developer_uid: Riverise
submission_id: riverise-model-trained-o_3967_v3
model_name: sonnet_second_model
model_group: Riverise/model_trained_o
status: torndown
timestamp: 2024-08-31T07:47:14+00:00
num_battles: 11004
num_wins: 5385
celo_rating: 1227.61
family_friendly_score: 0.0
submission_type: basic
model_repo: Riverise/model_trained_on_sonnet_2rd
model_architecture: LlamaForCausalLM
model_num_parameters: 8030261248.0
best_of: 16
max_input_tokens: 512
max_output_tokens: 64
display_name: sonnet_second_model
is_internal_developer: False
language_model: Riverise/model_trained_on_sonnet_2rd
model_size: 8B
ranking_group: single
us_pacific_date: 2024-08-31
win_ratio: 0.4893675027262814
generation_params: {'temperature': 1.0, 'top_p': 1.0, 'min_p': 0.0, 'top_k': 40, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n'], 'max_input_tokens': 512, 'best_of': 16, 'max_output_tokens': 64}
formatter: {'memory_template': "<|start_header_id|>system<|end_header_id|>\n\n{bot_name}'s Persona: {memory}\n\n", 'prompt_template': '{prompt}<|eot_id|>', 'bot_template': '<|start_header_id|>assistant<|end_header_id|>\n\n{bot_name}: {message}<|eot_id|>', 'user_template': '<|start_header_id|>user<|end_header_id|>\n\nYou: {message}<|eot_id|>', 'response_template': '<|start_header_id|>assistant<|end_header_id|>\n\n{bot_name}:', 'truncate_by_message': False}
Resubmit model
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name riverise-model-trained-o-3967-v3-mkmlizer
Waiting for job on riverise-model-trained-o-3967-v3-mkmlizer to finish
Stopping job with name riverise-model-trained-o-3967-v3-mkmlizer
%s, retrying in %s seconds...
Starting job with name riverise-model-trained-o-3967-v3-mkmlizer
Waiting for job on riverise-model-trained-o-3967-v3-mkmlizer to finish
riverise-model-trained-o-3967-v3-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
riverise-model-trained-o-3967-v3-mkmlizer: ║ _____ __ __ ║
riverise-model-trained-o-3967-v3-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
riverise-model-trained-o-3967-v3-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
riverise-model-trained-o-3967-v3-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
riverise-model-trained-o-3967-v3-mkmlizer: ║ /___/ ║
riverise-model-trained-o-3967-v3-mkmlizer: ║ ║
riverise-model-trained-o-3967-v3-mkmlizer: ║ Version: 0.10.1 ║
riverise-model-trained-o-3967-v3-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
riverise-model-trained-o-3967-v3-mkmlizer: ║ https://mk1.ai ║
riverise-model-trained-o-3967-v3-mkmlizer: ║ ║
riverise-model-trained-o-3967-v3-mkmlizer: ║ The license key for the current software has been verified as ║
riverise-model-trained-o-3967-v3-mkmlizer: ║ belonging to: ║
riverise-model-trained-o-3967-v3-mkmlizer: ║ ║
riverise-model-trained-o-3967-v3-mkmlizer: ║ Chai Research Corp. ║
riverise-model-trained-o-3967-v3-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
riverise-model-trained-o-3967-v3-mkmlizer: ║ Expiration: 2024-10-15 23:59:59 ║
riverise-model-trained-o-3967-v3-mkmlizer: ║ ║
riverise-model-trained-o-3967-v3-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
riverise-model-trained-o-3967-v3-mkmlizer: Downloaded to shared memory in 37.428s
riverise-model-trained-o-3967-v3-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmpiqdejw7i, device:0
riverise-model-trained-o-3967-v3-mkmlizer: Saving flywheel model at /dev/shm/model_cache
riverise-model-trained-o-3967-v3-mkmlizer: quantized model in 29.532s
riverise-model-trained-o-3967-v3-mkmlizer: Processed model Riverise/model_trained_on_sonnet_2rd in 66.960s
riverise-model-trained-o-3967-v3-mkmlizer: creating bucket guanaco-mkml-models
