developer_uid: chai_backend_admin
submission_id: nousresearch-meta-llama_4941_v54
model_name: nousresearch-meta-llama_4941_v54
model_group: NousResearch/Meta-Llama-
status: inactive
timestamp: 2024-05-14T23:59:40+00:00
num_battles: 6450049
num_wins: 2711088
celo_rating: 1200.42
family_friendly_score: 0.5637804764994901
family_friendly_standard_error: 0.002341317825983726
submission_type: basic
model_repo: NousResearch/Meta-Llama-3-8B-Instruct
model_architecture: LlamaForCausalLM
reward_repo: ChaiML/reward_gpt2_medium_preference_24m_e2
model_num_parameters: 8030261248.0
best_of: 4
max_input_tokens: 1024
max_output_tokens: 300
display_name: nousresearch-meta-llama_4941_v54
ineligible_reason: max_output_tokens!=64
is_internal_developer: True
language_model: NousResearch/Meta-Llama-3-8B-Instruct
model_size: 8B
ranking_group: single
us_pacific_date: 2024-05-14
win_ratio: 0.42032052779754075
generation_params: {'temperature': 1.0, 'top_p': 1.0, 'min_p': 0.0, 'top_k': 40, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n'], 'max_input_tokens': 1024, 'best_of': 4, 'max_output_tokens': 300}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': False}
model_eval_status: success
reward_formatter: {'bot_template': '{bot_name}: {message}\n', 'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'response_template': '{bot_name}:', 'truncate_by_message': False, 'user_template': '{user_name}: {message}\n'}
Resubmit model
Running pipeline stage MKMLizer
Starting job with name nousresearch-meta-llama-4941-v54-mkmlizer
Waiting for job on nousresearch-meta-llama-4941-v54-mkmlizer to finish
nousresearch-meta-llama-4941-v54-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
nousresearch-meta-llama-4941-v54-mkmlizer: ║ _____ __ __ ║
nousresearch-meta-llama-4941-v54-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
nousresearch-meta-llama-4941-v54-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
nousresearch-meta-llama-4941-v54-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
nousresearch-meta-llama-4941-v54-mkmlizer: ║ /___/ ║
nousresearch-meta-llama-4941-v54-mkmlizer: ║ ║
nousresearch-meta-llama-4941-v54-mkmlizer: ║ Version: 0.8.14 ║
nousresearch-meta-llama-4941-v54-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
nousresearch-meta-llama-4941-v54-mkmlizer: ║ https://mk1.ai ║
nousresearch-meta-llama-4941-v54-mkmlizer: ║ ║
nousresearch-meta-llama-4941-v54-mkmlizer: ║ The license key for the current software has been verified as ║
nousresearch-meta-llama-4941-v54-mkmlizer: ║ belonging to: ║
nousresearch-meta-llama-4941-v54-mkmlizer: ║ ║
nousresearch-meta-llama-4941-v54-mkmlizer: ║ Chai Research Corp. ║
nousresearch-meta-llama-4941-v54-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
nousresearch-meta-llama-4941-v54-mkmlizer: ║ Expiration: 2024-07-15 23:59:59 ║
nousresearch-meta-llama-4941-v54-mkmlizer: ║ ║
nousresearch-meta-llama-4941-v54-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
nousresearch-meta-llama-4941-v54-mkmlizer: /opt/conda/lib/python3.10/site-packages/huggingface_hub/utils/_deprecation.py:131: FutureWarning: 'list_files_info' (from 'huggingface_hub.hf_api') is deprecated and will be removed from version '0.23'. Use `list_repo_tree` and `get_paths_info` instead.
nousresearch-meta-llama-4941-v54-mkmlizer: warnings.warn(warning_message, FutureWarning)
nousresearch-meta-llama-4941-v54-mkmlizer: Downloaded to shared memory in 22.348s
nousresearch-meta-llama-4941-v54-mkmlizer: quantizing model to /dev/shm/model_cache
nousresearch-meta-llama-4941-v54-mkmlizer: Saving flywheel model at /dev/shm/model_cache
nousresearch-meta-llama-4941-v54-mkmlizer: Loading 0: 0%| | 0/291 [00:00<?, ?it/s] Loading 0: 8%|▊ | 22/291 [00:00<00:01, 201.50it/s] Loading 0: 15%|█▌ | 44/291 [00:00<00:01, 210.00it/s] Loading 0: 23%|██▎ | 66/291 [00:00<00:01, 209.43it/s] Loading 0: 30%|██▉ | 87/291 [00:00<00:02, 92.22it/s] Loading 0: 35%|███▌ | 102/291 [00:00<00:01, 98.98it/s] Loading 0: 40%|███▉ | 116/291 [00:00<00:01, 106.96it/s] Loading 0: 45%|████▍ | 130/291 [00:01<00:01, 113.08it/s] Loading 0: 51%|█████ | 148/291 [00:01<00:01, 128.75it/s] Loading 0: 57%|█████▋ | 167/291 [00:01<00:00, 142.97it/s] Loading 0: 64%|██████▍ | 187/291 [00:01<00:01, 95.04it/s] Loading 0: 70%|██████▉ | 203/291 [00:01<00:00, 105.92it/s] Loading 0: 78%|███████▊ | 228/291 [00:01<00:00, 133.88it/s] Loading 0: 85%|████████▌ | 248/291 [00:01<00:00, 146.63it/s] Loading 0: 93%|█████████▎| 270/291 [00:02<00:00, 164.30it/s] Loading 0: 99%|█████████▉| 289/291 [00:06<00:00, 12.89it/s] Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
nousresearch-meta-llama-4941-v54-mkmlizer: quantized model in 17.471s
nousresearch-meta-llama-4941-v54-mkmlizer: Processed model NousResearch/Meta-Llama-3-8B-Instruct in 40.798s
nousresearch-meta-llama-4941-v54-mkmlizer: creating bucket guanaco-mkml-models
nousresearch-meta-llama-4941-v54-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
nousresearch-meta-llama-4941-v54-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/nousresearch-meta-llama-4941-v54
nousresearch-meta-llama-4941-v54-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/nousresearch-meta-llama-4941-v54/tokenizer_config.json
nousresearch-meta-llama-4941-v54-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/nousresearch-meta-llama-4941-v54/special_tokens_map.json
nousresearch-meta-llama-4941-v54-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/nousresearch-meta-llama-4941-v54/config.json
nousresearch-meta-llama-4941-v54-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/nousresearch-meta-llama-4941-v54/tokenizer.json
nousresearch-meta-llama-4941-v54-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/nousresearch-meta-llama-4941-v54/flywheel_model.0.safetensors
