developer_uid: udbhavbamba
submission_id: udbhavbamba-nemo13b-10k-sft_v3
model_name: udbhavbamba-nemo13b-10k-sft_v1
model_group: udbhavbamba/nemo13b_10k_
status: torndown
timestamp: 2025-03-22T18:46:41+00:00
num_battles: 6303
num_wins: 2689
celo_rating: 1228.97
family_friendly_score: 0.5882000000000001
family_friendly_standard_error: 0.006960183330918806
submission_type: basic
model_repo: udbhavbamba/nemo13b_10k_sft
model_architecture: MistralForCausalLM
model_num_parameters: 12772070400.0
best_of: 8
max_input_tokens: 1024
max_output_tokens: 64
latencies: [{'batch_size': 1, 'throughput': 0.6027084172714734, 'latency_mean': 1.659118239879608, 'latency_p50': 1.6642916202545166, 'latency_p90': 1.8230428218841552}, {'batch_size': 3, 'throughput': 1.1005399470587867, 'latency_mean': 2.7148059928417205, 'latency_p50': 2.730034112930298, 'latency_p90': 2.971322011947632}, {'batch_size': 5, 'throughput': 1.335915716924332, 'latency_mean': 3.739192062616348, 'latency_p50': 3.754264235496521, 'latency_p90': 4.210235381126403}, {'batch_size': 6, 'throughput': 1.403690555405299, 'latency_mean': 4.256562203168869, 'latency_p50': 4.259585976600647, 'latency_p90': 4.766323733329773}, {'batch_size': 8, 'throughput': 1.4641027740453736, 'latency_mean': 5.422207996845246, 'latency_p50': 5.423456788063049, 'latency_p90': 6.131615877151489}, {'batch_size': 10, 'throughput': 1.492497146108556, 'latency_mean': 6.651201092004776, 'latency_p50': 6.702273845672607, 'latency_p90': 7.49949016571045}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: udbhavbamba-nemo13b-10k-sft_v1
is_internal_developer: False
language_model: udbhavbamba/nemo13b_10k_sft
model_size: 13B
ranking_group: single
throughput_3p7s: 1.33
us_pacific_date: 2025-03-22
win_ratio: 0.42662224337617005
generation_params: {'temperature': 1.0, 'top_p': 0.9, 'min_p': 0.1, 'top_k': 40, 'presence_penalty': 0.2, 'frequency_penalty': 0.1, 'stopping_words': ['</s>'], 'max_input_tokens': 1024, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': "<s><s>Bot's Persona: {memory}\n####\n", 'prompt_template': '{prompt}', 'bot_template': 'Bot: {message}</s>', 'user_template': '[INST]{user_name}: {message}[/INST]', 'response_template': '{bot_name}:', 'truncate_by_message': False}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name udbhavbamba-nemo13b-10k-sft-v3-mkmlizer
Waiting for job on udbhavbamba-nemo13b-10k-sft-v3-mkmlizer to finish
udbhavbamba-nemo13b-10k-sft-v3-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
udbhavbamba-nemo13b-10k-sft-v3-mkmlizer: ║ _____ __ __ ║
udbhavbamba-nemo13b-10k-sft-v3-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
udbhavbamba-nemo13b-10k-sft-v3-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
udbhavbamba-nemo13b-10k-sft-v3-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
udbhavbamba-nemo13b-10k-sft-v3-mkmlizer: ║ /___/ ║
udbhavbamba-nemo13b-10k-sft-v3-mkmlizer: ║ ║
udbhavbamba-nemo13b-10k-sft-v3-mkmlizer: ║ Version: 0.12.8 ║
udbhavbamba-nemo13b-10k-sft-v3-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
udbhavbamba-nemo13b-10k-sft-v3-mkmlizer: ║ https://mk1.ai ║
udbhavbamba-nemo13b-10k-sft-v3-mkmlizer: ║ ║
udbhavbamba-nemo13b-10k-sft-v3-mkmlizer: ║ The license key for the current software has been verified as ║
udbhavbamba-nemo13b-10k-sft-v3-mkmlizer: ║ belonging to: ║
udbhavbamba-nemo13b-10k-sft-v3-mkmlizer: ║ ║
udbhavbamba-nemo13b-10k-sft-v3-mkmlizer: ║ Chai Research Corp. ║
udbhavbamba-nemo13b-10k-sft-v3-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
