submission_id: trace2333-mistral-align-_5060_v2
developer_uid: Trace2333
best_of: 8
celo_rating: 1251.85
display_name: trace2333-mistral-align-_5060_v2
family_friendly_score: 0.0
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': False}
generation_params: {'temperature': 1.0, 'top_p': 1.0, 'min_p': 0.06, 'top_k': 80, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n', '</s>', '###'], 'max_input_tokens': 512, 'best_of': 8, 'max_output_tokens': 64}
gpu_counts: {'NVIDIA RTX A5000': 1}
is_internal_developer: False
language_model: Trace2333/mistral_align_namo_3982
latencies: [{'batch_size': 1, 'throughput': 0.6904870966637117, 'latency_mean': 1.4481593930721284, 'latency_p50': 1.4503848552703857, 'latency_p90': 1.6031939506530761}, {'batch_size': 3, 'throughput': 1.318142905514585, 'latency_mean': 2.272766888141632, 'latency_p50': 2.292845845222473, 'latency_p90': 2.5172610759735106}, {'batch_size': 5, 'throughput': 1.5604395385261265, 'latency_mean': 3.188469407558441, 'latency_p50': 3.1565641164779663, 'latency_p90': 3.585192584991455}, {'batch_size': 6, 'throughput': 1.585200417028669, 'latency_mean': 3.7643175196647642, 'latency_p50': 3.7981581687927246, 'latency_p90': 4.215884804725647}, {'batch_size': 8, 'throughput': 1.596228111584006, 'latency_mean': 4.993582224845886, 'latency_p50': 4.978490710258484, 'latency_p90': 5.532664775848389}, {'batch_size': 10, 'throughput': 1.5521231605796455, 'latency_mean': 6.39715360045433, 'latency_p50': 6.45528507232666, 'latency_p90': 7.39748957157135}]
max_input_tokens: 512
max_output_tokens: 64
model_architecture: MistralForCausalLM
model_group: Trace2333/mistral_align_
model_name: trace2333-mistral-align-_5060_v2
model_num_parameters: 12772070400.0
model_repo: Trace2333/mistral_align_namo_3982
model_size: 13B
num_battles: 13347
num_wins: 6954
ranking_group: single
status: torndown
submission_type: basic
throughput_3p7s: 1.59
timestamp: 2024-09-07T05:07:37+00:00
us_pacific_date: 2024-09-06
win_ratio: 0.5210159586423916
Download Preference Data
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name trace2333-mistral-align-5060-v2-mkmlizer
Waiting for job on trace2333-mistral-align-5060-v2-mkmlizer to finish
trace2333-mistral-align-5060-v2-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
trace2333-mistral-align-5060-v2-mkmlizer: ║ _____ __ __ ║
trace2333-mistral-align-5060-v2-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
trace2333-mistral-align-5060-v2-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
trace2333-mistral-align-5060-v2-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
trace2333-mistral-align-5060-v2-mkmlizer: ║ /___/ ║
trace2333-mistral-align-5060-v2-mkmlizer: ║ ║
trace2333-mistral-align-5060-v2-mkmlizer: ║ Version: 0.10.1 ║
trace2333-mistral-align-5060-v2-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
trace2333-mistral-align-5060-v2-mkmlizer: ║ https://mk1.ai ║
trace2333-mistral-align-5060-v2-mkmlizer: ║ ║
trace2333-mistral-align-5060-v2-mkmlizer: ║ The license key for the current software has been verified as ║
trace2333-mistral-align-5060-v2-mkmlizer: ║ belonging to: ║
trace2333-mistral-align-5060-v2-mkmlizer: ║ ║
trace2333-mistral-align-5060-v2-mkmlizer: ║ Chai Research Corp. ║
trace2333-mistral-align-5060-v2-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
trace2333-mistral-align-5060-v2-mkmlizer: ║ Expiration: 2024-10-15 23:59:59 ║
trace2333-mistral-align-5060-v2-mkmlizer: ║ ║
trace2333-mistral-align-5060-v2-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