nousresearch-meta-llama-4941-v54-mkmlizer: loading reward model from ChaiML/reward_gpt2_medium_preference_24m_e2
nousresearch-meta-llama-4941-v54-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:913: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
nousresearch-meta-llama-4941-v54-mkmlizer: warnings.warn(
nousresearch-meta-llama-4941-v54-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:757: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
nousresearch-meta-llama-4941-v54-mkmlizer: warnings.warn(
nousresearch-meta-llama-4941-v54-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:468: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
nousresearch-meta-llama-4941-v54-mkmlizer: warnings.warn(
Job nousresearch-meta-llama-4941-v54-mkmlizer completed after 69.52s with status: succeeded
Stopping job with name nousresearch-meta-llama-4941-v54-mkmlizer
Pipeline stage MKMLizer completed in 71.10s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.43s
Running pipeline stage ISVCDeployer
Creating inference service nousresearch-meta-llama-4941-v54
Waiting for inference service nousresearch-meta-llama-4941-v54 to be ready
Inference service nousresearch-meta-llama-4941-v54 ready after 40.63352823257446s
Pipeline stage ISVCDeployer completed in 47.13s
Running pipeline stage StressChecker
HTTP Request: %s %s "%s %d %s"
Received healthy response to inference request in 2.4288899898529053s
HTTP Request: %s %s "%s %d %s"
Received healthy response to inference request in 1.6834449768066406s
HTTP Request: %s %s "%s %d %s"
Received healthy response to inference request in 1.802610158920288s
HTTP Request: %s %s "%s %d %s"
Received healthy response to inference request in 1.6268060207366943s
HTTP Request: %s %s "%s %d %s"
Received healthy response to inference request in 1.775407075881958s
5 requests
0 failed requests
5th percentile: 1.6381338119506836
10th percentile: 1.649461603164673
20th percentile: 1.6721171855926513
30th percentile: 1.7018373966217042
40th percentile: 1.738622236251831
50th percentile: 1.775407075881958
60th percentile: 1.78628830909729
70th percentile: 1.7971695423126222
80th percentile: 1.9278661251068117
90th percentile: 2.1783780574798586
95th percentile: 2.303634023666382
99th percentile: 2.4038387966156005
mean time: 1.8634316444396972
Pipeline stage StressChecker completed in 12.74s
Running pipeline stage DaemonicModelEvalScorer
Pipeline stage DaemonicModelEvalScorer completed in 0.15s
Running pipeline stage DaemonicSafetyScorer
Pipeline stage DaemonicSafetyScorer completed in 0.15s
Running M-Eval for topic stay_in_character
%s, retrying in %s seconds...
nousresearch-meta-llama_4941_v54 status is now deployed due to DeploymentManager action
M-Eval Dataset for topic stay_in_character is loaded
%s, retrying in %s seconds...
nousresearch-meta-llama_4941_v54 status is now inactive due to auto deactivation removed underperforming models
admin requested tearing down of nousresearch-meta-llama_4941_v54
Running pipeline stage ISVCDeleter
Checking if service nousresearch-meta-llama-4941-v54 is running
Tearing down inference service nousresearch-meta-llama-4941-v54
Toredown service nousresearch-meta-llama-4941-v54
Pipeline stage ISVCDeleter completed in 3.16s
Running pipeline stage MKMLModelDeleter
Cleaning model data from S3
Cleaning model data from model cache
Deleting key nousresearch-meta-llama-4941-v54/config.json from bucket guanaco-mkml-models
Deleting key nousresearch-meta-llama-4941-v54/flywheel_model.0.safetensors from bucket guanaco-mkml-models
Deleting key nousresearch-meta-llama-4941-v54/special_tokens_map.json from bucket guanaco-mkml-models
Deleting key nousresearch-meta-llama-4941-v54/tokenizer.json from bucket guanaco-mkml-models
Deleting key nousresearch-meta-llama-4941-v54/tokenizer_config.json from bucket guanaco-mkml-models
Cleaning model data from model cache
Deleting key nousresearch-meta-llama-4941-v54_reward/config.json from bucket guanaco-reward-models
Deleting key nousresearch-meta-llama-4941-v54_reward/merges.txt from bucket guanaco-reward-models
Deleting key nousresearch-meta-llama-4941-v54_reward/reward.tensors from bucket guanaco-reward-models
Deleting key nousresearch-meta-llama-4941-v54_reward/special_tokens_map.json from bucket guanaco-reward-models
Deleting key nousresearch-meta-llama-4941-v54_reward/tokenizer.json from bucket guanaco-reward-models
Deleting key nousresearch-meta-llama-4941-v54_reward/tokenizer_config.json from bucket guanaco-reward-models
Deleting key nousresearch-meta-llama-4941-v54_reward/vocab.json from bucket guanaco-reward-models
Pipeline stage MKMLModelDeleter completed in 1.91s
nousresearch-meta-llama_4941_v54 status is now torndown due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Pipeline stage %s skipped, reason=%s
Pipeline stage MKMLizer completed in 0.32s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 1.16s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service nousresearch-meta-llama-4941-v54
Waiting for inference service nousresearch-meta-llama-4941-v54 to be ready
Received signal 2, running shutdown handler
Received signal 2, running shutdown handler
Received signal 2, running shutdown handler
Received signal 2, running shutdown handler
Shutdown handler de-registered
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Pipeline stage %s skipped, reason=%s
Pipeline stage MKMLizer completed in 0.34s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage %s skipped, reason=%s
Pipeline stage MKMLTemplater completed in 0.34s
run pipeline stage %s
Running pipeline stage MKMLDeployer
%s, retrying in %s seconds...
