Running pipeline stage MKMLizer
Starting job with name mistralai-mixtral-8x7b-3473-v37-mkmlizer
Waiting for job on mistralai-mixtral-8x7b-3473-v37-mkmlizer to finish
mistralai-mixtral-8x7b-3473-v37-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
mistralai-mixtral-8x7b-3473-v37-mkmlizer: ║ _____ __ __ ║
mistralai-mixtral-8x7b-3473-v37-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
mistralai-mixtral-8x7b-3473-v37-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
mistralai-mixtral-8x7b-3473-v37-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
mistralai-mixtral-8x7b-3473-v37-mkmlizer: ║ /___/ ║
mistralai-mixtral-8x7b-3473-v37-mkmlizer: ║ ║
mistralai-mixtral-8x7b-3473-v37-mkmlizer: ║ Version: 0.8.14 ║
mistralai-mixtral-8x7b-3473-v37-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
mistralai-mixtral-8x7b-3473-v37-mkmlizer: ║ https://mk1.ai ║
mistralai-mixtral-8x7b-3473-v37-mkmlizer: ║ ║
mistralai-mixtral-8x7b-3473-v37-mkmlizer: ║ The license key for the current software has been verified as ║
mistralai-mixtral-8x7b-3473-v37-mkmlizer: ║ belonging to: ║
mistralai-mixtral-8x7b-3473-v37-mkmlizer: ║ ║
mistralai-mixtral-8x7b-3473-v37-mkmlizer: ║ Chai Research Corp. ║
mistralai-mixtral-8x7b-3473-v37-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
mistralai-mixtral-8x7b-3473-v37-mkmlizer: ║ Expiration: 2024-07-15 23:59:59 ║
mistralai-mixtral-8x7b-3473-v37-mkmlizer: ║ ║
mistralai-mixtral-8x7b-3473-v37-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
mistralai-mixtral-8x7b-3473-v37-mkmlizer: /opt/conda/lib/python3.10/site-packages/huggingface_hub/utils/_deprecation.py:131: FutureWarning: 'list_files_info' (from 'huggingface_hub.hf_api') is deprecated and will be removed from version '0.23'. Use `list_repo_tree` and `get_paths_info` instead.
mistralai-mixtral-8x7b-3473-v37-mkmlizer: warnings.warn(warning_message, FutureWarning)
mistralai-mixtral-8x7b-3473-v37-mkmlizer: Downloaded to shared memory in 135.653s
mistralai-mixtral-8x7b-3473-v37-mkmlizer: quantizing model to /dev/shm/model_cache
mistralai-mixtral-8x7b-3473-v37-mkmlizer: Saving flywheel model at /dev/shm/model_cache
mistralai-mixtral-8x7b-3473-v37-mkmlizer: quantized model in 91.168s
mistralai-mixtral-8x7b-3473-v37-mkmlizer: Processed model mistralai/Mixtral-8x7B-Instruct-v0.1 in 241.091s
mistralai-mixtral-8x7b-3473-v37-mkmlizer: creating bucket guanaco-mkml-models
mistralai-mixtral-8x7b-3473-v37-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
mistralai-mixtral-8x7b-3473-v37-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/mistralai-mixtral-8x7b-3473-v37
mistralai-mixtral-8x7b-3473-v37-mkmlizer: cp /dev/shm/model_cache/flywheel_model.3.safetensors s3://guanaco-mkml-models/mistralai-mixtral-8x7b-3473-v37/flywheel_model.3.safetensors
