submission_id: rica40325-feedback-dpo-10_v1
developer_uid: rica40325
best_of: 16
celo_rating: 1246.24
display_name: rica40325-feedback-dpo-10_v1
family_friendly_score: 0.0
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': False}
generation_params: {'temperature': 1.0, 'top_p': 1.0, 'min_p': 0.0, 'top_k': 40, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n'], 'max_input_tokens': 512, 'best_of': 16, 'max_output_tokens': 64}
gpu_counts: {'NVIDIA RTX A5000': 1}
is_internal_developer: False
language_model: rica40325/feedback_dpo_10
latencies: [{'batch_size': 1, 'throughput': 0.9080466297942528, 'latency_mean': 1.1011741650104523, 'latency_p50': 1.0970619916915894, 'latency_p90': 1.2331916093826294}, {'batch_size': 4, 'throughput': 1.8020918944441071, 'latency_mean': 2.2083158576488495, 'latency_p50': 2.2249221801757812, 'latency_p90': 2.497475790977478}, {'batch_size': 5, 'throughput': 1.8920687394237459, 'latency_mean': 2.6320382416248322, 'latency_p50': 2.6272183656692505, 'latency_p90': 2.9436498880386353}, {'batch_size': 8, 'throughput': 1.995185325523204, 'latency_mean': 3.9849071562290193, 'latency_p50': 3.995392680168152, 'latency_p90': 4.425540804862976}, {'batch_size': 10, 'throughput': 2.03370185454978, 'latency_mean': 4.871041784286499, 'latency_p50': 4.8917152881622314, 'latency_p90': 5.527490234375}, {'batch_size': 12, 'throughput': 2.044101515141591, 'latency_mean': 5.799888514280319, 'latency_p50': 5.8356733322143555, 'latency_p90': 6.694674730300903}, {'batch_size': 15, 'throughput': 2.044176073207742, 'latency_mean': 7.201027916669846, 'latency_p50': 7.320666313171387, 'latency_p90': 8.040846729278565}]
max_input_tokens: 512
max_output_tokens: 64
model_architecture: LlamaForCausalLM
model_group: rica40325/feedback_dpo_1
model_name: rica40325-feedback-dpo-10_v1
model_num_parameters: 8030261248.0
model_repo: rica40325/feedback_dpo_10
model_size: 8B
num_battles: 10823
num_wins: 5486
ranking_group: single
status: torndown
submission_type: basic
throughput_3p7s: 1.99
timestamp: 2024-09-11T05:35:28+00:00
us_pacific_date: 2024-09-10
win_ratio: 0.5068834888663032
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name rica40325-feedback-dpo-10-v1-mkmlizer
Waiting for job on rica40325-feedback-dpo-10-v1-mkmlizer to finish
rica40325-feedback-dpo-10-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
rica40325-feedback-dpo-10-v1-mkmlizer: ║ _____ __ __ ║
rica40325-feedback-dpo-10-v1-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
rica40325-feedback-dpo-10-v1-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
rica40325-feedback-dpo-10-v1-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
rica40325-feedback-dpo-10-v1-mkmlizer: ║ /___/ ║
rica40325-feedback-dpo-10-v1-mkmlizer: ║ ║
rica40325-feedback-dpo-10-v1-mkmlizer: ║ Version: 0.10.1 ║
rica40325-feedback-dpo-10-v1-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
rica40325-feedback-dpo-10-v1-mkmlizer: ║ https://mk1.ai ║
rica40325-feedback-dpo-10-v1-mkmlizer: ║ ║
rica40325-feedback-dpo-10-v1-mkmlizer: ║ The license key for the current software has been verified as ║
rica40325-feedback-dpo-10-v1-mkmlizer: ║ belonging to: ║
rica40325-feedback-dpo-10-v1-mkmlizer: ║ ║
rica40325-feedback-dpo-10-v1-mkmlizer: ║ Chai Research Corp. ║
rica40325-feedback-dpo-10-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
rica40325-feedback-dpo-10-v1-mkmlizer: ║ Expiration: 2024-10-15 23:59:59 ║
rica40325-feedback-dpo-10-v1-mkmlizer: ║ ║
rica40325-feedback-dpo-10-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
rica40325-feedback-dpo-10-v1-mkmlizer: Downloaded to shared memory in 65.283s
rica40325-feedback-dpo-10-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmpy3i6v6sc, device:0
rica40325-feedback-dpo-10-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
rica40325-feedback-dpo-10-v1-mkmlizer: quantized model in 28.859s
rica40325-feedback-dpo-10-v1-mkmlizer: Processed model rica40325/feedback_dpo_10 in 94.142s