%s, retrying in %s seconds...
clean up pipeline due to error=DeploymentError("No matches found for {'api_version': 'serving.kserve.io/v1beta1', 'kind': 'InferenceService'}")
Shutdown handler de-registered
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Pipeline stage %s skipped, reason=%s
Pipeline stage MKMLizer completed in 0.36s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 1.25s
run pipeline stage %s
Running pipeline stage MKMLDeployer
%s, retrying in %s seconds...
%s, retrying in %s seconds...
clean up pipeline due to error=DeploymentError("No matches found for {'api_version': 'serving.kserve.io/v1beta1', 'kind': 'InferenceService'}")
Shutdown handler de-registered
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Pipeline stage %s skipped, reason=%s
Pipeline stage MKMLizer completed in 0.36s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 1.21s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service nousresearch-meta-llama-4941-v54
Waiting for inference service nousresearch-meta-llama-4941-v54 to be ready
Inference service nousresearch-meta-llama-4941-v54 ready after 162.3812074661255s
Pipeline stage MKMLDeployer completed in 164.91s
run pipeline stage %s
Running pipeline stage StressChecker
Pipeline stage %s skipped, reason=%s
Pipeline stage StressChecker completed in 0.34s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 3.37s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 2.80s
Shutdown handler de-registered
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
%s, retrying in %s seconds...
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.26s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.23s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service nousresearch-meta-llama-4941-v54-profiler
Waiting for inference service nousresearch-meta-llama-4941-v54-profiler to be ready
Tearing down inference service nousresearch-meta-llama-4941-v54-profiler
%s, retrying in %s seconds...
Creating inference service nousresearch-meta-llama-4941-v54-profiler
Waiting for inference service nousresearch-meta-llama-4941-v54-profiler to be ready
Tearing down inference service nousresearch-meta-llama-4941-v54-profiler
%s, retrying in %s seconds...
Creating inference service nousresearch-meta-llama-4941-v54-profiler
Waiting for inference service nousresearch-meta-llama-4941-v54-profiler to be ready
Tearing down inference service nousresearch-meta-llama-4941-v54-profiler
clean up pipeline due to error=DeploymentError('Timeout to start the InferenceService nousresearch-meta-llama-4941-v54-profiler. The InferenceService is as following: {\'apiVersion\': \'serving.kserve.io/v1beta1\', \'kind\': \'InferenceService\', \'metadata\': {\'annotations\': {\'autoscaling.knative.dev/class\': \'hpa.autoscaling.knative.dev\', \'autoscaling.knative.dev/container-concurrency-target-percentage\': \'70\', \'autoscaling.knative.dev/initial-scale\': \'1\', \'autoscaling.knative.dev/max-scale-down-rate\': \'1.1\', \'autoscaling.knative.dev/max-scale-up-rate\': \'2\', \'autoscaling.knative.dev/metric\': \'mean_pod_latency_ms_v2\', \'autoscaling.knative.dev/panic-threshold-percentage\': \'650\', \'autoscaling.knative.dev/panic-window-percentage\': \'35\', \'autoscaling.knative.dev/scale-down-delay\': \'30s\', \'autoscaling.knative.dev/scale-to-zero-grace-period\': \'10m\', \'autoscaling.knative.dev/stable-window\': \'180s\', \'autoscaling.knative.dev/target\': \'3700\', \'autoscaling.knative.dev/target-burst-capacity\': \'-1\', \'autoscaling.knative.dev/tick-interval\': \'15s\', \'features.knative.dev/http-full-duplex\': \'Enabled\', \'networking.knative.dev/ingress-class\': \'istio.ingress.networking.knative.dev\'}, \'creationTimestamp\': \'2025-04-10T16:09:17Z\', \'finalizers\': [\'inferenceservice.finalizers\'], \'generation\': 1, \'labels\': {\'knative.coreweave.cloud/ingress\': \'istio.ingress.networking.knative.dev\', \'prometheus.k.chaiverse.com\': \'true\', \'qos.coreweave.cloud/latency\': \'low\'}, \'managedFields\': [{\'apiVersion\': \'serving.kserve.io/v1beta1\', \'fieldsType\': \'FieldsV1\', \'fieldsV1\': {\'f:metadata\': {\'f:annotations\': {\'.\': {}, \'f:autoscaling.knative.dev/class\': {}, \'f:autoscaling.knative.dev/container-concurrency-target-percentage\': {}, \'f:autoscaling.knative.dev/initial-scale\': {}, \'f:autoscaling.knative.dev/max-scale-down-rate\': {}, \'f:autoscaling.knative.dev/max-scale-up-rate\': {}, \'f:autoscaling.knative.dev/metric\': {}, \'f:autoscaling.knative.dev/panic-threshold-percentage\': {}, \'f:autoscaling.knative.dev/panic-window-percentage\': {}, \'f:autoscaling.knative.dev/scale-down-delay\': {}, \'f:autoscaling.knative.dev/scale-to-zero-grace-period\': {}, \'f:autoscaling.knative.dev/stable-window\': {}, \'f:autoscaling.knative.dev/target\': {}, \'f:autoscaling.knative.dev/target-burst-capacity\': {}, \'f:autoscaling.knative.dev/tick-interval\': {}, \'f:features.knative.dev/http-full-duplex\': {}, \'f:networking.knative.dev/ingress-class\': {}}, \'f:labels\': {\'.\': {}, \'f:knative.coreweave.cloud/ingress\': {}, \'f:prometheus.k.chaiverse.com\': {}, \'f:qos.coreweave.cloud/latency\': {}}}, \'f:spec\': {\'.\': {}, \'f:predictor\': {\'.\': {}, \'f:affinity\': {\'.\': {}, \'f:nodeAffinity\': {\'.