submission_id: sao10k-mn-12b-lyra-v4b1_v3
developer_uid: sao10k
best_of: 8
celo_rating: 1255.71
display_name: lyra41b1
family_friendly_score: 0.0
formatter: {'memory_template': '<|im_start|>system\n{memory}<|im_end|>\n', 'prompt_template': '<|im_start|>user\n{prompt}<|im_end|>\n', 'bot_template': '<|im_start|>assistant\n{bot_name}: {message}<|im_end|>\n', 'user_template': '<|im_start|>user\n{user_name}: {message}<|im_end|>\n', 'response_template': '<|im_start|>assistant\n{bot_name}:', 'truncate_by_message': False}
generation_params: {'temperature': 1.1, 'top_p': 1.0, 'min_p': 0.1, 'top_k': 40, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n', '\n\n', '\nYou:', '[/INST]', '<|im_end|>', '</s>'], 'max_input_tokens': 512, 'best_of': 8, 'max_output_tokens': 64}
gpu_counts: {'NVIDIA RTX A5000': 1}
is_internal_developer: False
language_model: Sao10K/MN-12B-Lyra-v4b1
latencies: [{'batch_size': 1, 'throughput': 0.6972035438209127, 'latency_mean': 1.4341992878913878, 'latency_p50': 1.4346803426742554, 'latency_p90': 1.602126693725586}, {'batch_size': 3, 'throughput': 1.3393033043967024, 'latency_mean': 2.236225426197052, 'latency_p50': 2.24140465259552, 'latency_p90': 2.4801316022872926}, {'batch_size': 5, 'throughput': 1.5660061127534004, 'latency_mean': 3.172535696029663, 'latency_p50': 3.1938419342041016, 'latency_p90': 3.581611156463623}, {'batch_size': 6, 'throughput': 1.6305978250793374, 'latency_mean': 3.655955443382263, 'latency_p50': 3.6271109580993652, 'latency_p90': 4.170800042152405}, {'batch_size': 8, 'throughput': 1.6395476801738802, 'latency_mean': 4.843576190471649, 'latency_p50': 4.9059059619903564, 'latency_p90': 5.482802438735962}, {'batch_size': 10, 'throughput': 1.5651115836587894, 'latency_mean': 6.335754200220108, 'latency_p50': 6.358665704727173, 'latency_p90': 7.13014280796051}]
max_input_tokens: 512
max_output_tokens: 64
model_architecture: MistralForCausalLM
model_group: Sao10K/MN-12B-Lyra-v4b1
model_name: lyra41b1
model_num_parameters: 12772070400.0
model_repo: Sao10K/MN-12B-Lyra-v4b1
model_size: 13B
num_battles: 15893
num_wins: 8278
ranking_group: single
status: torndown
submission_type: basic
throughput_3p7s: 1.64
timestamp: 2024-09-08T07:06:50+00:00
us_pacific_date: 2024-09-08
win_ratio: 0.5208582394764991
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name sao10k-mn-12b-lyra-v4b1-v3-mkmlizer
Waiting for job on sao10k-mn-12b-lyra-v4b1-v3-mkmlizer to finish
sao10k-mn-12b-lyra-v4b1-v3-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
sao10k-mn-12b-lyra-v4b1-v3-mkmlizer: ║ _____ __ __ ║
sao10k-mn-12b-lyra-v4b1-v3-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
sao10k-mn-12b-lyra-v4b1-v3-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
sao10k-mn-12b-lyra-v4b1-v3-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
sao10k-mn-12b-lyra-v4b1-v3-mkmlizer: ║ /___/ ║
sao10k-mn-12b-lyra-v4b1-v3-mkmlizer: ║ ║
sao10k-mn-12b-lyra-v4b1-v3-mkmlizer: ║ Version: 0.10.1 ║
sao10k-mn-12b-lyra-v4b1-v3-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
