submission_id: trace2333-mistral-dpo-trail2_v1
developer_uid: Trace2333
best_of: 8
celo_rating: 1261.38
display_name: trace2333-mistral-dpo-trail2_v1
family_friendly_score: 0.0
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': False}
generation_params: {'temperature': 1.0, 'top_p': 1.0, 'min_p': 0.06, 'top_k': 80, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n', '</s>'], 'max_input_tokens': 512, 'best_of': 8, 'max_output_tokens': 64}
gpu_counts: {'NVIDIA RTX A5000': 1}
is_internal_developer: False
language_model: Trace2333/mistral_dpo_trail2
latencies: [{'batch_size': 1, 'throughput': 0.7002690075242225, 'latency_mean': 1.4279564130306244, 'latency_p50': 1.4137437343597412, 'latency_p90': 1.610115647315979}, {'batch_size': 3, 'throughput': 1.3280727731637085, 'latency_mean': 2.2511586105823516, 'latency_p50': 2.2703194618225098, 'latency_p90': 2.44969847202301}, {'batch_size': 5, 'throughput': 1.5876011177325, 'latency_mean': 3.139637837409973, 'latency_p50': 3.1746829748153687, 'latency_p90': 3.5382179737091066}, {'batch_size': 6, 'throughput': 1.6217040939140963, 'latency_mean': 3.6801330053806307, 'latency_p50': 3.7053864002227783, 'latency_p90': 4.13558669090271}, {'batch_size': 8, 'throughput': 1.630324658071962, 'latency_mean': 4.873163735866546, 'latency_p50': 4.916642904281616, 'latency_p90': 5.4840395689010615}, {'batch_size': 10, 'throughput': 1.5717057353875705, 'latency_mean': 6.317864054441452, 'latency_p50': 6.430133819580078, 'latency_p90': 7.170839715003967}]
max_input_tokens: 512
max_output_tokens: 64
model_architecture: MistralForCausalLM
model_group: Trace2333/mistral_dpo_tr
model_name: trace2333-mistral-dpo-trail2_v1
model_num_parameters: 12772070400.0
model_repo: Trace2333/mistral_dpo_trail2
model_size: 13B
num_battles: 10912
num_wins: 5753
ranking_group: single
status: torndown
submission_type: basic
throughput_3p7s: 1.63
timestamp: 2024-09-11T03:02:08+00:00
us_pacific_date: 2024-09-10
win_ratio: 0.5272177419354839
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name trace2333-mistral-dpo-trail2-v1-mkmlizer
Waiting for job on trace2333-mistral-dpo-trail2-v1-mkmlizer to finish
Connection pool is full, discarding connection: %s. Connection pool size: %s
trace2333-mistral-dpo-trail2-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
trace2333-mistral-dpo-trail2-v1-mkmlizer: ║ _____ __ __ ║
trace2333-mistral-dpo-trail2-v1-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
trace2333-mistral-dpo-trail2-v1-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
trace2333-mistral-dpo-trail2-v1-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
trace2333-mistral-dpo-trail2-v1-mkmlizer: ║ /___/ ║
trace2333-mistral-dpo-trail2-v1-mkmlizer: ║ ║
trace2333-mistral-dpo-trail2-v1-mkmlizer: ║ Version: 0.10.1 ║
trace2333-mistral-dpo-trail2-v1-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
trace2333-mistral-dpo-trail2-v1-mkmlizer: ║ https://mk1.ai ║
trace2333-mistral-dpo-trail2-v1-mkmlizer: ║ ║
trace2333-mistral-dpo-trail2-v1-mkmlizer: ║ The license key for the current software has been verified as ║
trace2333-mistral-dpo-trail2-v1-mkmlizer: ║ belonging to: ║
trace2333-mistral-dpo-trail2-v1-mkmlizer: ║ ║
trace2333-mistral-dpo-trail2-v1-mkmlizer: ║ Chai Research Corp. ║
trace2333-mistral-dpo-trail2-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
trace2333-mistral-dpo-trail2-v1-mkmlizer: ║ Expiration: 2024-10-15 23:59:59 ║