\': {}, \'f:tion\': {}, \'f:requiredDuringSchedulingIgnoredDuringExecution\': {}}}, \'f:containerConcurrency\': {}, \'f:containers\': {}, \'f:imagePullSecrets\': {}, \'f:maxReplicas\': {}, \'f:minReplicas\': {}, \'f:timeout\': {}, \'f:volumes\': {}}}}, \'manager\': \'OpenAPI-Generator\', \'operation\': \'Update\', \'time\': \'2025-04-10T16:09:17Z\'}, {\'apiVersion\': \'serving.kserve.io/v1beta1\', \'fieldsType\': \'FieldsV1\', \'fieldsV1\': {\'f:metadata\': {\'f:finalizers\': {\'.\': {}, \'v:"inferenceservice.finalizers"\': {}}}}, \'manager\': \'manager\', \'operation\': \'Update\', \'time\': \'2025-04-10T16:09:17Z\'}, {\'apiVersion\': \'serving.kserve.io/v1beta1\', \'fieldsType\': \'FieldsV1\', \'fieldsV1\': {\'f:status\': {\'.\': {}, \'f:components\': {\'.\': {}, \'f:predictor\': {\'.\': {}, \'f:latestCreatedRevision\': {}}}, \'f:conditions\': {}, \'f:modelStatus\': {\'.\': {}, \'f:lastFailureInfo\': {\'.\': {}, \'f:exitCode\': {}, \'f:message\': {}, \'f:reason\': {}}, \'f:states\': {\'.\': {}, \'f:activeModelState\': {}, \'f:targetModelState\': {}}, \'f:transitionStatus\': {}}, \'f:observedGeneration\': {}}}, \'manager\': \'manager\', \'operation\': \'Update\', \'subresource\': \'status\', \'time\': \'2025-04-10T16:11:48Z\'}], \'name\': \'nousresearch-meta-llama-4941-v54-profiler\', \'namespace\': \'tenant-chaiml-guanaco\', \'resourceVersion\': \'341498608\', \'uid\': \'2bb133cc-5d8c-4c3e-9fb3-8427debe1d45\'}, \'spec\': {\'predictor\': {\'affinity\': {\'nodeAffinity\': {\'tion\': [{\'preference\': {\'matchExpressions\': [{\'key\': \'topology.kubernetes.io/region\', \'operator\': \'In\', \'values\': [\'ORD1\']}]}, \'weight\': 5}], \'requiredDuringSchedulingIgnoredDuringExecution\': {\'nodeSelectorTerms\': [{\'matchExpressions\': [{\'key\': \'gpu.nvidia.com/class\', \'operator\': \'In\', \'values\': [\'RTX_A5000\']}]}]}}}, \'containerConcurrency\': 0, \'containers\': [{\'env\': [{\'name\': \'MAX_TOKEN_INPUT\', \'value\': \'1024\'}, {\'name\': \'BEST_OF\', \'value\': \'4\'}, {\'name\': \'TEMPERATURE\', \'value\': \'1.0\'}, {\'name\': \'PRESENCE_PENALTY\', \'value\': \'0.0\'}, {\'name\': \'FREQUENCY_PENALTY\', \'value\': \'0.0\'}, {\'name\': \'TOP_P\', \'value\': \'1.0\'}, {\'name\': \'MIN_P\', \'value\': \'0.0\'}, {\'name\': \'TOP_K\', \'value\': \'40\'}, {\'name\': \'STOPPING_WORDS\', \'value\': \'["\\\\\\\\n"]\'}, {\'name\': \'MAX_TOKENS\', \'value\': \'300\'}, {\'name\': \'MAX_BATCH_SIZE\', \'value\': \'128\'}, {\'name\': \'MAX_CACHED_RESPONSES\', \'value\': \'-1\'}, {\'name\': \'URL_ROUTE\', \'value\': \'GPT-J-6B-lit-v2\'}, {\'name\': \'OBJ_ACCESS_KEY_ID\', \'value\': \'LETMTTRMLFFAMTBK\'}, {\'name\': \'OBJ_SECRET_ACCESS_KEY\', \'value\': \'VwwZaqefOOoaouNxUk03oUmK9pVEfruJhjBHPGdgycK\'}, {\'name\': \'OBJ_ENDPOINT\', \'value\': \'https://accel-object.ord1.coreweave.com\'}, {\'name\': \'TENSORIZER_URI\', \'value\': \'s3://guanaco-mkml-models/nousresearch-meta-llama-4941-v54\'}, {\'name\': \'RESERVE_MEMORY\', \'value\': \'2048\'}, {\'name\': \'DOWNLOAD_TO_LOCAL\', \'value\': \'/dev/shm/model_cache\'}, {\'name\': \'NUM_GPUS\', \'value\': \'1\'}, {\'name\': \'MK1_MKML_LICENSE_KEY\', \'valueFrom\': {\'secretKeyRef\': {\'key\': \'key\', \'name\': \'mkml-license-key\'}}}], \'image\': \'gcr.io/chai-959f8/chai-guanaco/mkml:v1.17.5\', \'imagePullPolicy\': \'IfNotPresent\', \'name\': \'kserve-container\', \'readinessProbe\': {\'exec\': {\'command\': [\'cat\', \'/tmp/ready\']}, \'failureThreshold\': 1, \'initialDelaySeconds\': 10, \'periodSeconds\': 10, \'successThreshold\': 1, \'timeoutSeconds\': 5}, \'resources\': {\'limits\': {\'cpu\': \'2\', \'memory\': \'12Gi\', \'nvidia.com/gpu\': \'1\'}, \'requests\': {\'cpu\': \'2\', \'memory\': \'12Gi\', \'nvidia.com/gpu\': \'1\'}}, \'volumeMounts\': [{\'mountPath\': \'/dev/shm\', \'name\': \'shared-memory-cache\'}]}], \'imagePullSecrets\': [{\'name\': \'docker-creds\'}], \'maxReplicas\': 1, \'minReplicas\': 1, \'timeout\': 60, \'volumes\': [{\'emptyDir\': {\'medium\': \'Memory\'}, \'name\': \'shared-memory-cache\'}]}}, \'status\': {\'components\': {\'predictor\': {\'latestCreatedRevision\': \'nousresearch-meta-llama-4941-v54-profiler-predictor-00001\'}}, \'conditions\': [{\'lastTransitionTime\': \'2025-04-10T16:11:48Z\', \'reason\': \'PredictorConfigurationReady not ready\', \'severity\': \'Info\', \'status\': \'False\', \'type\': \'LatestDeploymentReady\'}, {\'lastTransitionTime\': \'2025-04-10T16:11:48Z\', \'message\': \'Revision "nousresearch-meta-llama-4941-v54-profiler-predictor-00001" failed with message: Container failed with: �═╝\\n\\nINFO:datasets:PyTorch version 2.3.0 available.