sao10k-mn-12b-lyra-v4b1-v3-mkmlizer: ║ https://mk1.ai ║
sao10k-mn-12b-lyra-v4b1-v3-mkmlizer: ║ ║
sao10k-mn-12b-lyra-v4b1-v3-mkmlizer: ║ The license key for the current software has been verified as ║
sao10k-mn-12b-lyra-v4b1-v3-mkmlizer: ║ belonging to: ║
sao10k-mn-12b-lyra-v4b1-v3-mkmlizer: ║ ║
sao10k-mn-12b-lyra-v4b1-v3-mkmlizer: ║ Chai Research Corp. ║
sao10k-mn-12b-lyra-v4b1-v3-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
sao10k-mn-12b-lyra-v4b1-v3-mkmlizer: ║ Expiration: 2024-10-15 23:59:59 ║
sao10k-mn-12b-lyra-v4b1-v3-mkmlizer: ║ ║
sao10k-mn-12b-lyra-v4b1-v3-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
Connection pool is full, discarding connection: %s. Connection pool size: %s
sao10k-mn-12b-lyra-v4b1-v3-mkmlizer: Downloaded to shared memory in 37.732s
sao10k-mn-12b-lyra-v4b1-v3-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmpf55gv94w, device:0
sao10k-mn-12b-lyra-v4b1-v3-mkmlizer: Saving flywheel model at /dev/shm/model_cache
sao10k-mn-12b-lyra-v4b1-v3-mkmlizer: quantized model in 36.420s
sao10k-mn-12b-lyra-v4b1-v3-mkmlizer: Processed model Sao10K/MN-12B-Lyra-v4b1 in 74.152s
sao10k-mn-12b-lyra-v4b1-v3-mkmlizer: creating bucket guanaco-mkml-models
sao10k-mn-12b-lyra-v4b1-v3-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
sao10k-mn-12b-lyra-v4b1-v3-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/sao10k-mn-12b-lyra-v4b1-v3
sao10k-mn-12b-lyra-v4b1-v3-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/sao10k-mn-12b-lyra-v4b1-v3/config.json
sao10k-mn-12b-lyra-v4b1-v3-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/sao10k-mn-12b-lyra-v4b1-v3/special_tokens_map.json
sao10k-mn-12b-lyra-v4b1-v3-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/sao10k-mn-12b-lyra-v4b1-v3/tokenizer_config.json
sao10k-mn-12b-lyra-v4b1-v3-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/sao10k-mn-12b-lyra-v4b1-v3/flywheel_model.0.safetensors
sao10k-mn-12b-lyra-v4b1-v3-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%| | 2/363 [00:06<18:17, 3.04s/it] Loading 0: 2%|▏ | 6/363 [00:06<04:51, 1.22it/s] Loading 0: 3%|▎ | 11/363 [00:06<02:07, 2.75it/s] Loading 0: 4%|▍ | 15/363 [00:06<01:20, 4.31it/s] Loading 0: 6%|▌ | 22/363 [00:06<00:42, 8.06it/s] Loading 0: 7%|▋ | 27/363 [00:06<00:30, 11.09it/s] Loading 0: 9%|▉ | 32/363 [00:06<00:22, 14.69it/s] Loading 0: 10%|█ | 37/363 [00:06<00:17, 18.89it/s] Loading 0: 12%|█▏ | 42/363 [00:07<00:15, 20.95it/s] Loading 0: 13%|█▎ | 49/363 [00:07<00:11, 28.54it/s] Loading 0: 15%|█▍ | 54/363 [00:07<00:09, 31.27it/s] Loading 0: 16%|█▋ | 59/363 [00:07<00:08, 34.04it/s] Loading 0: 18%|█▊ | 65/363 [00:07<00:08, 35.24it/s] Loading 0: 19%|█▉ | 70/363 [00:07<00:08, 36.41it/s] Loading 0: 21%|██ | 75/363 [00:07<00:10, 27.08it/s] Loading 0: 22%|██▏ | 79/363 [00:08<00:10, 27.59it/s] Loading 0: 23%|██▎ | 85/363 [00:08<00:08, 33.27it/s] Loading 0: 25%|██▍ | 89/363 [00:08<00:08, 33.67it/s] Loading 0: 26%|██▌ | 94/363 [00:08<00:07, 37.06it/s] Loading 0: 27%|██▋ | 99/363 [00:08<00:06, 38.44it/s] Loading 0: 29%|██▊ | 104/363 [00:08<00:06, 39.87it/s] Loading 0: 30%|███ | 109/363 [00:08<00:05, 42.35it/s] Loading 0: 31%|███▏ | 114/363 [00:08<00:07, 35.24it/s] Loading 0: 33%|███▎ | 121/363 [00:09<00:05, 43.26it/s] Loading 0: 35%|███▍ | 126/363 [00:09<00:05, 42.60it/s] Loading 0: 36%|███▌ | 131/363 [00:09<00:05, 42.23it/s] Loading 0: 37%|███▋ | 136/363 [00:09<00:05, 43.75it/s] Loading 0: 39%|███▉ | 141/363 [00:09<00:06, 36.77it/s] Loading 0: 41%|████ | 148/363 [00:09<00:05, 42.65it/s] Loading 0: 42%|████▏ | 153/363 [00:09<00:04, 42.29it/s] Loading 0: 44%|████▎ | 158/363 [00:09<00:04, 42.51it/s] Loading 0: 45%|████▍ | 163/363 [00:10<00:04, 44.27it/s] Loading 0: 46%|████▋ | 168/363 [00:10<00:05, 36.91it/s] Loading 0: 48%|████▊ | 175/363 [00:10<00:04, 43.80it/s] Loading 0: 50%|████▉ | 180/363 [00:10<00:04, 43.10it/s] Loading 0: 51%|█████ | 185/363 [00:10<00:04, 42.05it/s] Loading 0: 52%|█████▏ | 190/363 [00:10<00:06, 28.16it/s] Loading 0: 53%|█████▎ | 194/363 [00:11<00:05, 29.07it/s] Loading 0: 55%|█████▍ | 199/363 [00:11<00:04, 32.94it/s] Loading 0: 56%|█████▌ | 203/363 [00:11<00:04, 33.89it/s] Loading 0: 57%|█████▋ | 208/363 [00:11<00:04, 37.52it/s] Loading 0: 59%|█████▊ | 213/363 [00:11<00:04, 32.49it/s] Loading 0: 61%|██████ | 220/363 [00:11<00:03, 40.18it/s] Loading 0: 62%|██████▏ | 225/363 [00:11<00:03, 40.26it/s] Loading 0: 63%|██████▎ | 230/363 [00:11<00:03, 40.84it/s] Loading 0: 65%|██████▍ | 235/363 [00:12<00:02, 42.81it/s] Loading 0: 66%|██████▌ | 240/363 [00:12<00:03, 36.20it/s] Loading 0: 68%|██████▊ | 247/363 [00:12<00:02, 43.41it/s] Loading 0: 69%|██████▉ | 252/363 [00:12<00:02, 43.39it/s] Loading 0: 71%|███████ | 257/363 [00:12<00:02, 43.45it/s] Loading 0: 72%|███████▏ | 262/363 [00:12<00:02, 44.90it/s] Loading 0: 74%|███████▎ | 267/363 [00:12<00:02, 36.90it/s] Loading 0: 75%|███████▌ | 274/363 [00:12<00:02, 43.68it/s] Loading 0: 77%|███████▋ | 279/363 [00:13<00:01, 43.40it/s] Loading 0: 78%|███████▊ | 284/363 [00:13<00:01, 41.90it/s] Loading 0: 80%|███████▉ | 289/363 [00:13<00:01, 43.42it/s] Loading 0: 81%|████████ | 294/363 [00:13<00:01, 36.20it/s] Loading 0: 83%|████████▎ | 301/363 [00:13<00:01, 42.72it/s] Loading 0: 84%|████████▍ | 306/363 [00:13<00:02, 28.26it/s] Loading 0: 86%|████████▌ | 311/363 [00:14<00:01, 31.32it/s] Loading 0: 87%|████████▋ | 315/363 [00:14<00:01, 32.57it/s] Loading 0: 88%|████████▊ | 320/363 [00:14<00:01, 35.22it/s] Loading 0: 90%|████████▉ | 326/363 [00:14<00:01, 36.31it/s] Loading 0: 91%|█████████ | 330/363 [00:14<00:00, 34.76it/s] Loading 0: 93%|█████████▎| 337/363 [00:14<00:00, 41.98it/s] Loading 0: 94%|█████████▍| 342/363 [00:14<00:00, 42.62it/s] Loading 0: 96%|█████████▌| 347/363 [00:14<00:00, 42.73it/s] Loading 0: 97%|█████████▋| 352/363 [00:15<00:00, 44.53it/s] Loading 0: 98%|█████████▊| 357/363 [00:15<00:00, 37.29it/s]
Job sao10k-mn-12b-lyra-v4b1-v3-mkmlizer completed after 95.36s with status: succeeded
Stopping job with name sao10k-mn-12b-lyra-v4b1-v3-mkmlizer
