developer_uid: rirv938
submission_id: rirv938-tune-mistral-gr_71092_v2
model_name: rirv938-tune-mistral-gr_71092_v2
model_group: rirv938/tune_mistral_grp
status: torndown
timestamp: 2025-04-30T15:00:02+00:00
num_battles: 9025
num_wins: 4421
celo_rating: 1299.46
family_friendly_score: 0.5680000000000001
family_friendly_standard_error: 0.007005369369276684
submission_type: basic
model_repo: rirv938/tune_mistral_grpo_cp296_92ff_v3_run_merged
model_architecture: MistralForCausalLM
model_num_parameters: 24096691200.0
best_of: 8
max_input_tokens: 768
max_output_tokens: 64
reward_model: default
latencies: [{'batch_size': 1, 'throughput': 0.5515521750978696, 'latency_mean': 1.8130096685886383, 'latency_p50': 1.8250056505203247, 'latency_p90': 2.0096627712249755}, {'batch_size': 3, 'throughput': 1.1647756963799587, 'latency_mean': 2.5657601249217987, 'latency_p50': 2.5746493339538574, 'latency_p90': 2.830340313911438}, {'batch_size': 5, 'throughput': 1.5285626331531332, 'latency_mean': 3.2535033893585203, 'latency_p50': 3.277197241783142, 'latency_p90': 3.6244645595550535}, {'batch_size': 6, 'throughput': 1.6969501322470215, 'latency_mean': 3.5134530448913575, 'latency_p50': 3.518170475959778, 'latency_p90': 3.9390806198120116}, {'batch_size': 8, 'throughput': 1.8521762756824884, 'latency_mean': 4.292496151924134, 'latency_p50': 4.330156326293945, 'latency_p90': 4.792059826850891}, {'batch_size': 10, 'throughput': 1.9778358250376211, 'latency_mean': 5.004906607866287, 'latency_p50': 5.031385183334351, 'latency_p90': 5.644707655906677}]
gpu_counts: {'NVIDIA A100-SXM4-80GB': 1}
display_name: rirv938-tune-mistral-gr_71092_v2
is_internal_developer: True
language_model: rirv938/tune_mistral_grpo_cp296_92ff_v3_run_merged
model_size: 24B
ranking_group: single
throughput_3p7s: 1.75
us_pacific_date: 2025-04-30
win_ratio: 0.48986149584487537
generation_params: {'temperature': 0.9, 'top_p': 0.9, 'min_p': 0.2, 'top_k': 80, 'presence_penalty': 0.5, 'frequency_penalty': 0.5, 'stopping_words': ['You:', '\n', '###', '</s>'], 'max_input_tokens': 768, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': '', 'prompt_template': '', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': False}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name rirv938-tune-mistral-gr-71092-v2-mkmlizer
Waiting for job on rirv938-tune-mistral-gr-71092-v2-mkmlizer to finish
rirv938-tune-mistral-gr-71092-v2-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
rirv938-tune-mistral-gr-71092-v2-mkmlizer: ║ _____ __ __ ║
rirv938-tune-mistral-gr-71092-v2-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
rirv938-tune-mistral-gr-71092-v2-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
rirv938-tune-mistral-gr-71092-v2-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
rirv938-tune-mistral-gr-71092-v2-mkmlizer: ║ /___/ ║
rirv938-tune-mistral-gr-71092-v2-mkmlizer: ║ ║
rirv938-tune-mistral-gr-71092-v2-mkmlizer: ║ Version: 0.12.8 ║
rirv938-tune-mistral-gr-71092-v2-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
rirv938-tune-mistral-gr-71092-v2-mkmlizer: ║ https://mk1.ai ║
rirv938-tune-mistral-gr-71092-v2-mkmlizer: ║ ║
rirv938-tune-mistral-gr-71092-v2-mkmlizer: ║ The license key for the current software has been verified as ║
rirv938-tune-mistral-gr-71092-v2-mkmlizer: ║ belonging to: ║
rirv938-tune-mistral-gr-71092-v2-mkmlizer: ║ ║
rirv938-tune-mistral-gr-71092-v2-mkmlizer: ║ Chai Research Corp. ║
rirv938-tune-mistral-gr-71092-v2-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
rirv938-tune-mistral-gr-71092-v2-mkmlizer: ║ Expiration: 2028-03-31 23:59:59 ║
rirv938-tune-mistral-gr-71092-v2-mkmlizer: ║ ║