trace2333-mistral-dpo-trail2-v1-mkmlizer: ║ ║
trace2333-mistral-dpo-trail2-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
trace2333-mistral-dpo-trail2-v1-mkmlizer: Downloaded to shared memory in 91.002s
trace2333-mistral-dpo-trail2-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmpotxmha1x, device:0
trace2333-mistral-dpo-trail2-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
trace2333-mistral-dpo-trail2-v1-mkmlizer: quantized model in 35.271s
trace2333-mistral-dpo-trail2-v1-mkmlizer: Processed model Trace2333/mistral_dpo_trail2 in 126.273s
trace2333-mistral-dpo-trail2-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
trace2333-mistral-dpo-trail2-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/trace2333-mistral-dpo-trail2-v1
trace2333-mistral-dpo-trail2-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/trace2333-mistral-dpo-trail2-v1/config.json
trace2333-mistral-dpo-trail2-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/trace2333-mistral-dpo-trail2-v1/special_tokens_map.json
trace2333-mistral-dpo-trail2-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/trace2333-mistral-dpo-trail2-v1/tokenizer_config.json
trace2333-mistral-dpo-trail2-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/trace2333-mistral-dpo-trail2-v1/tokenizer.json
trace2333-mistral-dpo-trail2-v1-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/trace2333-mistral-dpo-trail2-v1/flywheel_model.0.safetensors
trace2333-mistral-dpo-trail2-v1-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 2%|▏ | 7/363 [00:00<00:07, 49.15it/s] Loading 0: 6%|▌ | 22/363 [00:00<00:03, 85.82it/s] Loading 0: 9%|▉ | 34/363 [00:00<00:03, 87.09it/s] Loading 0: 13%|█▎ | 49/363 [00:00<00:03, 94.26it/s] Loading 0: 16%|█▋ | 59/363 [00:00<00:03, 95.69it/s] Loading 0: 19%|█▉ | 69/363 [00:01<00:11, 24.83it/s] Loading 0: 21%|██▏ | 78/363 [00:01<00:09, 31.08it/s] Loading 0: 24%|██▎ | 86/363 [00:01<00:07, 36.99it/s] Loading 0: 26%|██▌ | 94/363 [00:02<00:06, 42.82it/s] Loading 0: 29%|██▉ | 106/363 [00:02<00:04, 52.09it/s] Loading 0: 33%|███▎ | 119/363 [00:02<00:03, 66.57it/s] Loading 0: 36%|███▌ | 130/363 [00:02<00:03, 69.74it/s] Loading 0: 39%|███▉ | 142/363 [00:03<00:09, 24.32it/s] Loading 0: 42%|████▏ | 151/363 [00:03<00:07, 29.74it/s] Loading 0: 46%|████▌ | 166/363 [00:03<00:04, 41.08it/s] Loading 0: 49%|████▉ | 178/363 [00:04<00:03, 48.66it/s] Loading 0: 52%|█████▏ | 187/363 [00:04<00:03, 54.72it/s] Loading 0: 54%|█████▍ | 196/363 [00:04<00:02, 60.53it/s] Loading 0: 58%|█████▊ | 211/363 [00:04<00:02, 72.47it/s] Loading 0: 61%|██████▏ | 223/363 [00:05<00:05, 26.21it/s] Loading 0: 64%|██████▍ | 233/363 [00:05<00:03, 32.56it/s] Loading 0: 68%|██████▊ | 247/363 [00:05<00:02, 42.82it/s] Loading 0: 71%|███████ | 256/363 [00:05<00:02, 48.94it/s] Loading 0: 73%|███████▎ | 266/363 [00:05<00:01, 56.88it/s] Loading 0: 76%|███████▋ | 277/363 [00:06<00:01, 62.39it/s] Loading 0: 80%|████████ | 292/363 [00:06<00:00, 73.46it/s] Loading 0: 83%|████████▎ | 302/363 [00:06<00:00, 78.42it/s] Loading 0: 86%|████████▌ | 312/363 [00:07<00:01, 25.92it/s] Loading 0: 89%|████████▊ | 322/363 [00:07<00:01, 31.41it/s] Loading 0: 91%|█████████ | 331/363 [00:07<00:00, 37.56it/s] Loading 0: 95%|█████████▌| 346/363 [00:07<00:00, 50.21it/s] Loading 0: 99%|█████████▊| 358/363 [00:07<00:00, 57.53it/s]
Job trace2333-mistral-dpo-trail2-v1-mkmlizer completed after 156.36s with status: succeeded
Stopping job with name trace2333-mistral-dpo-trail2-v1-mkmlizer