trace2333-mistral-align-5060-v2-mkmlizer: Downloaded to shared memory in 33.063s
trace2333-mistral-align-5060-v2-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmplhnn7hwt, device:0
trace2333-mistral-align-5060-v2-mkmlizer: Saving flywheel model at /dev/shm/model_cache
trace2333-mistral-align-5060-v2-mkmlizer: quantized model in 37.539s
trace2333-mistral-align-5060-v2-mkmlizer: Processed model Trace2333/mistral_align_namo_3982 in 70.602s
trace2333-mistral-align-5060-v2-mkmlizer: creating bucket guanaco-mkml-models
trace2333-mistral-align-5060-v2-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
trace2333-mistral-align-5060-v2-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/trace2333-mistral-align-5060-v2
trace2333-mistral-align-5060-v2-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/trace2333-mistral-align-5060-v2/config.json
trace2333-mistral-align-5060-v2-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/trace2333-mistral-align-5060-v2/special_tokens_map.json
trace2333-mistral-align-5060-v2-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/trace2333-mistral-align-5060-v2/tokenizer_config.json
trace2333-mistral-align-5060-v2-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/trace2333-mistral-align-5060-v2/tokenizer.json
trace2333-mistral-align-5060-v2-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/trace2333-mistral-align-5060-v2/flywheel_model.0.safetensors
trace2333-mistral-align-5060-v2-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 2%|▏ | 7/363 [00:00<00:08, 42.30it/s] Loading 0: 4%|▍ | 16/363 [00:00<00:06, 55.35it/s] Loading 0: 7%|▋ | 25/363 [00:00<00:05, 63.00it/s] Loading 0: 9%|▉ | 34/363 [00:00<00:04, 68.61it/s] Loading 0: 12%|█▏ | 43/363 [00:00<00:04, 71.95it/s] Loading 0: 14%|█▍ | 52/363 [00:00<00:04, 75.08it/s] Loading 0: 17%|█▋ | 61/363 [00:01<00:16, 18.62it/s] Loading 0: 19%|█▉ | 70/363 [00:02<00:12, 23.78it/s] Loading 0: 22%|██▏ | 79/363 [00:02<00:09, 29.75it/s] Loading 0: 24%|██▍ | 88/363 [00:02<00:07, 36.55it/s] Loading 0: 27%|██▋ | 97/363 [00:02<00:06, 41.24it/s] Loading 0: 29%|██▉ | 106/363 [00:02<00:05, 44.58it/s] Loading 0: 32%|███▏ | 115/363 [00:02<00:05, 49.32it/s] Loading 0: 34%|███▍ | 124/363 [00:02<00:04, 53.83it/s] Loading 0: 37%|███▋ | 133/363 [00:03<00:04, 56.31it/s] Loading 0: 39%|███▉ | 142/363 [00:04<00:11, 18.79it/s] Loading 0: 42%|████▏ | 151/363 [00:04<00:08, 24.18it/s] Loading 0: 44%|████▍ | 160/363 [00:04<00:06, 30.22it/s] Loading 0: 47%|████▋ | 169/363 [00:04<00:05, 35.55it/s] Loading 0: 49%|████▉ | 178/363 [00:04<00:04, 41.66it/s] Loading 0: 52%|█████▏ | 187/363 [00:05<00:03, 47.01it/s] Loading 0: 54%|█████▍ | 196/363 [00:05<00:03, 51.20it/s] Loading 0: 56%|█████▋ | 205/363 [00:05<00:02, 54.78it/s] Loading 0: 59%|█████▉ | 214/363 [00:05<00:02, 57.16it/s] Loading 0: 61%|██████▏ | 223/363 [00:06<00:07, 18.51it/s] Loading 0: 64%|██████▍ | 232/363 [00:06<00:05, 24.10it/s] Loading 0: 66%|██████▋ | 241/363 [00:06<00:04, 30.27it/s] Loading 0: 69%|██████▉ | 250/363 [00:07<00:03, 36.12it/s] Loading 0: 71%|███████▏ | 259/363 [00:07<00:02, 43.39it/s] Loading 0: 74%|███████▍ | 268/363 [00:07<00:01, 47.83it/s] Loading 0: 76%|███████▋ | 277/363 [00:07<00:01, 51.19it/s] Loading 0: 79%|███████▉ | 286/363 [00:07<00:01, 57.99it/s] Loading 0: 81%|████████▏ | 295/363 [00:07<00:01, 64.28it/s] Loading 0: 84%|████████▎ | 304/363 [00:08<00:02, 19.87it/s] Loading 0: 86%|████████▌ | 313/363 [00:08<00:01, 25.65it/s] Loading 0: 89%|████████▊ | 322/363 [00:09<00:01, 32.12it/s] Loading 0: 91%|█████████ | 331/363 [00:09<00:00, 38.54it/s] Loading 0: 94%|█████████▎| 340/363 [00:09<00:00, 44.55it/s] Loading 0: 96%|█████████▌| 349/363 [00:09<00:00, 49.99it/s] Loading 0: 99%|█████████▊| 358/363 [00:09<00:00, 51.00it/s]