rirv938-tune-mistral-gr-71092-v2-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
rirv938-tune-mistral-gr-71092-v2-mkmlizer: Downloaded to shared memory in 173.553s
rirv938-tune-mistral-gr-71092-v2-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmpylb8el0a, device:0
rirv938-tune-mistral-gr-71092-v2-mkmlizer: Saving flywheel model at /dev/shm/model_cache
rirv938-tune-mistral-gr-71092-v2-mkmlizer: creating bucket guanaco-mkml-models
rirv938-tune-mistral-gr-71092-v2-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
rirv938-tune-mistral-gr-71092-v2-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/rirv938-tune-mistral-gr-71092-v2
rirv938-tune-mistral-gr-71092-v2-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/rirv938-tune-mistral-gr-71092-v2/config.json
rirv938-tune-mistral-gr-71092-v2-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/rirv938-tune-mistral-gr-71092-v2/special_tokens_map.json
rirv938-tune-mistral-gr-71092-v2-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/rirv938-tune-mistral-gr-71092-v2/tokenizer_config.json
rirv938-tune-mistral-gr-71092-v2-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/rirv938-tune-mistral-gr-71092-v2/tokenizer.json
rirv938-tune-mistral-gr-71092-v2-mkmlizer: cp /dev/shm/model_cache/flywheel_model.1.safetensors s3://guanaco-mkml-models/rirv938-tune-mistral-gr-71092-v2/flywheel_model.1.safetensors
rirv938-tune-mistral-gr-71092-v2-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/rirv938-tune-mistral-gr-71092-v2/flywheel_model.0.safetensors
rirv938-tune-mistral-gr-71092-v2-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%| | 3/363 [00:00<00:12, 29.56it/s] Loading 0: 2%|▏ | 6/363 [00:00<00:25, 13.86it/s] Loading 0: 3%|▎ | 10/363 [00:00<00:17, 20.51it/s] Loading 0: 4%|▎ | 13/363 [00:00<00:25, 13.55it/s] Loading 0: 4%|▍ | 15/363 [00:01<00:31, 11.06it/s] Loading 0: 6%|▌ | 21/363 [00:01<00:21, 16.21it/s] Loading 0: 6%|▋ | 23/363 [00:01<00:26, 12.94it/s] Loading 0: 8%|▊ | 28/363 [00:01<00:18, 18.09it/s] Loading 0: 9%|▉ | 32/363 [00:01<00:15, 21.19it/s] Loading 0: 10%|▉ | 35/363 [00:02<00:22, 14.76it/s] Loading 0: 10%|█ | 38/363 [00:02<00:21, 15.35it/s] Loading 0: 11%|█ | 40/363 [00:02<00:23, 13.65it/s] Loading 0: 12%|█▏ | 42/363 [00:02<00:24, 13.03it/s] Loading 0: 13%|█▎ | 46/363 [00:02<00:18, 17.35it/s] Loading 0: 14%|█▍ | 50/363 [00:03<00:14, 21.34it/s] Loading 0: 15%|█▍ | 53/363 [00:03<00:20, 14.95it/s] Loading 0: 15%|█▌ | 56/363 [00:03<00:19, 15.65it/s] Loading 0: 16%|█▌ | 58/363 [00:03<00:22, 13.80it/s] Loading 0: 17%|█▋ | 60/363 [00:03<00:22, 13.19it/s] Loading 0: 18%|█▊ | 64/363 [00:04<00:17, 17.34it/s] Loading 0: 19%|█▊ | 68/363 [00:04<00:14, 21.00it/s] Loading 0: 20%|█▉ | 71/363 [00:04<00:19, 14.97it/s] Loading 0: 20%|██ | 73/363 [00:04<00:20, 14.32it/s] Loading 0: 21%|██ | 75/363 [00:04<00:18, 15.16it/s] Loading 0: 21%|██ | 77/363 [00:05<00:23, 11.96it/s] Loading 0: 23%|██▎ | 82/363 [00:05<00:15, 17.76it/s] Loading 0: 24%|██▎ | 86/363 [00:05<00:13, 21.17it/s] Loading 0: 25%|██▍ | 89/363 [00:05<00:18, 15.19it/s] Loading 0: 25%|██▌ | 92/363 [00:05<00:17, 15.36it/s] Loading 0: 26%|██▋ | 96/363 [00:05<00:13, 19.29it/s] Loading 0: 28%|██▊ | 101/363 [00:06<00:12, 21.17it/s] Loading 0: 29%|██▊ | 104/363 [00:06<00:14, 17.34it/s] Loading 0: 29%|██▉ | 107/363 [00:06<00:18, 13.63it/s] Loading 0: 30%|███ | 109/363 [00:06<00:19, 13.17it/s] Loading 0: 31%|███ | 111/363 [00:07<00:18, 13.89it/s] Loading 0: 31%|███ | 113/363 [00:07<00:21, 11.56it/s] Loading 0: 33%|███▎ | 118/363 [00:07<00:13, 17.54it/s] Loading 0: 34%|███▎ | 122/363 [00:07<00:11, 21.17it/s] Loading 0: 34%|███▍ | 125/363 [00:07<00:15, 15.24it/s] Loading 