mistralai-mixtral-8x7b-3473-v37-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/mistralai-mixtral-8x7b-3473-v37/flywheel_model.0.safetensors
mistralai-mixtral-8x7b-3473-v37-mkmlizer: cp /dev/shm/model_cache/flywheel_model.1.safetensors s3://guanaco-mkml-models/mistralai-mixtral-8x7b-3473-v37/flywheel_model.1.safetensors
mistralai-mixtral-8x7b-3473-v37-mkmlizer: cp /dev/shm/model_cache/flywheel_model.2.safetensors s3://guanaco-mkml-models/mistralai-mixtral-8x7b-3473-v37/flywheel_model.2.safetensors
mistralai-mixtral-8x7b-3473-v37-mkmlizer: loading reward model from ChaiML/reward_gpt2_medium_preference_24m_e2
mistralai-mixtral-8x7b-3473-v37-mkmlizer:
Loading 0: 0%| | 0/995 [00:00<?, ?it/s]
Loading 0: 1%| | 8/995 [00:00<00:13, 73.65it/s]
Loading 0: 2%|▏ | 16/995 [00:00<00:13, 70.14it/s]
Loading 0: 2%|▏ | 24/995 [00:00<00:15, 64.22it/s]
Loading 0: 4%|▎ | 36/995 [00:00<00:11, 82.74it/s]
Loading 0: 5%|▍ | 45/995 [00:00<00:12, 75.74it/s]
Loading 0: 5%|▌ | 53/995 [00:00<00:20, 46.71it/s]
Loading 0: 6%|▌ | 60/995 [00:01<00:18, 50.83it/s]
Loading 0: 7%|▋ | 69/995 [00:01<00:15, 59.45it/s]
Loading 0: 8%|▊ | 77/995 [00:01<00:14, 62.21it/s]
Loading 0: 9%|▊ | 85/995 [00:01<00:14, 64.35it/s]
Loading 0: 10%|▉ | 99/995 [00:01<00:11, 81.32it/s]
Loading 0: 11%|█ | 108/995 [00:01<00:16, 53.72it/s]
Loading 0: 12%|█▏ | 115/995 [00:01<00:15, 55.29it/s]
Loading 0: 12%|█▏ | 122/995 [00:02<00:15, 56.33it/s]
Loading 0: 13%|█▎ | 131/995 [00:02<00:13, 63.19it/s]
Loading 0: 14%|█▍ | 139/995 [00:02<00:13, 64.49it/s]
Loading 0: 15%|█▍ | 147/995 [00:02<00:12, 65.39it/s]
Loading 0: 16%|█▋ | 162/995 [00:02<00:14, 56.41it/s]
Loading 0: 17%|█▋ | 169/995 [00:02<00:14, 57.59it/s]
Loading 0: 18%|█▊ | 176/995 [00:02<00:13, 59.93it/s]
Loading 0: 18%|█▊ | 184/995 [00:02<00:12, 62.50it/s]
Loading 0: 19%|█▉ | 194/995 [00:03<00:11, 69.06it/s]
Loading 0: 20%|██ | 202/995 [00:03<00:11, 69.33it/s]
Loading 0: 21%|██ | 210/995 [00:03<00:16, 47.99it/s]
Loading 0: 22%|██▏ | 219/995 [00:03<00:13, 56.06it/s]
Loading 0: 23%|██▎ | 226/995 [00:03<00:13, 59.01it/s]
Loading 0: 24%|██▎ | 234/995 [00:03<00:12, 61.90it/s]
Loading 0: 24%|██▍ | 241/995 [00:03<00:12, 61.67it/s]
Loading 0: 26%|██▌ | 254/995 [00:04<00:09, 76.79it/s]
Loading 0: 27%|██▋ | 265/995 [00:04<00:14, 51.74it/s]
Loading 0: 28%|██▊ | 277/995 [00:04<00:11, 62.94it/s]
Loading 0: 28%|██▊ | 281/995 [00:15<00:11, 62.94it/s]
Loading 0: 28%|██▊ | 282/995 [00:21<06:50, 1.74it/s]
Loading 0: 29%|██▉ | 291/995 [00:21<04:44, 2.47it/s]
Loading 0: 30%|███ | 300/995 [00:21<03:18, 3.49it/s]
Loading 0: 31%|███ | 308/995 [00:21<02:24, 4.74it/s]
Loading 0: 32%|███▏ | 320/995 [00:22<01:40, 6.69it/s]
Loading 0: 33%|███▎ | 327/995 [00:22<01:18, 8.50it/s]
Loading 0: 34%|███▎ | 334/995 [00:22<01:00, 10.91it/s]
Loading 0: 34%|███▍ | 343/995 [00:22<00:43, 15.12it/s]
Loading 0: 35%|███▌ | 351/995 [00:22<00:33, 19.50it/s]