udbhavbamba-nemo13b-10k-sft-v3-mkmlizer: ║ Expiration: 2025-04-15 23:59:59 ║
udbhavbamba-nemo13b-10k-sft-v3-mkmlizer: ║ ║
udbhavbamba-nemo13b-10k-sft-v3-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
udbhavbamba-nemo13b-10k-sft-v3-mkmlizer: Downloaded to shared memory in 40.820s
udbhavbamba-nemo13b-10k-sft-v3-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmp2wmocjvz, device:0
udbhavbamba-nemo13b-10k-sft-v3-mkmlizer: Saving flywheel model at /dev/shm/model_cache
udbhavbamba-nemo13b-10k-sft-v3-mkmlizer: quantized model in 35.694s
udbhavbamba-nemo13b-10k-sft-v3-mkmlizer: Processed model udbhavbamba/nemo13b_10k_sft in 76.515s
udbhavbamba-nemo13b-10k-sft-v3-mkmlizer: creating bucket guanaco-mkml-models
udbhavbamba-nemo13b-10k-sft-v3-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
udbhavbamba-nemo13b-10k-sft-v3-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/udbhavbamba-nemo13b-10k-sft-v3
udbhavbamba-nemo13b-10k-sft-v3-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/udbhavbamba-nemo13b-10k-sft-v3/config.json
udbhavbamba-nemo13b-10k-sft-v3-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/udbhavbamba-nemo13b-10k-sft-v3/special_tokens_map.json
udbhavbamba-nemo13b-10k-sft-v3-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/udbhavbamba-nemo13b-10k-sft-v3/tokenizer_config.json
udbhavbamba-nemo13b-10k-sft-v3-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/udbhavbamba-nemo13b-10k-sft-v3/tokenizer.json
udbhavbamba-nemo13b-10k-sft-v3-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/udbhavbamba-nemo13b-10k-sft-v3/flywheel_model.0.safetensors
udbhavbamba-nemo13b-10k-sft-v3-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:14, 24.44it/s] Loading 0: 3%|▎ | 12/363 [00:00<00:08, 40.69it/s] Loading 0: 5%|▍ | 17/363 [00:00<00:08, 42.00it/s] Loading 0: 6%|▌ | 22/363 [00:00<00:07, 43.68it/s] Loading 0: 8%|▊ | 28/363 [00:00<00:07, 42.53it/s] Loading 0: 9%|▉ | 33/363 [00:00<00:07, 41.63it/s] Loading 0: 11%|█ | 40/363 [00:00<00:06, 47.46it/s] Loading 0: 13%|█▎ | 46/363 [00:01<00:07, 44.02it/s] Loading 0: 14%|█▍ | 51/363 [00:01<00:07, 43.85it/s] Loading 0: 16%|█▋ | 59/363 [00:01<00:05, 52.56it/s] Loading 0: 18%|█▊ | 65/363 [00:01<00:09, 32.53it/s] Loading 0: 20%|█▉ | 72/363 [00:01<00:07, 38.55it/s] Loading 0: 21%|██▏ | 78/363 [00:01<00:07, 40.19it/s] Loading 0: 23%|██▎ | 83/363 [00:02<00:06, 40.91it/s] Loading 0: 25%|██▍ | 90/363 [00:02<00:05, 45.91it/s] Loading 0: 26%|██▋ | 96/363 [00:02<00:06, 43.60it/s] Loading 0: 28%|██▊ | 101/363 [00:02<00:06, 43.01it/s] Loading 0: 30%|██▉ | 108/363 [00:02<00:05, 49.21it/s] Loading 0: 31%|███▏ | 114/363 [00:02<00:05, 44.78it/s] Loading 0: 33%|███▎ | 119/363 [00:02<00:05, 43.85it/s] Loading 0: 35%|███▍ | 126/363 [00:02<00:04, 48.75it/s] Loading 0: 36%|███▋ | 132/363 [00:03<00:04, 46.42it/s] Loading 0: 38%|███▊ | 137/363 [00:03<00:04, 45.51it/s] Loading 0: 39%|███▉ | 142/363 [00:03<00:06, 35.29it/s] Loading 0: 40%|████ | 146/363 [00:03<00:06, 35.24it/s] Loading 0: 41%|████▏ | 150/363 [00:03<00:06, 34.07it/s] Loading 0: 43%|████▎ | 157/363 [00:03<00:05, 40.75it/s] Loading 0: 45%|████▍ | 163/363 [00:03<00:04, 41.32it/s] Loading 0: 46%|████▋ | 168/363 [00:04<00:04, 41.98it/s] Loading 0: 48%|████▊ | 175/363 [00:04<00:03, 47.68it/s] Loading 0: 50%|████▉ | 181/363 [00:04<00:03, 46.03it/s] Loading 0: 51%|█████ | 186/363 [00:04<00:04, 43.31it/s] Loading 0: 53%|█████▎ | 192/363 [00:04<00:03, 47.43it/s] Loading 0: 54%|█████▍ | 197/363 [00:04<00:03, 46.49it/s] Loading 0: 56%|█████▌ | 202/363 [00:04<00:03, 46.96it/s] Loading 0: 