0: 35%|███▌ | 128/363 [00:08<00:15, 15.43it/s] Loading 0: 36%|███▌ | 130/363 [00:08<00:17, 13.70it/s] Loading 0: 36%|███▋ | 132/363 [00:08<00:17, 13.12it/s] Loading 0: 37%|███▋ | 136/363 [00:08<00:13, 17.27it/s] Loading 0: 39%|███▊ | 140/363 [00:08<00:10, 20.92it/s] Loading 0: 39%|███▉ | 143/363 [00:09<00:14, 15.01it/s] Loading 0: 40%|███▉ | 145/363 [00:09<00:15, 14.17it/s] Loading 0: 40%|████ | 147/363 [00:09<00:14, 15.04it/s] Loading 0: 41%|████ | 149/363 [00:09<00:17, 12.07it/s] Loading 0: 42%|████▏ | 154/363 [00:09<00:11, 18.31it/s] Loading 0: 44%|████▎ | 158/363 [00:09<00:09, 22.06it/s] Loading 0: 44%|████▍ | 161/363 [00:10<00:13, 15.44it/s] Loading 0: 45%|████▌ | 164/363 [00:10<00:12, 15.93it/s] Loading 0: 46%|████▌ | 167/363 [00:10<00:15, 12.47it/s] Loading 0: 47%|████▋ | 172/363 [00:10<00:10, 17.47it/s] Loading 0: 48%|████▊ | 176/363 [00:10<00:08, 20.81it/s] Loading 0: 49%|████▉ | 179/363 [00:11<00:11, 15.35it/s] Loading 0: 50%|█████ | 182/363 [00:11<00:11, 15.73it/s] Loading 0: 51%|█████ | 185/363 [00:11<00:14, 12.18it/s] Loading 0: 52%|█████▏ | 190/363 [00:12<00:10, 16.94it/s] Loading 0: 53%|█████▎ | 194/363 [00:12<00:08, 19.86it/s] Loading 0: 54%|█████▍ | 197/363 [00:12<00:11, 14.75it/s] Loading 0: 55%|█████▌ | 200/363 [00:12<00:10, 15.39it/s] Loading 0: 56%|█████▌ | 203/363 [00:27<03:47, 1.42s/it] Loading 0: 57%|█████▋ | 207/363 [00:27<02:27, 1.06it/s] Loading 0: 58%|█████▊ | 210/363 [00:28<01:47, 1.42it/s] Loading 0: 59%|█████▊ | 213/363 [00:28<01:19, 1.88it/s] Loading 0: 60%|█████▉ | 216/363 [00:28<01:00, 2.41it/s] Loading 0: 60%|██████ | 219/363 [00:28<00:43, 3.28it/s] Loading 0: 61%|██████ | 222/363 [00:28<00:34, 4.13it/s] Loading 0: 62%|██████▏ | 226/363 [00:29<00:22, 6.07it/s] Loading 0: 63%|██████▎ | 230/363 [00:29<00:15, 8.35it/s] Loading 0: 64%|██████▍ | 233/363 [00:29<00:15, 8.47it/s] Loading 0: 65%|██████▌ | 236/363 [00:29<00:12, 9.87it/s] Loading 0: 66%|██████▌ | 239/363 [00:30<00:13, 9.31it/s] Loading 0: 67%|██████▋ | 244/363 [00:30<00:08, 13.72it/s] Loading 0: 68%|██████▊ | 248/363 [00:30<00:06, 17.29it/s] Loading 0: 69%|██████▉ | 251/363 [00:30<00:07, 14.15it/s] Loading 0: 70%|██████▉ | 254/363 [00:30<00:07, 15.00it/s] Loading 0: 71%|███████ | 257/363 [00:31<00:08, 12.23it/s] Loading 0: 72%|███████▏ | 262/363 [00:31<00:05, 17.15it/s] Loading 0: 73%|███████▎ | 266/363 [00:31<00:04, 20.31it/s] Loading 0: 74%|███████▍ | 269/363 [00:31<00:06, 15.01it/s] Loading 0: 75%|███████▍ | 272/363 [00:31<00:05, 15.75it/s] Loading 0: 76%|███████▌ | 275/363 [00:32<00:07, 12.49it/s] Loading 0: 77%|███████▋ | 280/363 [00:32<00:04, 17.42it/s] Loading 0: 78%|███████▊ | 284/363 [00:32<00:03, 20.45it/s] Loading 0: 79%|███████▉ | 287/363 [00:32<00:05, 14.70it/s] Loading 0: 80%|███████▉ | 290/363 [00:33<00:04, 15.13it/s] Loading 0: 81%|████████ | 293/363 [00:33<00:05, 12.27it/s] Loading 0: 82%|████████▏ | 298/363 [00:33<00:03, 17.01it/s] Loading 0: 83%|████████▎ | 302/363 [00:33<00:03, 19.89it/s] Loading 0: 84%|████████▍ | 305/363 [00:34<00:03, 14.67it/s] Loading 0: 85%|████████▍ | 308/363 [00:34<00:03, 15.36it/s] Loading 0: 86%|████████▌ | 311/363 [00:34<00:04, 12.17it/s] Loading 0: 87%|████████▋ | 316/363 [00:34<00:02, 16.72it/s] Loading 0: 88%|████████▊ | 320/363 [00:34<00:02, 19.46it/s] Loading 0: 89%|████████▉ | 323/363 [00:35<00:02, 14.55it/s] Loading 0: 90%|████████▉ | 326/363 [00:35<00:02, 15.48it/s] Loading 0: 90%|█████████ | 328/363 [00:35<00:02, 13.90it/s] Loading 0: 91%|█████████ | 330/363 [00:35<00:02, 13.58it/s] Loading 0: 92%|█████████▏| 334/363 [00:35<00:01, 18.23it/s] Loading 0: 93%|█████████▎| 338/363 [00:35<00:01, 22.55it/s] Loading 0: 94%|█████████▍| 341/363 [00:36<00:01, 15.83it/s] Loading 0: 95%|█████████▍| 344/363 [00:36<00:01, 16.45it/s] Loading 0: 96%|█████████▌| 347/363 [00:36<00:01, 12.82it/s] Loading 0: 97%|█████████▋| 352/363 [00:36<00:00, 18.33it/s] Loading 0: 98%|█████████▊| 356/363 [00:37<00:00, 22.05it/s] Loading 0: 99%|█████████▉| 360/363 [00:44<00:01, 1.66it/s] Loading 0: 100%|██████████| 363/363 [00:44<00:00, 2.14it/s]