\\nInference config: InferenceConfig(server_num_workers=1, server_port=8080, max_batch_size=128, log_level=0, reserve_memory=2048, num_gpus=1, quantization_profile=s0, all_reduce_profile=None, kv_cache_profile=None, calibration_samples=-1, max_cached_responses=-1, sampling=SamplingParameters(temperature=1.0, top_p=1.0, min_p=0.0, top_k=40, max_input_tokens=1024, max_tokens=300, stop=[\\\'\\\\n\\\'], eos_token_ids=[], frequency_penalty=0.0, presence_penalty=0.0, reward_enabled=True, num_samples=4, reward_max_token_input=256, profile=False), url_route=GPT-J-6B-lit-v2, tensorizer_uri=s3://guanaco-mkml-models/nousresearch-meta-llama-4941-v54, s3_creds=S3Credentials(s3_access_key_id=\\\'LETMTTRMLFFAMTBK\\\', s3_secret_access_key=\\\'VwwZaqefOOoaouNxUk03oUmK9pVEfruJhjBHPGdgycK\\\', s3_endpoint=\\\'https://accel-object.ord1.coreweave.com\\\', s3_uncached_endpoint=\\\'https://object.ord1.coreweave.com\\\'), local_folder=/dev/shm/model_cache)\\nTraceback (most recent call last):\\n File "/code/mkml_inference_service/main.py", line 95, in <module>\\n model.load()\\n File "/code/mkml_inference_service/main.py", line 31, in load\\n self.engine = mkml_backend.AsyncInferenceService.from_folder(settings, settings.local_folder)\\n File "/code/mkml_inference_service/mkml_backend.py", line 56, in from_folder\\n return service._from_folder(settings, folder)\\n File "/code/mkml_inference_service/mkml_backend.py", line 83, in _from_folder\\n engine = mkml.ModelForInference.from_pretrained(\\n File "/opt/conda/lib/python3.10/site-packages/mk1/flywheel/inference.py", line 68, in from_pretrained\\n manifold = TensorManifold(model_path, tensor_parallel_size, batching_config, profile, s3_config)\\n File "/opt/conda/lib/python3.10/site-packages/mk1/flywheel/manifold.py", line 116, in __init__\\n self.validate_schema(model_path)\\n File "/opt/conda/lib/python3.10/site-packages/mk1/flywheel/manifold.py", line 175, in validate_schema\\n raise ValueError(f"Unexpected flywheel schema.")\\nValueError: Unexpected flywheel schema.\\n.\', \'reason\': \'RevisionFailed\', \'severity\': \'Info\', \'status\': \'False\', \'type\': \'PredictorConfigurationReady\'}, {\'lastTransitionTime\': \'2025-04-10T16:11:48Z\', \'message\': \'Configuration "nousresearch-meta-llama-4941-v54-profiler-predictor" does not have any ready Revision.\', \'reason\': \'RevisionMissing\', \'status\': \'False\', \'type\': \'PredictorReady\'}, {\'lastTransitionTime\': \'2025-04-10T16:11:48Z\', \'message\': \'Configuration "nousresearch-meta-llama-4941-v54-profiler-predictor" does not have any ready Revision.\', \'reason\': \'RevisionMissing\', \'severity\': \'Info\', \'status\': \'False\', \'type\': \'PredictorRouteReady\'}, {\'lastTransitionTime\': \'2025-04-10T16:11:48Z\', \'message\': \'Configuration "nousresearch-meta-llama-4941-v54-profiler-predictor" does not have any ready Revision.\', \'reason\': \'RevisionMissing\', \'status\': \'False\', \'type\': \'Ready\'}, {\'lastTransitionTime\': \'2025-04-10T16:11:48Z\', \'reason\': \'PredictorRouteReady not ready\', \'severity\': \'Info\', \'status\': \'False\', \'type\': \'RoutesReady\'}], \'modelStatus\': {\'lastFailureInfo\': {\'exitCode\': 1, \'message\': \'�═╝\\n\\nINFO:datasets:PyTorch version 2.3.0 available.\\nInference config: InferenceConfig(server_num_workers=1, server_port=8080, max_batch_size=128, log_level=0, reserve_memory=2048, num_gpus=1, quantization_profile=s0, all_reduce_profile=None, kv_cache_profile=None, calibration_samples=-1, max_cached_responses=-1, sampling=SamplingParameters(temperature=1.0, top_p=1.0, min_p=0.0, top_k=40, max_input_tokens=1024, max_tokens=300, stop=[\\\'\\\\n\\\'], eos_token_ids=[], frequency_penalty=0.0, presence_penalty=0.0, reward_enabled=True, num_samples=4, reward_max_token_input=256, profile=False), url_route=GPT-J-6B-lit-v2, tensorizer_uri=s3://guanaco-mkml-models/nousresearch-meta-llama-4941-v54, s3_creds=S3Credentials(s3_access_key_id=\\\'LETMTTRMLFFAMTBK\\\', s3_secret_access_key=\\\'VwwZaqefOOoaouNxUk03oUmK9pVEfruJhjBHPGdgycK\\\', s3_endpoint=\\\'https://accel-object.ord1.coreweave.com\\\', s3_uncached_endpoint=\\\'https://object.ord1.coreweave.com\\\'), local_folder=/dev/shm/model_cache)\\nTraceback (most recent call last):\\n File "/code/mkml_inference_service/main.py", line 95, in <module>\\n model.load()\\n File "/code/mkml_inference_service/main.py", line 31, in load\\n self.engine = mkml_backend.AsyncInferenceService.from_folder(settings, settings.local_folder)\\n File "/code/mkml_inference_service/mkml_backend.py", line 56, in from_folder\\n return service._from_folder(settings, folder)\\n File "/code/mkml_inference_service/mkml_backend.py", line 83, in _from_folder\\n engine = mkml.ModelForInference.from_pretrained(\\n File "/opt/conda/lib/python3.10/site-packages/mk1/flywheel/inference.py", line 68, in from_pretrained\\n manifold = TensorManifold(model_path, tensor_parallel_size, batching_config, profile, s3_config)\\n File "/opt/conda/lib/python3.10/site-packages/mk1/flywheel/manifold.py", line 116, in __init__\\n self.validate_schema(model_path)\\n File "/opt/conda/lib/python3.10/site-packages/mk1/flywheel/manifold.py", line 175, in validate_schema\\n raise ValueError(f"Unexpected flywheel schema.")\\nValueError: Unexpected flywheel schema.\\n\', \'reason\': \'ModelLoadFailed\'}, \'states\': {\'activeModelState\': \'\', \'targetModelState\': \'FailedToLoad\'}, \'transitionStatus\': \'BlockedByFailedLoad\'}, \'observedGeneration\': 1}}')
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.29s
Shutdown handler de-registered
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.30s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.24s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service nousresearch-meta-llama-4941-v54-profiler
Waiting for inference service nousresearch-meta-llama-4941-v54-profiler to be ready
Tearing down inference service nousresearch-meta-llama-4941-v54-profiler
%s, retrying in %s seconds...
