developer_uid: udbhavbamba
submission_id: udbhavbamba-nemo13b-10k_23246_v4
model_name: udbhavbamba-nemo13b-10k-sft_v2
model_group: udbhavbamba/nemo13b_10k_
status: torndown
timestamp: 2025-03-22T20:55:20+00:00
num_battles: 8912
num_wins: 4076
celo_rating: 1251.47
family_friendly_score: 0.594
family_friendly_standard_error: 0.006944983801277006
submission_type: basic
model_repo: udbhavbamba/nemo13b_10k_sft_v2
model_architecture: MistralForCausalLM
model_num_parameters: 12772070400.0
best_of: 8
max_input_tokens: 1024
max_output_tokens: 64
latencies: [{'batch_size': 1, 'throughput': 0.6014286867974951, 'latency_mean': 1.6626329517364502, 'latency_p50': 1.6478995084762573, 'latency_p90': 1.8445955276489259}, {'batch_size': 3, 'throughput': 1.0985183503323952, 'latency_mean': 2.724685660600662, 'latency_p50': 2.717031240463257, 'latency_p90': 3.0319433927536013}, {'batch_size': 5, 'throughput': 1.3152161939706575, 'latency_mean': 3.783564213514328, 'latency_p50': 3.771552801132202, 'latency_p90': 4.241977071762085}, {'batch_size': 6, 'throughput': 1.379979538630604, 'latency_mean': 4.32114555478096, 'latency_p50': 4.278813123703003, 'latency_p90': 4.892759799957275}, {'batch_size': 8, 'throughput': 1.4441111004983562, 'latency_mean': 5.508408871889114, 'latency_p50': 5.56978440284729, 'latency_p90': 6.12641761302948}, {'batch_size': 10, 'throughput': 1.4814803224214221, 'latency_mean': 6.698802367448807, 'latency_p50': 6.722195267677307, 'latency_p90': 7.556855821609497}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: udbhavbamba-nemo13b-10k-sft_v2
is_internal_developer: False
language_model: udbhavbamba/nemo13b_10k_sft_v2
model_size: 13B
ranking_group: single
throughput_3p7s: 1.31
us_pacific_date: 2025-03-22
win_ratio: 0.4573608617594255
generation_params: {'temperature': 1.0, 'top_p': 0.9, 'min_p': 0.1, 'top_k': 40, 'presence_penalty': 0.1, 'frequency_penalty': 0.0, 'stopping_words': ['</s>'], 'max_input_tokens': 1024, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': '<s>{memory}\n', 'prompt_template': '{prompt}', 'bot_template': '{bot_name}: {message}</s>', 'user_template': '[INST]{user_name}: {message}[/INST]', 'response_template': '{bot_name}:', 'truncate_by_message': False}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name udbhavbamba-nemo13b-10k-23246-v4-mkmlizer
Waiting for job on udbhavbamba-nemo13b-10k-23246-v4-mkmlizer to finish
udbhavbamba-nemo13b-10k-23246-v4-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
udbhavbamba-nemo13b-10k-23246-v4-mkmlizer: ║ _____ __ __ ║
udbhavbamba-nemo13b-10k-23246-v4-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
udbhavbamba-nemo13b-10k-23246-v4-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
udbhavbamba-nemo13b-10k-23246-v4-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
udbhavbamba-nemo13b-10k-23246-v4-mkmlizer: ║ /___/ ║
udbhavbamba-nemo13b-10k-23246-v4-mkmlizer: ║ ║
udbhavbamba-nemo13b-10k-23246-v4-mkmlizer: ║ Version: 0.12.8 ║
udbhavbamba-nemo13b-10k-23246-v4-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
udbhavbamba-nemo13b-10k-23246-v4-mkmlizer: ║ https://mk1.ai ║
udbhavbamba-nemo13b-10k-23246-v4-mkmlizer: ║ ║
udbhavbamba-nemo13b-10k-23246-v4-mkmlizer: ║ The license key for the current software has been verified as ║
udbhavbamba-nemo13b-10k-23246-v4-mkmlizer: ║ belonging to: ║
udbhavbamba-nemo13b-10k-23246-v4-mkmlizer: ║ ║
udbhavbamba-nemo13b-10k-23246-v4-mkmlizer: ║ Chai Research Corp. ║
udbhavbamba-nemo13b-10k-23246-v4-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