riverise-model-trained-o-3967-v3-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
riverise-model-trained-o-3967-v3-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/riverise-model-trained-o-3967-v3
riverise-model-trained-o-3967-v3-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/riverise-model-trained-o-3967-v3/special_tokens_map.json
riverise-model-trained-o-3967-v3-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/riverise-model-trained-o-3967-v3/config.json
riverise-model-trained-o-3967-v3-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/riverise-model-trained-o-3967-v3/tokenizer_config.json
riverise-model-trained-o-3967-v3-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/riverise-model-trained-o-3967-v3/tokenizer.json
riverise-model-trained-o-3967-v3-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/riverise-model-trained-o-3967-v3/flywheel_model.0.safetensors
riverise-model-trained-o-3967-v3-mkmlizer: Loading 0: 0%| | 0/291 [00:00<?, ?it/s] Loading 0: 2%|▏ | 5/291 [00:00<00:10, 26.08it/s] Loading 0: 4%|▍ | 12/291 [00:00<00:07, 35.43it/s] Loading 0: 5%|▌ | 16/291 [00:00<00:08, 31.83it/s] Loading 0: 7%|▋ | 21/291 [00:00<00:07, 35.36it/s] Loading 0: 9%|▊ | 25/291 [00:00<00:08, 32.19it/s] Loading 0: 10%|▉ | 29/291 [00:00<00:07, 34.04it/s] Loading 0: 11%|█▏ | 33/291 [00:01<00:10, 25.36it/s] Loading 0: 12%|█▏ | 36/291 [00:01<00:11, 22.63it/s] Loading 0: 14%|█▍ | 41/291 [00:01<00:10, 24.48it/s] Loading 0: 16%|█▋ | 48/291 [00:01<00:07, 31.91it/s] Loading 0: 18%|█▊ | 52/291 [00:01<00:07, 31.85it/s] Loading 0: 20%|█▉ | 57/291 [00:01<00:06, 34.74it/s] Loading 0: 21%|██ | 61/291 [00:01<00:07, 32.28it/s] Loading 0: 23%|██▎ | 66/291 [00:02<00:06, 33.95it/s] Loading 0: 24%|██▍ | 70/291 [00:02<00:06, 32.69it/s] Loading 0: 25%|██▌ | 74/291 [00:02<00:06, 32.96it/s] Loading 0: 27%|██▋ | 78/291 [00:02<00:06, 33.68it/s] Loading 0: 28%|██▊ | 82/291 [00:02<00:08, 24.42it/s] Loading 0: 29%|██▉ | 85/291 [00:02<00:08, 25.31it/s] Loading 0: 31%|███ | 90/291 [00:02<00:06, 29.63it/s] Loading 0: 32%|███▏ | 94/291 [00:03<00:06, 29.24it/s] Loading 0: 34%|███▍ | 99/291 [00:03<00:05, 33.17it/s] Loading 0: 35%|███▌ | 103/291 [00:03<00:05, 32.71it/s] Loading 0: 37%|███▋ | 108/291 [00:03<00:05, 35.74it/s] Loading 0: 38%|███▊ | 112/291 [00:03<00:05, 33.99it/s] Loading 0: 40%|███▉ | 116/291 [00:03<00:05, 34.42it/s] Loading 0: 42%|████▏ | 122/291 [00:03<00:04, 39.14it/s] Loading 0: 44%|████▎ | 127/291 [00:04<00:04, 35.75it/s] Loading 0: 46%|████▌ | 133/291 [00:04<00:05, 31.09it/s] Loading 0: 47%|████▋ | 137/291 [00:04<00:05, 30.74it/s] Loading 0: 48%|████▊ | 141/291 [00:04<00:05, 27.65it/s] Loading 0: 51%|█████ | 147/291 [00:04<00:04, 32.76it/s] Loading 0: 52%|█████▏ | 151/291 [00:04<00:04, 31.31it/s] Loading 0: 54%|█████▎ | 156/291 [00:04<00:03, 34.01it/s] Loading 0: 55%|█████▍ | 160/291 [00:05<00:04, 32.54it/s] Loading 0: 57%|█████▋ | 165/291 [00:05<00:03, 34.84it/s] Loading 0: 58%|█████▊ | 169/291 [00:05<00:03, 33.02it/s] Loading 0: 60%|█████▉ | 174/291 [00:05<00:03, 35.67it/s] Loading 0: 61%|██████ | 178/291 [00:05<00:03, 33.12it/s] Loading 0: 63%|██████▎ | 183/291 [00:05<00:02, 36.18it/s] Loading 0: 64%|██████▍ | 187/291 [00:06<00:04, 24.12it/s] Loading 0: 65%|██████▌ | 190/291 [00:06<00:04, 23.02it/s] Loading 0: 67%|██████▋ | 194/291 [00:06<00:04, 22.80it/s] Loading 0: 69%|██████▉ | 201/291 [00:06<00:02, 30.59it/s] Loading 0: 70%|███████ | 205/291 [00:06<00:02, 30.65it/s] Loading 0: 72%|███████▏ | 210/291 [00:06<00:02, 32.26it/s] Loading 0: 74%|███████▎ | 214/291 [00:06<00:02, 30.94it/s] Loading 0: 75%|███████▌ | 219/291 [00:07<00:02, 33.51it/s] Loading 0: 77%|███████▋ | 223/291 [00:07<00:02, 32.29it/s] Loading 0: 78%|███████▊ | 227/291 [00:07<00:01, 33.28it/s] Loading 0: 79%|███████▉ | 231/291 [00:07<00:01, 33.43it/s] Loading 0: 81%|████████ | 235/291 [00:07<00:02, 24.56it/s] Loading 0: 82%|████████▏ | 239/291 [00:07<00:02, 24.52it/s] Loading 0: 85%|████████▍ | 246/291 [00:07<00:01, 32.52it/s] Loading 0: 86%|████████▌ | 250/291 [00:08<00:01, 31.38it/s] Loading 0: 88%|████████▊ | 255/291 [00:08<00:01, 32.74it/s] Loading 0: 89%|████████▉ | 259/291 [00:08<00:01, 31.12it/s] Loading 0: 91%|█████████ | 264/291 [00:08<00:00, 34.03it/s] Loading 0: 92%|█████████▏| 268/291 [00:08<00:00, 33.09it/s] Loading 0: 94%|█████████▍| 273/291 [00:08<00:00, 36.38it/s] Loading 0: 95%|█████████▌| 277/291 [00:08<00:00, 33.93it/s] Loading 0: 97%|█████████▋| 281/291 [00:09<00:00, 32.93it/s] Loading 0: 98%|█████████▊| 286/291 [00:14<00:01, 2.59it/s] Loading 0: 99%|█████████▉| 289/291 [00:14<00:00, 3.22it/s]
Job riverise-model-trained-o-3967-v3-mkmlizer completed after 84.57s with status: succeeded
Stopping job with name riverise-model-trained-o-3967-v3-mkmlizer
Pipeline stage MKMLizer completed in 86.07s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.56s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service riverise-model-trained-o-3967-v3
Waiting for inference service riverise-model-trained-o-3967-v3 to be ready
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Inference service riverise-model-trained-o-3967-v3 ready after 191.036372423172s
Pipeline stage MKMLDeployer completed in 191.53s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.340226888656616s
Received healthy response to inference request in 3.8759725093841553s
Received healthy response to inference request in 1.4907944202423096s
Received healthy response to inference request in 1.6082940101623535s
Received healthy response to inference request in 1.1557965278625488s
5 requests
0 failed requests
5th percentile: 1.2227961063385009
10th percentile: 1.2897956848144532
20th percentile: 1.4237948417663575
30th percentile: 1.5142943382263183
40th percentile: 1.561294174194336
50th percentile: 1.6082940101623535
60th percentile: 1.9010671615600585
70th percentile: 2.1938403129577635
80th percentile: 2.647376012802124
90th percentile: 3.2616742610931397
95th percentile: 3.5688233852386473
99th percentile: 3.814542684555054
mean time: 2.0942168712615965
Pipeline stage StressChecker completed in 11.28s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
starting trigger_guanaco_pipeline %s
Pipeline stage TriggerMKMLProfilingPipeline completed in 3.59s
riverise-model-trained-o_3967_v3 status is now deployed due to DeploymentManager action
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.12s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service riverise-model-trained-o-3967-v3-profiler
Waiting for inference service riverise-model-trained-o-3967-v3-profiler to be ready
Inference service riverise-model-trained-o-3967-v3-profiler ready after 190.42956042289734s
Pipeline stage MKMLProfilerDeployer completed in 190.80s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
script pods %s
Pipeline stage MKMLProfilerRunner completed in 0.36s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service riverise-model-trained-o-3967-v3-profiler is running
Tearing down inference service riverise-model-trained-o-3967-v3-profiler
Service riverise-model-trained-o-3967-v3-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 1.93s
riverise-model-trained-o_3967_v3 status is now inactive due to auto deactivation removed underperforming models
riverise-model-trained-o_3967_v3 status is now torndown due to DeploymentManager action