Creating inference service nousresearch-meta-llama-4941-v54-profiler
Waiting for inference service nousresearch-meta-llama-4941-v54-profiler to be ready
Tearing down inference service nousresearch-meta-llama-4941-v54-profiler
%s, retrying in %s seconds...
Creating inference service nousresearch-meta-llama-4941-v54-profiler
Waiting for inference service nousresearch-meta-llama-4941-v54-profiler to be ready
Tearing down inference service nousresearch-meta-llama-4941-v54-profiler
clean up pipeline due to error=DeploymentError('Timeout to start the InferenceService nousresearch-meta-llama-4941-v54-profiler. The InferenceService is as following: {\'apiVersion\': \'serving.kserve.io/v1beta1\', \'kind\': \'InferenceService\', \'metadata\': {\'annotations\': {\'autoscaling.knative.dev/class\': \'hpa.autoscaling.knative.dev\', \'autoscaling.knative.dev/container-concurrency-target-percentage\': \'70\', \'autoscaling.knative.dev/initial-scale\': \'1\', \'autoscaling.knative.dev/max-scale-down-rate\': \'1.1\', \'autoscaling.knative.dev/max-scale-up-rate\': \'2\', \'autoscaling.knative.dev/metric\': \'mean_pod_latency_ms_v2\', \'autoscaling.knative.dev/panic-threshold-percentage\': \'650\', \'autoscaling.knative.dev/panic-window-percentage\': \'35\', \'autoscaling.knative.dev/scale-down-delay\': \'30s\', \'autoscaling.knative.dev/scale-to-zero-grace-period\': \'10m\', \'autoscaling.knative.dev/stable-window\': \'180s\', \'autoscaling.knative.dev/target\': \'3700\', \'autoscaling.knative.dev/target-burst-capacity\': \'-1\', \'autoscaling.knative.dev/tick-interval\': \'15s\', \'features.knative.dev/http-full-duplex\': \'Enabled\', \'networking.knative.dev/ingress-class\': \'istio.ingress.networking.knative.dev\'}, \'creationTimestamp\': \'2025-04-10T16:40:19Z\', \'finalizers\': [\'inferenceservice.finalizers\'], \'generation\': 1, \'labels\': {\'knative.coreweave.cloud/ingress\': \'istio.ingress.networking.knative.dev\', \'prometheus.k.chaiverse.com\': \'true\', \'qos.coreweave.cloud/latency\': \'low\'}, \'managedFields\': [{\'apiVersion\': \'serving.kserve.io/v1beta1\', \'fieldsType\': \'FieldsV1\', \'fieldsV1\': {\'f:metadata\': {\'f:annotations\': {\'.\': {}, \'f:autoscaling.knative.dev/class\': {}, \'f:autoscaling.knative.dev/container-concurrency-target-percentage\': {}, \'f:autoscaling.knative.dev/initial-scale\': {}, \'f:autoscaling.knative.dev/max-scale-down-rate\': {}, \'f:autoscaling.knative.dev/max-scale-up-rate\': {}, \'f:autoscaling.knative.dev/metric\': {}, \'f:autoscaling.knative.dev/panic-threshold-percentage\': {}, \'f:autoscaling.knative.dev/panic-window-percentage\': {}, \'f:autoscaling.knative.dev/scale-down-delay\': {}, \'f:autoscaling.knative.dev/scale-to-zero-grace-period\': {}, \'f:autoscaling.knative.dev/stable-window\': {}, \'f:autoscaling.knative.dev/target\': {}, \'f:autoscaling.knative.dev/target-burst-capacity\': {}, \'f:autoscaling.knative.dev/tick-interval\': {}, \'f:features.knative.dev/http-full-duplex\': {}, \'f:networking.knative.dev/ingress-class\': {}}, \'f:labels\': {\'.\': {}, \'f:knative.coreweave.cloud/ingress\': {}, \'f:prometheus.k.chaiverse.com\': {}, \'f:qos.coreweave.cloud/latency\': {}}}, \'f:spec\': {\'.\': {}, \'f:predictor\': {\'.\': {}, \'f:affinity\': {\'.\': {}, \'f:nodeAffinity\': {\'.\': {}, \'f:tion\': {}, \'f:requiredDuringSchedulingIgnoredDuringExecution\': {}}}, \'f:containerConcurrency\': {}, \'f:containers\': {}, \'f:imagePullSecrets\': {}, \'f:maxReplicas\': {}, \'f:minReplicas\': {}, \'f:timeout\': {}, \'f:volumes\': {}}}}, \'manager\': \'OpenAPI-Generator\', \'operation\': \'Update\', \'time\': \'2025-04-10T16:40:19Z\'}, {\'apiVersion\': \'serving.kserve.io/v1beta1\', \'fieldsType\': \'FieldsV1\', \'fieldsV1\': {\'f:metadata\': {\'f:finalizers\': {\'.\': {}, \'v:"inferenceservice.finalizers"\': {}}}}, \'manager\': \'manager\', \'operation\': \'Update\', \'time\': \'2025-04-10T16:40:19Z\'}, {\'apiVersion\': \'serving.kserve.io/v1beta1\', \'fieldsType\': \'FieldsV1\', \'fieldsV1\': {\'f:status\': {\'.\': {}, \'f:components\': {\'.\': {}, \'f:predictor\': {\'.\': {}, \'f:latestCreatedRevision\': {}}}, \'f:conditions\': {}, \'f:modelStatus\': {\'.\': {}, \'f:lastFailureInfo\': {\'.\': {}, \'f:exitCode\': {}, \'f:message\': {}, \'f:reason\': {}}, \'f:states\': {\'.