rica40325-feedback-dpo-10-v1-mkmlizer: creating bucket guanaco-mkml-models
rica40325-feedback-dpo-10-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
rica40325-feedback-dpo-10-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/rica40325-feedback-dpo-10-v1
rica40325-feedback-dpo-10-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/rica40325-feedback-dpo-10-v1/tokenizer_config.json
rica40325-feedback-dpo-10-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/rica40325-feedback-dpo-10-v1/special_tokens_map.json
rica40325-feedback-dpo-10-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/rica40325-feedback-dpo-10-v1/config.json
rica40325-feedback-dpo-10-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/rica40325-feedback-dpo-10-v1/tokenizer.json
rica40325-feedback-dpo-10-v1-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/rica40325-feedback-dpo-10-v1/flywheel_model.0.safetensors
rica40325-feedback-dpo-10-v1-mkmlizer: Loading 0: 0%| | 0/291 [00:00<?, ?it/s] Loading 0: 2%|▏ | 5/291 [00:00<00:10, 26.31it/s] Loading 0: 4%|▍ | 12/291 [00:00<00:07, 36.63it/s] Loading 0: 5%|▌ | 16/291 [00:00<00:08, 33.14it/s] Loading 0: 7%|▋ | 21/291 [00:00<00:07, 35.00it/s] Loading 0: 9%|▊ | 25/291 [00:00<00:08, 32.97it/s] Loading 0: 11%|█ | 31/291 [00:00<00:06, 39.90it/s] Loading 0: 12%|█▏ | 36/291 [00:01<00:10, 23.28it/s] Loading 0: 14%|█▍ | 41/291 [00:01<00:10, 24.98it/s] Loading 0: 16%|█▋ | 48/291 [00:01<00:07, 32.24it/s] Loading 0: 18%|█▊ | 53/291 [00:01<00:07, 33.09it/s] Loading 0: 20%|█▉ | 57/291 [00:01<00:06, 34.41it/s] Loading 0: 21%|██ | 61/291 [00:01<00:06, 32.97it/s] Loading 0: 23%|██▎ | 66/291 [00:02<00:06, 34.48it/s] Loading 0: 24%|██▍ | 70/291 [00:02<00:06, 32.79it/s] Loading 0: 25%|██▌ | 74/291 [00:02<00:06, 33.14it/s] Loading 0: 27%|██▋ | 78/291 [00:02<00:06, 33.85it/s] Loading 0: 28%|██▊ | 82/291 [00:02<00:08, 24.06it/s] Loading 0: 29%|██▉ | 85/291 [00:02<00:08, 24.79it/s] Loading 0: 31%|███ | 90/291 [00:02<00:07, 28.42it/s] Loading 0: 32%|███▏ | 94/291 [00:03<00:06, 29.12it/s] Loading 0: 34%|███▍ | 99/291 [00:03<00:05, 32.26it/s] Loading 0: 35%|███▌ | 103/291 [00:03<00:06, 31.01it/s] Loading 0: 37%|███▋ | 108/291 [00:03<00:05, 34.00it/s] Loading 0: 38%|███▊ | 112/291 [00:03<00:05, 32.79it/s] Loading 0: 40%|███▉ | 116/291 [00:03<00:05, 32.30it/s] Loading 0: 42%|████▏ | 122/291 [00:03<00:04, 36.30it/s] Loading 0: 44%|████▎ | 127/291 [00:04<00:04, 33.82it/s] Loading 0: 46%|████▌ | 133/291 [00:04<00:05, 28.93it/s] Loading 0: 47%|████▋ | 137/291 [00:04<00:05, 28.36it/s] Loading 0: 48%|████▊ | 140/291 [00:04<00:05, 25.28it/s] Loading 0: 51%|█████ | 147/291 [00:04<00:04, 32.70it/s] Loading 0: 52%|█████▏ | 151/291 [00:04<00:04, 31.68it/s] Loading 0: 54%|█████▎ | 156/291 [00:04<00:03, 34.64it/s] Loading 0: 55%|█████▍ | 160/291 [00:05<00:03, 32.78it/s] Loading 0: 57%|█████▋ | 165/291 [00:05<00:03, 33.63it/s] Loading 0: 58%|█████▊ | 169/291 [00:05<00:03, 32.46it/s] Loading 0: 60%|█████▉ | 174/291 [00:05<00:03, 35.23it/s] Loading 0: 61%|██████ | 178/291 [00:05<00:03, 31.84it/s] Loading 0: 63%|██████▎ | 184/291 [00:05<00:02, 37.68it/s] Loading 0: 65%|██████▍ | 188/291 [00:06<00:03, 26.33it/s] Loading 0: 66%|██████▌ | 192/291 [00:06<00:03, 26.43it/s] Loading 0: 67%|██████▋ | 196/291 [00:06<00:03, 27.28it/s] Loading 0: 69%|██████▉ | 201/291 [00:06<00:02, 31.30it/s] Loading 0: 70%|███████ | 205/291 [00:06<00:02, 31.10it/s] Loading 0: 72%|███████▏ | 210/291 [00:06<00:02, 34.00it/s] Loading 0: 74%|███████▎ | 214/291 [00:06<00:02, 33.03it/s] Loading 0: 75%|███████▌ | 219/291 [00:06<00:01, 36.16it/s] Loading 0: 77%|███████▋ | 223/291 [00:07<00:01, 34.21it/s] Loading 0: 78%|███████▊ | 227/291 [00:07<00:01, 32.87it/s] Loading 0: 79%|███████▉ | 231/291 [00:07<00:01, 32.40it/s] Loading 0: 81%|████████ | 235/291 [00:07<00:02, 24.71it/s] Loading 0: 82%|████████▏ | 239/291 [00:07<00:02, 24.78it/s] Loading 0: 