Pipeline stage MKMLizer completed in 157.58s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.09s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service trace2333-mistral-dpo-trail2-v1
Waiting for inference service trace2333-mistral-dpo-trail2-v1 to be ready
Failed to get response for submission blend_sisun_2024-09-09: ('http://zonemercy-virgo-edit-v1-1e5-v3-predictor.tenant-chaiml-guanaco.k.chaiverse.com/v1/models/GPT-J-6B-lit-v2:predict', '{"error":"ValueError : [TypeError(\\"\'numpy.int64\' object is not iterable\\"), TypeError(\'vars() argument must have __dict__ attribute\')]"}')
Inference service trace2333-mistral-dpo-trail2-v1 ready after 165.52774930000305s
Pipeline stage MKMLDeployer completed in 165.90s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.32026743888855s
Received healthy response to inference request in 1.7093801498413086s
Received healthy response to inference request in 1.9529170989990234s
Received healthy response to inference request in 2.6520309448242188s
Received healthy response to inference request in 1.8651974201202393s
5 requests
0 failed requests
5th percentile: 1.7405436038970947
10th percentile: 1.7717070579528809
20th percentile: 1.8340339660644531
30th percentile: 1.882741355895996
40th percentile: 1.9178292274475097
50th percentile: 1.9529170989990234
60th percentile: 2.099857234954834
70th percentile: 2.2467973709106444
80th percentile: 2.3866201400756837
90th percentile: 2.519325542449951
95th percentile: 2.585678243637085
99th percentile: 2.638760404586792
mean time: 2.099958610534668
Pipeline stage StressChecker completed in 11.38s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 4.52s
Shutdown handler de-registered
trace2333-mistral-dpo-trail2_v1 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.12s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.11s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service trace2333-mistral-dpo-trail2-v1-profiler
Waiting for inference service trace2333-mistral-dpo-trail2-v1-profiler to be ready
Inference service trace2333-mistral-dpo-trail2-v1-profiler ready after 160.39254355430603s
Pipeline stage MKMLProfilerDeployer completed in 160.75s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/trace2333-mistral-dpca3d41f7ca3d06ed9d7970b3fb6fd2b6-deplogwhqx:/code/chaiverse_profiler_1726024280 --namespace tenant-chaiml-guanaco
kubectl exec -it trace2333-mistral-dpca3d41f7ca3d06ed9d7970b3fb6fd2b6-deplogwhqx --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1726024280 && python profiles.py profile --best_of_n 8 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 512 --output_tokens 64 --summary /code/chaiverse_profiler_1726024280/summary.json'
kubectl exec -it trace2333-mistral-dpca3d41f7ca3d06ed9d7970b3fb6fd2b6-deplogwhqx --namespace tenant-chaiml-guanaco -- bash -c 'cat /code/chaiverse_profiler_1726024280/summary.json'
Pipeline stage MKMLProfilerRunner completed in 940.28s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service trace2333-mistral-dpo-trail2-v1-profiler is running
Tearing down inference service trace2333-mistral-dpo-trail2-v1-profiler
Service trace2333-mistral-dpo-trail2-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 1.74s
Shutdown handler de-registered
trace2333-mistral-dpo-trail2_v1 status is now inactive due to auto deactivation removed underperforming models
trace2333-mistral-dpo-trail2_v1 status is now torndown due to DeploymentManager action