\': {}, \'f:activeModelState\': {}, \'f:targetModelState\': {}}, \'f:transitionStatus\': {}}, \'f:observedGeneration\': {}}}, \'manager\': \'manager\', \'operation\': \'Update\', \'subresource\': \'status\', \'time\': \'2025-04-10T16:50:21Z\'}], \'name\': \'nousresearch-meta-llama-4941-v54-profiler\', \'namespace\': \'tenant-chaiml-guanaco\', \'resourceVersion\': \'341532160\', \'uid\': \'d928f903-aa0b-4a95-a146-946233c5433d\'}, \'spec\': {\'predictor\': {\'affinity\': {\'nodeAffinity\': {\'tion\': [{\'preference\': {\'matchExpressions\': [{\'key\': \'topology.kubernetes.io/region\', \'operator\': \'In\', \'values\': [\'ORD1\']}]}, \'weight\': 5}], \'requiredDuringSchedulingIgnoredDuringExecution\': {\'nodeSelectorTerms\': [{\'matchExpressions\': [{\'key\': \'gpu.nvidia.com/class\', \'operator\': \'In\', \'values\': [\'RTX_A5000\']}]}]}}}, \'containerConcurrency\': 0, \'containers\': [{\'env\': [{\'name\': \'MAX_TOKEN_INPUT\', \'value\': \'1024\'}, {\'name\': \'BEST_OF\', \'value\': \'4\'}, {\'name\': \'TEMPERATURE\', \'value\': \'1.0\'}, {\'name\': \'PRESENCE_PENALTY\', \'value\': \'0.0\'}, {\'name\': \'FREQUENCY_PENALTY\', \'value\': \'0.0\'}, {\'name\': \'TOP_P\', \'value\': \'1.0\'}, {\'name\': \'MIN_P\', \'value\': \'0.0\'}, {\'name\': \'TOP_K\', \'value\': \'40\'}, {\'name\': \'STOPPING_WORDS\', \'value\': \'["\\\\\\\\n"]\'}, {\'name\': \'MAX_TOKENS\', \'value\': \'300\'}, {\'name\': \'MAX_BATCH_SIZE\', \'value\': \'128\'}, {\'name\': \'MAX_CACHED_RESPONSES\', \'value\': \'-1\'}, {\'name\': \'URL_ROUTE\', \'value\': \'GPT-J-6B-lit-v2\'}, {\'name\': \'OBJ_ACCESS_KEY_ID\', \'value\': \'LETMTTRMLFFAMTBK\'}, {\'name\': \'OBJ_SECRET_ACCESS_KEY\', \'value\': \'VwwZaqefOOoaouNxUk03oUmK9pVEfruJhjBHPGdgycK\'}, {\'name\': \'OBJ_ENDPOINT\', \'value\': \'https://accel-object.ord1.coreweave.com\'}, {\'name\': \'TENSORIZER_URI\', \'value\': \'s3://guanaco-mkml-models/nousresearch-meta-llama-4941-v54\'}, {\'name\': \'RESERVE_MEMORY\', \'value\': \'2048\'}, {\'name\': \'DOWNLOAD_TO_LOCAL\', \'value\': \'/dev/shm/model_cache\'}, {\'name\': \'NUM_GPUS\', \'value\': \'1\'}, {\'name\': \'MK1_MKML_LICENSE_KEY\', \'valueFrom\': {\'secretKeyRef\': {\'key\': \'key\', \'name\': \'mkml-license-key\'}}}], \'image\': \'gcr.io/chai-959f8/chai-guanaco/mkml:v1.17.5\', \'imagePullPolicy\': \'IfNotPresent\', \'name\': \'kserve-container\', \'readinessProbe\': {\'exec\': {\'command\': [\'cat\', \'/tmp/ready\']}, \'failureThreshold\': 1, \'initialDelaySeconds\': 10, \'periodSeconds\': 10, \'successThreshold\': 1, \'timeoutSeconds\': 5}, \'resources\': {\'limits\': {\'cpu\': \'2\', \'memory\': \'12Gi\', \'nvidia.com/gpu\': \'1\'}, \'requests\': {\'cpu\': \'2\', \'memory\': \'12Gi\', \'nvidia.com/gpu\': \'1\'}}, \'volumeMounts\': [{\'mountPath\': \'/dev/shm\', \'name\': \'shared-memory-cache\'}]}], \'imagePullSecrets\': [{\'name\': \'docker-creds\'}], \'maxReplicas\': 1, \'minReplicas\': 1, \'timeout\': 60, \'volumes\': [{\'emptyDir\': {\'medium\': \'Memory\'}, \'name\': \'shared-memory-cache\'}]}}, \'status\': {\'components\': {\'predictor\': {\'latestCreatedRevision\': \'nousresearch-meta-llama-4941-v54-profiler-predictor-00001\'}}, \'conditions\': [{\'lastTransitionTime\': \'2025-04-10T16:50:21Z\', \'reason\': \'PredictorConfigurationReady not ready\', \'severity\': \'Info\', \'status\': \'False\', \'type\': \'LatestDeploymentReady\'}, {\'lastTransitionTime\': \'2025-04-10T16:50:21Z\', \'message\': \'Revision "nousresearch-meta-llama-4941-v54-profiler-predictor-00001" failed with message: Container failed with: �═╝\\n\\nINFO:datasets:PyTorch version 2.3.0 available.\\nInference config: InferenceConfig(server_num_workers=1, server_port=8080, max_batch_size=128, log_level=0, reserve_memory=2048, num_gpus=1, quantization_profile=s0, all_reduce_profile=None, kv_cache_profile=None, calibration_samples=-1, max_cached_responses=-1, sampling=SamplingParameters(temperature=1.0, top_p=1.0, min_p=0.0, top_k=40, max_input_tokens=1024, max_tokens=300, stop=[\\\'\\\\n\\\'], eos_token_ids=[], frequency_penalty=0.0, presence_penalty=0.0, reward_enabled=True, num_samples=4, reward_max_token_input=256, profile=False), url_route=GPT-J-6B-lit-v2, tensorizer_uri=s3://guanaco-mkml-models/nousresearch-meta-llama-4941-v54, s3_creds=S3Credentials(s3_access_key_id=\\\'LETMTTRMLFFAMTBK\\\', s3_secret_access_key=\\\'VwwZaqefOOoaouNxUk03oUmK9pVEfruJhjBHPGdgycK\\\', s3_endpoint=\\\'https://accel-object.ord1.coreweave.com\\\', s3_uncached_endpoint=\\\'https://object.ord1.coreweave.com\\\'), local_folder=/dev/shm/model_cache)\\nTraceback (most recent call last):\\n File "/code/mkml_inference_service/main.py", line 95, in <module>\\n model.load()\\n File "/code/mkml_inference_service/main.py", line 31, in load\\n self.engine = mkml_backend.AsyncInferenceService.from_folder(settings, settings.local_folder)\\n File "/code/mkml_inference_service/mkml_backend.py", line 56, in from_folder\\n return service._from_folder(settings, folder)\\n File "/code/mkml_inference_service/mkml_backend.py", line 83, in _from_folder\\n engine = mkml.ModelForInference.from_pretrained(\\n File "/opt/conda/lib/python3.10/site-packages/mk1/flywheel/inference.py", line 68, in from_pretrained\\n manifold = TensorManifold(model_path, tensor_parallel_size, batching_config, profile, s3_config)\\n File "/opt/conda/lib/python3.10/site-packages/mk1/flywheel/manifold.py", line 116, in __init__\\n self.validate_schema(model_path)\\n File "/opt/conda/lib/python3.10/site-packages/mk1/flywheel/manifold.py", line 175, in validate_schema\\n raise ValueError(f"Unexpected flywheel schema.")\\nValueError: Unexpected flywheel schema.\\n.\', \'reason\': \'RevisionFailed\', \'severity\': \'Info\', \'status\': \'False\', \'type\': \'PredictorConfigurationReady\'}, {\'lastTransitionTime\': \'2025-04-10T16:50:21Z\', \'message\': \'Configuration "nousresearch-meta-llama-4941-v54-profiler-predictor" does not have any ready Revision.\', \'reason\': \'RevisionMissing\', \'status\': \'False\', \'type\': \'PredictorReady\'}, {\'lastTransitionTime\': \'2025-04-10T16:50:21Z\', \'message\': \'Configuration "nousresearch-meta-llama-4941-v54-profiler-predictor" does not have any ready Revision.\', \'reason\': \'RevisionMissing\', \'severity\': \'Info\', \'status\': \'False\', \'type\': \'PredictorRouteReady\'}, {\'lastTransitionTime\': \'2025-04-10T16:50:21Z\', \'message\': \'Configuration "nousresearch-meta-llama-4941-v54-profiler-predictor" does not have any ready Revision.\', \'reason\': \'RevisionMissing\', \'status\': \'False\', \'type\': \'Ready\'}, {\'lastTransitionTime\': \'2025-04-10T16:50:21Z\', \'reason\': \'PredictorRouteReady not ready\', \'severity\': \'Info\', \'status\': \'False\', \'type\': \'RoutesReady\'}], \'modelStatus\': {\'lastFailureInfo\': {\'exitCode\': 1, \'message\': \'�═╝\\n\\nINFO:datasets:PyTorch version 2.3.0 available.\\nInference config: InferenceConfig(server_num_workers=1, server_port=8080, max_batch_size=128, log_level=0, reserve_memory=2048, num_gpus=1, quantization_profile=s0, all_reduce_profile=None, kv_cache_profile=None, calibration_samples=-1, max_cached_responses=-1, sampling=SamplingParameters(temperature=1.0, top_p=1.0, min_p=0.0, top_k=40, max_input_tokens=1024, max_tokens=300, stop=[\\\'\\\\n\\\'], eos_token_ids=[], frequency_penalty=0.0, presence_penalty=0.0, reward_enabled=True, num_samples=4, reward_max_token_input=256, profile=False), url_route=GPT-J-6B-lit-v2, tensorizer_uri=s3://guanaco-mkml-models/nousresearch-meta-llama-4941-v54, s3_creds=S3Credentials(s3_access_key_id=\\\'LETMTTRMLFFAMTBK\\\', s3_secret_access_key=\\\'VwwZaqefOOoaouNxUk03oUmK9pVEfruJhjBHPGdgycK\\\', s3_endpoint=\\\'https://accel-object.ord1.coreweave.com\\\', s3_uncached_endpoint=\\\'https://object.ord1.coreweave.com\\\'), local_folder=/dev/shm/model_cache)\\nTraceback (most recent call last):\\n File "/code/mkml_inference_service/main.py", line 95, in <module>\\n model.load()\\n File "/code/mkml_inference_service/main.py", line 31, in load\\n self.engine = mkml_backend.AsyncInferenceService.from_folder(settings, settings.local_folder)\\n File "/code/mkml_inference_service/mkml_backend.py", line 56, in from_folder\\n return service._from_folder(settings, folder)\\n File "/code/mkml_inference_service/mkml_backend.py", line 83, in _from_folder\\n engine = mkml.ModelForInference.from_pretrained(\\n File "/opt/conda/lib/python3.10/site-packages/mk1/flywheel/inference.py", line 68, in from_pretrained\\n manifold = TensorManifold(model_path, tensor_parallel_size, batching_config, profile, s3_config)\\n File "/opt/conda/lib/python3.10/site-packages/mk1/flywheel/manifold.py", line 116, in __init__\\n self.validate_schema(model_path)\\n File "/opt/conda/lib/python3.10/site-packages/mk1/flywheel/manifold.py", line 175, in validate_schema\\n raise ValueError(f"Unexpected flywheel schema.")\\nValueError: Unexpected flywheel schema.\\n\', \'reason\': \'ModelLoadFailed\'}, \'states\': {\'activeModelState\': \'\', \'targetModelState\': \'FailedToLoad\'}, \'transitionStatus\': \'BlockedByFailedLoad\'}, \'observedGeneration\': 1}}')
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.30s
Shutdown handler de-registered