ | 146/363 [00:03<00:06, 32.87it/s] Loading 0: 41%|████▏ | 150/363 [00:03<00:06, 33.05it/s] Loading 0: 43%|████▎ | 156/363 [00:03<00:05, 38.37it/s] Loading 0: 44%|████▍ | 161/363 [00:03<00:05, 39.80it/s] Loading 0: 46%|████▌ | 166/363 [00:03<00:04, 41.95it/s] Loading 0: 47%|████▋ | 172/363 [00:03<00:04, 42.67it/s] Loading 0: 49%|████▉ | 177/363 [00:04<00:04, 42.19it/s] Loading 0: 50%|█████ | 183/363 [00:04<00:03, 46.25it/s] Loading 0: 52%|█████▏ | 188/363 [00:04<00:03, 46.71it/s] Loading 0: 53%|█████▎ | 193/363 [00:04<00:03, 47.14it/s] Loading 0: 55%|█████▍ | 199/363 [00:04<00:03, 46.25it/s] Loading 0: 56%|█████▌ | 204/363 [00:04<00:03, 44.34it/s] Loading 0: 58%|█████▊ | 211/363 [00:04<00:03, 48.71it/s] Loading 0: 60%|█████▉ | 217/363 [00:04<00:03, 47.41it/s] Loading 0: 61%|██████▏ | 223/363 [00:05<00:03, 35.69it/s] Loading 0: 63%|██████▎ | 228/363 [00:05<00:03, 35.91it/s] Loading 0: 64%|██████▍ | 233/363 [00:05<00:03, 38.49it/s] Loading 0: 66%|██████▌ | 238/363 [00:05<00:03, 39.95it/s] Loading 0: 67%|██████▋ | 243/363 [00:05<00:02, 40.44it/s] Loading 0: 68%|██████▊ | 248/363 [00:05<00:03, 36.99it/s] Loading 0: 70%|███████ | 255/363 [00:05<00:02, 43.40it/s] Loading 0: 72%|███████▏ | 260/363 [00:06<00:02, 43.68it/s] Loading 0: 73%|███████▎ | 265/363 [00:06<00:02, 44.19it/s] Loading 0: 75%|███████▍ | 271/363 [00:06<00:02, 44.39it/s] Loading 0: 76%|███████▌ | 276/363 [00:06<00:01, 44.23it/s] Loading 0: 78%|███████▊ | 283/363 [00:06<00:01, 48.55it/s] Loading 0: 80%|███████▉ | 289/363 [00:06<00:01, 46.73it/s] Loading 0: 81%|████████ | 294/363 [00:06<00:01, 46.15it/s] Loading 0: 83%|████████▎ | 301/363 [00:06<00:01, 52.20it/s] Loading 0: 85%|████████▍ | 307/363 [00:13<00:19, 2.81it/s] Loading 0: 86%|████████▌ | 312/363 [00:13<00:13, 3.72it/s] Loading 0: 88%|████████▊ | 320/363 [00:13<00:07, 5.77it/s] Loading 0: 90%|████████▉ | 325/363 [00:14<00:05, 7.38it/s] Loading 0: 91%|█████████ | 330/363 [00:14<00:03, 9.19it/s] Loading 0: 93%|█████████▎| 338/363 [00:14<00:01, 13.75it/s] Loading 0: 95%|█████████▍| 344/363 [00:14<00:01, 17.18it/s] Loading 0: 96%|█████████▋| 350/363 [00:14<00:00, 21.47it/s] Loading 0: 98%|█████████▊| 357/363 [00:14<00:00, 25.60it/s]
Job white-bird-1-sft-label1-400-v2-mkmlizer completed after 104.18s with status: succeeded
Stopping job with name white-bird-1-sft-label1-400-v2-mkmlizer
Pipeline stage MKMLizer completed in 104.64s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.18s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service white-bird-1-sft-label1-400-v2
Waiting for inference service white-bird-1-sft-label1-400-v2 to be ready
Inference service white-bird-1-sft-label1-400-v2 ready after 130.64638447761536s
Pipeline stage MKMLDeployer completed in 131.06s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.1819007396698s
Received healthy response to inference request in 1.4505321979522705s
Received healthy response to inference request in 1.1992487907409668s
Received healthy response to inference request in 1.6687915325164795s
Received healthy response to inference request in 1.5008680820465088s
5 requests
0 failed requests
5th percentile: 1.2495054721832275
10th percentile: 1.2997621536254882
20th percentile: 1.4002755165100098
30th percentile: 1.4605993747711181
40th percentile: 1.4807337284088136
50th percentile: 1.5008680820465088
60th percentile: 1.568037462234497
70th percentile: 1.6352068424224853
80th percentile: 1.7714133739471436
90th percentile: 1.9766570568084718
95th percentile: 2.0792788982391355
99th percentile: 2.161376371383667
mean time: 1.600268268585205
Pipeline stage StressChecker completed in 9.22s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.61s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 0.72s
Shutdown handler de-registered
white-bird-1-sft-label1-400_v2 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
%s, retrying in %s seconds...
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 3993.19s
Shutdown handler de-registered
white-bird-1-sft-label1-400_v2 status is now inactive due to auto deactivation removed underperforming models
white-bird-1-sft-label1-400_v2 status is now torndown due to DeploymentManager action