85%|████████▍ | 246/291 [00:07<00:01, 32.88it/s] Loading 0: 86%|████████▌ | 250/291 [00:08<00:01, 31.51it/s] Loading 0: 88%|████████▊ | 255/291 [00:08<00:01, 34.31it/s] Loading 0: 89%|████████▉ | 259/291 [00:08<00:00, 32.80it/s] Loading 0: 91%|█████████ | 264/291 [00:08<00:00, 35.06it/s] Loading 0: 92%|█████████▏| 268/291 [00:08<00:00, 32.78it/s] Loading 0: 94%|█████████▍| 273/291 [00:08<00:00, 34.53it/s] Loading 0: 95%|█████████▌| 277/291 [00:08<00:00, 33.28it/s] Loading 0: 97%|█████████▋| 281/291 [00:08<00:00, 34.12it/s] Loading 0: 98%|█████████▊| 286/291 [00:14<00:01, 2.61it/s] Loading 0: 99%|█████████▉| 289/291 [00:14<00:00, 3.25it/s]
Job rica40325-feedback-dpo-10-v1-mkmlizer completed after 116.0s with status: succeeded
Stopping job with name rica40325-feedback-dpo-10-v1-mkmlizer
Pipeline stage MKMLizer completed in 117.51s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.19s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service rica40325-feedback-dpo-10-v1
Waiting for inference service rica40325-feedback-dpo-10-v1 to be ready
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
Inference service rica40325-feedback-dpo-10-v1 ready after 181.048011302948s
Pipeline stage MKMLDeployer completed in 181.89s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 3.098379135131836s
Received healthy response to inference request in 1.790271520614624s
Received healthy response to inference request in 1.6015589237213135s
Received healthy response to inference request in 2.106792449951172s
Received healthy response to inference request in 3.180720090866089s
5 requests
0 failed requests
5th percentile: 1.6393014430999755
10th percentile: 1.6770439624786377
20th percentile: 1.752529001235962
30th percentile: 1.8535757064819336
40th percentile: 1.9801840782165527
50th percentile: 2.106792449951172
60th percentile: 2.5034271240234376
70th percentile: 2.900061798095703
80th percentile: 3.1148473262786864
90th percentile: 3.147783708572388
95th percentile: 3.1642518997192384
99th percentile: 3.177426452636719
mean time: 2.355544424057007
Pipeline stage StressChecker completed in 17.22s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 5.30s
Shutdown handler de-registered
rica40325-feedback-dpo-10_v1 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.14s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.11s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service rica40325-feedback-dpo-10-v1-profiler
Waiting for inference service rica40325-feedback-dpo-10-v1-profiler to be ready
Inference service rica40325-feedback-dpo-10-v1-profiler ready after 160.4634392261505s
Pipeline stage MKMLProfilerDeployer completed in 160.86s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/rica40325-feedback-d2a9c7c11f461e5176522e57826919efd-deplonffsp:/code/chaiverse_profiler_1726033454 --namespace tenant-chaiml-guanaco
kubectl exec -it rica40325-feedback-d2a9c7c11f461e5176522e57826919efd-deplonffsp --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1726033454 && python profiles.py profile --best_of_n 16 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 512 --output_tokens 64 --summary /code/chaiverse_profiler_1726033454/summary.json'
kubectl exec -it rica40325-feedback-d2a9c7c11f461e5176522e57826919efd-deplonffsp --namespace tenant-chaiml-guanaco -- bash -c 'cat /code/chaiverse_profiler_1726033454/summary.json'
Pipeline stage MKMLProfilerRunner completed in 837.60s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service rica40325-feedback-dpo-10-v1-profiler is running
Tearing down inference service rica40325-feedback-dpo-10-v1-profiler
Service rica40325-feedback-dpo-10-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 1.87s
Shutdown handler de-registered
rica40325-feedback-dpo-10_v1 status is now inactive due to auto deactivation removed underperforming models
rica40325-feedback-dpo-10_v1 status is now torndown due to DeploymentManager action