Pipeline stage MKMLizer completed in 96.36s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.08s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service sao10k-mn-12b-lyra-v4b1-v3
Waiting for inference service sao10k-mn-12b-lyra-v4b1-v3 to be ready
Retrying (%r) after connection broken by '%r': %s
Inference service sao10k-mn-12b-lyra-v4b1-v3 ready after 151.6371488571167s
Pipeline stage MKMLDeployer completed in 152.07s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.9605114459991455s
Received healthy response to inference request in 2.3290274143218994s
Received healthy response to inference request in 2.260746717453003s
Received healthy response to inference request in 1.6161737442016602s
Received healthy response to inference request in 2.0926077365875244s
5 requests
0 failed requests
5th percentile: 1.711460542678833
10th percentile: 1.8067473411560058
20th percentile: 1.9973209381103516
30th percentile: 2.12623553276062
40th percentile: 2.1934911251068114
50th percentile: 2.260746717453003
60th percentile: 2.2880589962005615
70th percentile: 2.31537127494812
80th percentile: 2.455324220657349
90th percentile: 2.707917833328247
95th percentile: 2.834214639663696
99th percentile: 2.935252084732056
mean time: 2.2518134117126465
Pipeline stage StressChecker completed in 11.98s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 5.44s
Shutdown handler de-registered
sao10k-mn-12b-lyra-v4b1_v3 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.11s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.11s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service sao10k-mn-12b-lyra-v4b1-v3-profiler
Waiting for inference service sao10k-mn-12b-lyra-v4b1-v3-profiler to be ready
Inference service sao10k-mn-12b-lyra-v4b1-v3-profiler ready after 150.38632941246033s
Pipeline stage MKMLProfilerDeployer completed in 150.73s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/sao10k-mn-12b-lyra-v4b1-v3-profiler-predictor-00001-deploygjr4t:/code/chaiverse_profiler_1725779671 --namespace tenant-chaiml-guanaco
kubectl exec -it sao10k-mn-12b-lyra-v4b1-v3-profiler-predictor-00001-deploygjr4t --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1725779671 && python profiles.py profile --best_of_n 8 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 512 --output_tokens 64 --summary /code/chaiverse_profiler_1725779671/summary.json'
kubectl exec -it sao10k-mn-12b-lyra-v4b1-v3-profiler-predictor-00001-deploygjr4t --namespace tenant-chaiml-guanaco -- bash -c 'cat /code/chaiverse_profiler_1725779671/summary.json'
Pipeline stage MKMLProfilerRunner completed in 941.49s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service sao10k-mn-12b-lyra-v4b1-v3-profiler is running
Tearing down inference service sao10k-mn-12b-lyra-v4b1-v3-profiler
Service sao10k-mn-12b-lyra-v4b1-v3-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 1.98s
Shutdown handler de-registered
sao10k-mn-12b-lyra-v4b1_v3 status is now inactive due to auto deactivation removed underperforming models
sao10k-mn-12b-lyra-v4b1_v3 status is now torndown due to DeploymentManager action