Job trace2333-mistral-align-5060-v2-mkmlizer completed after 95.65s with status: succeeded
Stopping job with name trace2333-mistral-align-5060-v2-mkmlizer
Pipeline stage MKMLizer completed in 96.56s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.57s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service trace2333-mistral-align-5060-v2
Waiting for inference service trace2333-mistral-align-5060-v2 to be ready
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Inference service trace2333-mistral-align-5060-v2 ready after 140.50393199920654s
Pipeline stage MKMLDeployer completed in 141.03s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.572216033935547s
Received healthy response to inference request in 2.3623876571655273s
Received healthy response to inference request in 2.315650463104248s
Received healthy response to inference request in 2.399273157119751s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Received healthy response to inference request in 2.3156795501708984s
5 requests
0 failed requests
5th percentile: 2.315656280517578
10th percentile: 2.3156620979309084
20th percentile: 2.3156737327575683
30th percentile: 2.325021171569824
40th percentile: 2.343704414367676
50th percentile: 2.3623876571655273
60th percentile: 2.3771418571472167
70th percentile: 2.391896057128906
80th percentile: 2.43386173248291
90th percentile: 2.5030388832092285
95th percentile: 2.5376274585723877
99th percentile: 2.565298318862915
mean time: 2.3930413722991943
Pipeline stage StressChecker completed in 13.01s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 12.07s
Shutdown handler de-registered
trace2333-mistral-align-_5060_v2 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.11s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.10s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service trace2333-mistral-align-5060-v2-profiler
Waiting for inference service trace2333-mistral-align-5060-v2-profiler to be ready
Inference service trace2333-mistral-align-5060-v2-profiler ready after 150.36578512191772s
Pipeline stage MKMLProfilerDeployer completed in 150.96s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/trace2333-mistral-ald9aeaad6eabcd51598ebdc768a8e970b-deplokpr89:/code/chaiverse_profiler_1725686115 --namespace tenant-chaiml-guanaco
kubectl exec -it trace2333-mistral-ald9aeaad6eabcd51598ebdc768a8e970b-deplokpr89 --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1725686115 && python profiles.py profile --best_of_n 8 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 512 --output_tokens 64 --summary /code/chaiverse_profiler_1725686115/summary.json'
kubectl exec -it trace2333-mistral-ald9aeaad6eabcd51598ebdc768a8e970b-deplokpr89 --namespace tenant-chaiml-guanaco -- bash -c 'cat /code/chaiverse_profiler_1725686115/summary.json'
Pipeline stage MKMLProfilerRunner completed in 957.85s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service trace2333-mistral-align-5060-v2-profiler is running
Tearing down inference service trace2333-mistral-align-5060-v2-profiler
Service trace2333-mistral-align-5060-v2-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 1.68s
Shutdown handler de-registered
trace2333-mistral-align-_5060_v2 status is now inactive due to auto deactivation removed underperforming models
trace2333-mistral-align-_5060_v2 status is now torndown due to DeploymentManager action