Loading 0: 36%|███▌ | 359/995 [00:22<00:25, 24.66it/s]
Loading 0: 37%|███▋ | 368/995 [00:22<00:24, 25.63it/s]
Loading 0: 38%|███▊ | 377/995 [00:22<00:18, 32.91it/s]
Loading 0: 39%|███▊ | 384/995 [00:23<00:16, 38.02it/s]
Loading 0: 39%|███▉ | 391/995 [00:23<00:14, 43.02it/s]
Loading 0: 41%|████ | 405/995 [00:23<00:09, 60.18it/s]
Loading 0: 42%|████▏ | 414/995 [00:23<00:09, 62.61it/s]
Loading 0: 43%|████▎ | 423/995 [00:23<00:12, 46.78it/s]
Loading 0: 43%|████▎ | 430/995 [00:23<00:11, 50.72it/s]
Loading 0: 44%|████▍ | 439/995 [00:23<00:09, 58.31it/s]
Loading 0: 45%|████▍ | 447/995 [00:24<00:08, 60.91it/s]
Loading 0: 46%|████▌ | 455/995 [00:24<00:08, 62.98it/s]
Loading 0: 47%|████▋ | 468/995 [00:24<00:06, 79.12it/s]
Loading 0: 48%|████▊ | 478/995 [00:24<00:09, 52.63it/s]
Loading 0: 49%|████▉ | 486/995 [00:24<00:09, 55.84it/s]
Loading 0: 50%|████▉ | 493/995 [00:24<00:08, 58.36it/s]
Loading 0: 50%|█████ | 502/995 [00:24<00:07, 65.25it/s]
Loading 0: 51%|█████▏ | 510/995 [00:25<00:07, 66.03it/s]
Loading 0: 52%|█████▏ | 518/995 [00:25<00:07, 66.43it/s]
Loading 0: 53%|█████▎ | 526/995 [00:25<00:10, 45.79it/s]
Loading 0: 54%|█████▍ | 535/995 [00:25<00:08, 54.16it/s]
Loading 0: 54%|█████▍ | 542/995 [00:25<00:07, 57.11it/s]
Loading 0: 55%|█████▌ | 549/995 [00:25<00:07, 59.88it/s]
Loading 0: 56%|█████▋ | 560/995 [00:42<00:07, 59.88it/s]
Loading 0: 56%|█████▋ | 561/995 [00:42<04:12, 1.72it/s]
Loading 0: 57%|█████▋ | 568/995 [00:43<03:08, 2.27it/s]
Loading 0: 58%|█████▊ | 575/995 [00:43<02:17, 3.04it/s]
Loading 0: 58%|█████▊ | 582/995 [00:43<01:47, 3.84it/s]
Loading 0: 59%|█████▉ | 591/995 [00:43<01:11, 5.65it/s]
Loading 0: 60%|██████ | 598/995 [00:43<00:52, 7.52it/s]
Loading 0: 61%|██████ | 605/995 [00:44<00:38, 10.01it/s]
Loading 0: 62%|██████▏ | 612/995 [00:44<00:28, 13.21it/s]
Loading 0: 63%|██████▎ | 626/995 [00:44<00:16, 22.04it/s]
Loading 0: 64%|██████▍ | 636/995 [00:44<00:14, 24.06it/s]
Loading 0: 65%|██████▍ | 643/995 [00:44<00:12, 28.50it/s]
Loading 0: 65%|██████▌ | 650/995 [00:44<00:10, 33.42it/s]
Loading 0: 66%|██████▌ | 659/995 [00:44<00:08, 41.62it/s]
Loading 0: 67%|██████▋ | 667/995 [00:44<00:06, 46.89it/s]
Loading 0: 68%|██████▊ | 675/995 [00:45<00:06, 51.72it/s]
Loading 0: 69%|██████▉ | 691/995 [00:45<00:06, 50.53it/s]
Loading 0: 70%|███████ | 698/995 [00:45<00:05, 53.83it/s]
Loading 0: 71%|███████ | 705/995 [00:45<00:05, 56.85it/s]
Loading 0: 72%|███████▏ | 712/995 [00:45<00:04, 59.70it/s]
Loading 0: 72%|███████▏ | 721/995 [00:45<00:04, 66.81it/s]
Loading 0: 73%|███████▎ | 729/995 [00:45<00:03, 67.54it/s]
Loading 0: 74%|███████▍ | 739/995 [00:46<00:05, 46.75it/s]
Loading 0: 75%|███████▌ | 748/995 [00:46<00:04, 54.07it/s]
Loading 0: 76%|███████▌ | 755/995 [00:46<00:04, 56.56it/s]
Loading 0: 77%|███████▋ | 762/995 [00:46<00:03, 58.81it/s]
Loading 0: 77%|███████▋ | 769/995 [00:46<00:03, 58.44it/s]