57%|█████▋ | 208/363 [00:04<00:03, 45.96it/s] Loading 0: 59%|█████▊ | 213/363 [00:04<00:03, 45.12it/s] Loading 0: 60%|██████ | 219/363 [00:05<00:02, 49.02it/s] Loading 0: 62%|██████▏ | 224/363 [00:05<00:03, 35.76it/s] Loading 0: 63%|██████▎ | 229/363 [00:05<00:03, 35.61it/s] Loading 0: 65%|██████▍ | 235/363 [00:05<00:03, 36.95it/s] Loading 0: 66%|██████▌ | 239/363 [00:05<00:03, 35.68it/s] Loading 0: 68%|██████▊ | 246/363 [00:05<00:02, 43.51it/s] Loading 0: 69%|██████▉ | 251/363 [00:05<00:02, 44.59it/s] Loading 0: 71%|███████ | 256/363 [00:06<00:02, 44.60it/s] Loading 0: 72%|███████▏ | 262/363 [00:06<00:02, 44.25it/s] Loading 0: 74%|███████▎ | 267/363 [00:06<00:02, 44.17it/s] Loading 0: 75%|███████▌ | 274/363 [00:06<00:01, 48.56it/s] Loading 0: 77%|███████▋ | 280/363 [00:06<00:01, 46.58it/s] Loading 0: 79%|███████▊ | 285/363 [00:06<00:01, 45.51it/s] Loading 0: 80%|████████ | 292/363 [00:06<00:01, 49.32it/s] Loading 0: 82%|████████▏ | 297/363 [00:06<00:01, 48.38it/s] Loading 0: 83%|████████▎ | 303/363 [00:07<00:01, 43.26it/s] Loading 0: 85%|████████▍ | 308/363 [00:13<00:21, 2.60it/s] Loading 0: 86%|████████▌ | 312/363 [00:14<00:15, 3.33it/s] Loading 0: 88%|████████▊ | 320/363 [00:14<00:07, 5.40it/s] Loading 0: 90%|████████▉ | 326/363 [00:14<00:05, 7.30it/s] Loading 0: 91%|█████████ | 331/363 [00:14<00:03, 9.37it/s] Loading 0: 93%|█████████▎| 338/363 [00:14<00:01, 13.32it/s] Loading 0: 95%|█████████▍| 344/363 [00:14<00:01, 16.80it/s] Loading 0: 96%|█████████▌| 349/363 [00:14<00:00, 19.94it/s] Loading 0: 98%|█████████▊| 356/363 [00:14<00:00, 26.03it/s] Loading 0: 100%|█████████▉| 362/363 [00:14<00:00, 29.53it/s]
Job udbhavbamba-nemo13b-10k-sft-v3-mkmlizer completed after 104.37s with status: succeeded
Stopping job with name udbhavbamba-nemo13b-10k-sft-v3-mkmlizer
Pipeline stage MKMLizer completed in 104.88s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.15s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service udbhavbamba-nemo13b-10k-sft-v3
Waiting for inference service udbhavbamba-nemo13b-10k-sft-v3 to be ready
Inference service udbhavbamba-nemo13b-10k-sft-v3 ready after 90.42257690429688s
Pipeline stage MKMLDeployer completed in 90.99s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.2431650161743164s
Received healthy response to inference request in 1.8426940441131592s
Received healthy response to inference request in 1.8311455249786377s
Received healthy response to inference request in 1.8882780075073242s
Received healthy response to inference request in 1.70009183883667s
5 requests
0 failed requests
5th percentile: 1.7263025760650634
10th percentile: 1.752513313293457
20th percentile: 1.8049347877502442
30th percentile: 1.833455228805542
40th percentile: 1.8380746364593505
50th percentile: 1.8426940441131592
60th percentile: 1.8609276294708252
70th percentile: 1.8791612148284913
80th percentile: 1.9592554092407228
90th percentile: 2.1012102127075196
95th percentile: 2.172187614440918
99th percentile: 2.2289695358276367
mean time: 1.9010748863220215
Pipeline stage StressChecker completed in 11.23s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.64s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 0.68s
Shutdown handler de-registered
udbhavbamba-nemo13b-10k-sft_v3 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 2584.62s
Shutdown handler de-registered
udbhavbamba-nemo13b-10k-sft_v3 status is now inactive due to auto deactivation removed underperforming models
udbhavbamba-nemo13b-10k-sft_v3 status is now torndown due to DeploymentManager action