udbhavbamba-nemo13b-10k-23246-v4-mkmlizer: ║ Expiration: 2025-04-15 23:59:59 ║
udbhavbamba-nemo13b-10k-23246-v4-mkmlizer: ║ ║
udbhavbamba-nemo13b-10k-23246-v4-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
udbhavbamba-nemo13b-10k-23246-v4-mkmlizer: Downloaded to shared memory in 32.171s
udbhavbamba-nemo13b-10k-23246-v4-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmp29t1evwj, device:0
udbhavbamba-nemo13b-10k-23246-v4-mkmlizer: Saving flywheel model at /dev/shm/model_cache
udbhavbamba-nemo13b-10k-23246-v4-mkmlizer: quantized model in 35.312s
udbhavbamba-nemo13b-10k-23246-v4-mkmlizer: Processed model udbhavbamba/nemo13b_10k_sft_v2 in 67.483s
udbhavbamba-nemo13b-10k-23246-v4-mkmlizer: creating bucket guanaco-mkml-models
udbhavbamba-nemo13b-10k-23246-v4-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
udbhavbamba-nemo13b-10k-23246-v4-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/udbhavbamba-nemo13b-10k-23246-v4
udbhavbamba-nemo13b-10k-23246-v4-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/udbhavbamba-nemo13b-10k-23246-v4/config.json
udbhavbamba-nemo13b-10k-23246-v4-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/udbhavbamba-nemo13b-10k-23246-v4/special_tokens_map.json
udbhavbamba-nemo13b-10k-23246-v4-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/udbhavbamba-nemo13b-10k-23246-v4/tokenizer_config.json
udbhavbamba-nemo13b-10k-23246-v4-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/udbhavbamba-nemo13b-10k-23246-v4/tokenizer.json
udbhavbamba-nemo13b-10k-23246-v4-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/udbhavbamba-nemo13b-10k-23246-v4/flywheel_model.0.safetensors
udbhavbamba-nemo13b-10k-23246-v4-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:12, 27.98it/s] Loading 0: 4%|▎ | 13/363 [00:00<00:07, 49.95it/s] Loading 0: 5%|▌ | 19/363 [00:00<00:07, 48.24it/s] Loading 0: 7%|▋ | 25/363 [00:00<00:06, 49.87it/s] Loading 0: 9%|▊ | 31/363 [00:00<00:06, 48.83it/s] Loading 0: 10%|█ | 37/363 [00:00<00:07, 46.28it/s] Loading 0: 12%|█▏ | 42/363 [00:00<00:07, 45.42it/s] Loading 0: 13%|█▎ | 49/363 [00:01<00:06, 51.20it/s] Loading 0: 15%|█▌ | 55/363 [00:01<00:06, 48.68it/s] Loading 0: 17%|█▋ | 61/363 [00:01<00:08, 36.51it/s] Loading 0: 18%|█▊ | 66/363 [00:01<00:08, 36.74it/s] Loading 0: 20%|█▉ | 72/363 [00:01<00:07, 40.75it/s] Loading 0: 21%|██▏ | 78/363 [00:01<00:06, 41.97it/s] Loading 0: 23%|██▎ | 83/363 [00:01<00:06, 41.82it/s] Loading 0: 25%|██▍ | 90/363 [00:02<00:05, 47.53it/s] Loading 0: 26%|██▋ | 96/363 [00:02<00:05, 46.32it/s] Loading 0: 28%|██▊ | 101/363 [00:02<00:05, 44.68it/s] Loading 0: 30%|██▉ | 108/363 [00:02<00:05, 50.69it/s] Loading 0: 31%|███▏ | 114/363 [00:02<00:05, 45.40it/s] Loading 0: 33%|███▎ | 119/363 [00:02<00:05, 44.40it/s] Loading 0: 35%|███▍ | 126/363 [00:02<00:04, 49.54it/s] Loading 0: 36%|███▋ | 132/363 [00:02<00:04, 48.04it/s] Loading 0: 38%|███▊ | 137/363 [00:03<00:04, 47.39it/s] Loading 0: 39%|███▉ | 142/363 [00:03<00:06, 36.44it/s] Loading 0: 40%|████ | 147/363 [00:03<00:05, 36.56it/s] Loading 0: 42%|████▏ | 152/363 [00:03<00:05, 39.27it/s] Loading 0: 43%|████▎ | 157/363 [00:03<00:04, 41.83it/s] Loading 0: 45%|████▍ | 163/363 [00:03<00:04, 41.30it/s] Loading 0: 46%|████▋ | 168/363 [00:03<00:04, 40.68it/s] Loading 0: 48%|████▊ | 175/363 [00:03<00:04, 46.84it/s] Loading 0: 50%|████▉ | 181/363 [00:04<00:03, 46.36it/s] Loading 0: 51%|█████ | 186/363 [00:04<00:03, 45.35it/s] Loading 0: 53%|█████▎ | 193/363 [00:04<00:03, 50.27it/s] Loading 0: 55%|█████▍ | 199/363 [00:04<00:03, 47.12it/s] Loading 0: 56%|█████▌ | 204/363 [00:04<00:03, 46.32it/s] Loading 0: 58%|█████▊ | 211/363 [00:04<00:02, 51.27it/s] Loading 0: 60%|█████▉ | 217/363 [00:04<00:03, 48.32it/s] Loading 0: 61%|██████▏ | 223/363 [00:05<00:03, 35.80it/s] Loading 0: 63%|██████▎ | 228/363 [00:05<00:03, 35.75it/s] Loading 0: 64%|██████▍ | 232/363 [00:05<00:03, 35.77it/s] Loading 0: 66%|██████▌ | 238/363 [00:05<00:03, 41.01it/s] Loading 0: 67%|██████▋ | 244/363 [00:05<00:02, 41.94it/s] Loading 0: 69%|██████▊ | 249/363 [00:05<00:02, 42.20it/s] Loading 0: 71%|███████ | 256/363 [00:05<00:02, 47.06it/s] Loading 0: 72%|███████▏ | 262/363 [00:05<00:02, 45.17it/s] Loading 0: 74%|███████▎ | 267/363 [00:06<00:02, 43.11it/s] Loading 0: 75%|███████▌ | 273/363 [00:06<00:01, 45.23it/s] Loading 0: 77%|███████▋ | 278/363 [00:06<00:01, 44.53it/s] Loading 0: 78%|███████▊ | 283/363 [00:06<00:01, 45.87it/s] Loading 0: 80%|███████▉ | 289/363 [00:06<00:01, 45.63it/s] Loading 0: 81%|████████ | 294/363 [00:06<00:01, 44.90it/s] Loading 0: 83%|████████▎ | 301/363 [00:06<00:01, 51.04it/s] Loading 0: 85%|████████▍ | 307/363 [00:13<00:20, 2.77it/s] Loading 0: 86%|████████▌ | 312/363 [00:13<00:13, 3.69it/s] Loading 0: 88%|████████▊ | 320/363 [00:13<00:07, 5.76it/s] Loading 0: 90%|████████▉ | 326/363 [00:14<00:04, 7.64it/s] Loading 0: 91%|█████████ | 331/363 [00:14<00:03, 9.65it/s] Loading 0: 93%|█████████▎| 338/363 [00:14<00:01, 13.54it/s] Loading 0: 95%|█████████▍| 344/363 [00:14<00:01, 17.03it/s] Loading 0: 96%|█████████▌| 349/363 [00:14<00:00, 20.24it/s] Loading 0: 98%|█████████▊| 356/363 [00:14<00:00, 26.41it/s] Loading 0: 100%|█████████▉| 362/363 [00:14<00:00, 29.79it/s]
Job udbhavbamba-nemo13b-10k-23246-v4-mkmlizer completed after 94.37s with status: succeeded
Stopping job with name udbhavbamba-nemo13b-10k-23246-v4-mkmlizer
Pipeline stage MKMLizer completed in 94.90s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.16s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service udbhavbamba-nemo13b-10k-23246-v4
Waiting for inference service udbhavbamba-nemo13b-10k-23246-v4 to be ready
Inference service udbhavbamba-nemo13b-10k-23246-v4 ready after 90.42906785011292s
Pipeline stage MKMLDeployer completed in 91.01s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.4254887104034424s
Received healthy response to inference request in 1.6334648132324219s
Received healthy response to inference request in 1.7288320064544678s
Received healthy response to inference request in 1.59651517868042s
Received healthy response to inference request in 1.7876553535461426s
5 requests
0 failed requests
5th percentile: 1.6039051055908202
10th percentile: 1.6112950325012207
20th percentile: 1.6260748863220216
30th percentile: 1.652538251876831
40th percentile: 1.6906851291656495
50th percentile: 1.7288320064544678
60th percentile: 1.7523613452911377
70th percentile: 1.7758906841278077
80th percentile: 1.9152220249176026
90th percentile: 2.1703553676605223
95th percentile: 2.2979220390319823
99th percentile: 2.3999753761291505
mean time: 1.834391212463379
Pipeline stage StressChecker completed in 10.39s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.63s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 0.61s
Shutdown handler de-registered
udbhavbamba-nemo13b-10k_23246_v4 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 2507.04s
Shutdown handler de-registered
udbhavbamba-nemo13b-10k_23246_v4 status is now inactive due to auto deactivation removed underperforming models
udbhavbamba-nemo13b-10k_23246_v4 status is now torndown due to DeploymentManager action