Job rirv938-tune-mistral-gr-71092-v2-mkmlizer completed after 269.46s with status: succeeded
Stopping job with name rirv938-tune-mistral-gr-71092-v2-mkmlizer
Pipeline stage MKMLizer completed in 269.95s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.18s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service rirv938-tune-mistral-gr-71092-v2
Waiting for inference service rirv938-tune-mistral-gr-71092-v2 to be ready
Inference service rirv938-tune-mistral-gr-71092-v2 ready after 140.47620964050293s
Pipeline stage MKMLDeployer completed in 140.93s
run pipeline stage %s
Running pipeline stage StressChecker
HTTPConnectionPool(host='guanaco-submitter.guanaco-backend.k2.chaiverse.com', port=80): Read timed out. (read timeout=20)
Received unhealthy response to inference request!
Received healthy response to inference request in 2.408067226409912s
Received healthy response to inference request in 1.8528411388397217s
Received healthy response to inference request in 1.966909408569336s
Received healthy response to inference request in 1.9870591163635254s
5 requests
1 failed requests
5th percentile: 1.8756547927856446
10th percentile: 1.8984684467315673
20th percentile: 1.944095754623413
30th percentile: 1.9709393501281738
40th percentile: 1.9789992332458497
50th percentile: 1.9870591163635254
60th percentile: 2.15546236038208
70th percentile: 2.3238656044006345
80th percentile: 5.948737525939944
90th percentile: 13.030078125000003
95th percentile: 16.570748424530027
99th percentile: 19.403284664154054
mean time: 5.665259122848511
%s, retrying in %s seconds...
Received healthy response to inference request in 2.066216468811035s
Received healthy response to inference request in 2.0424861907958984s
Received healthy response to inference request in 1.9180657863616943s
Received healthy response to inference request in 1.9139318466186523s
Received healthy response to inference request in 2.2587413787841797s
5 requests
0 failed requests
5th percentile: 1.9147586345672607
10th percentile: 1.915585422515869
20th percentile: 1.917238998413086
30th percentile: 1.9429498672485352
40th percentile: 1.9927180290222168
50th percentile: 2.0424861907958984
60th percentile: 2.0519783020019533
70th percentile: 2.0614704132080077
80th percentile: 2.104721450805664
90th percentile: 2.181731414794922
95th percentile: 2.220236396789551
99th percentile: 2.251040382385254
mean time: 2.039888334274292
Pipeline stage StressChecker completed in 41.00s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.95s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 0.69s
Shutdown handler de-registered
rirv938-tune-mistral-gr_71092_v2 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.15s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.12s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service rirv938-tune-mistral-gr-71092-v2-profiler
Waiting for inference service rirv938-tune-mistral-gr-71092-v2-profiler to be ready
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 3095.16s
Shutdown handler de-registered
rirv938-tune-mistral-gr_71092_v2 status is now inactive due to auto deactivation removed underperforming models
rirv938-tune-mistral-gr_71092_v2 status is now torndown due to DeploymentManager action