Loading 0: 79%|███████▊ | 783/995 [00:46<00:02, 75.94it/s]
Loading 0: 80%|███████▉ | 794/995 [00:47<00:03, 51.69it/s]
Loading 0: 81%|████████ | 801/995 [00:47<00:03, 54.70it/s]
Loading 0: 81%|████████▏ | 810/995 [00:47<00:03, 61.49it/s]
Loading 0: 82%|████████▏ | 818/995 [00:47<00:02, 63.31it/s]
Loading 0: 83%|████████▎ | 826/995 [00:47<00:02, 64.36it/s]
Loading 0: 84%|████████▍ | 839/995 [00:47<00:01, 79.10it/s]
Loading 0: 85%|████████▍ | 841/995 [01:04<00:01, 79.10it/s]
Loading 0: 85%|████████▍ | 842/995 [01:04<01:40, 1.53it/s]
Loading 0: 85%|████████▌ | 849/995 [01:05<01:12, 2.02it/s]
Loading 0: 86%|████████▌ | 856/995 [01:05<00:49, 2.79it/s]
Loading 0: 87%|████████▋ | 863/995 [01:05<00:34, 3.86it/s]
Loading 0: 88%|████████▊ | 872/995 [01:05<00:21, 5.76it/s]
Loading 0: 88%|████████▊ | 880/995 [01:05<00:14, 8.00it/s]
Loading 0: 89%|████████▉ | 888/995 [01:05<00:09, 10.94it/s]
Loading 0: 90%|█████████ | 897/995 [01:05<00:07, 13.62it/s]
Loading 0: 91%|█████████ | 906/995 [01:06<00:04, 18.65it/s]
Loading 0: 92%|█████████▏| 913/995 [01:06<00:03, 23.07it/s]
Loading 0: 92%|█████████▏| 920/995 [01:06<00:02, 28.17it/s]
Loading 0: 94%|█████████▍| 933/995 [01:06<00:01, 41.88it/s]
Loading 0: 95%|█████████▍| 942/995 [01:06<00:01, 47.33it/s]
Loading 0: 96%|█████████▌| 952/995 [01:08<00:02, 15.07it/s]
Loading 0: 96%|█████████▋| 958/995 [01:15<00:12, 3.02it/s]
Loading 0: 97%|█████████▋| 964/995 [01:20<00:12, 2.40it/s]
Loading 0: 97%|█████████▋| 968/995 [01:20<00:09, 2.89it/s]
Loading 0: 98%|█████████▊| 975/995 [01:20<00:04, 4.14it/s]
Loading 0: 99%|█████████▉| 983/995 [01:20<00:01, 6.07it/s]
/opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:913: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
mistralai-mixtral-8x7b-3473-v37-mkmlizer: warnings.warn(
mistralai-mixtral-8x7b-3473-v37-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:757: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
mistralai-mixtral-8x7b-3473-v37-mkmlizer: warnings.warn(
mistralai-mixtral-8x7b-3473-v37-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:468: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
mistralai-mixtral-8x7b-3473-v37-mkmlizer: warnings.warn(
mistralai-mixtral-8x7b-3473-v37-mkmlizer: /opt/conda/lib/python3.10/site-packages/torch/_utils.py:831: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
mistralai-mixtral-8x7b-3473-v37-mkmlizer: return self.fget.__get__(instance, owner)()
mistralai-mixtral-8x7b-3473-v37-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
mistralai-mixtral-8x7b-3473-v37-mkmlizer: Saving duration: 0.405s
mistralai-mixtral-8x7b-3473-v37-mkmlizer: Processed model ChaiML/reward_gpt2_medium_preference_24m_e2 in 5.037s
mistralai-mixtral-8x7b-3473-v37-mkmlizer: creating bucket guanaco-reward-models
mistralai-mixtral-8x7b-3473-v37-mkmlizer: Bucket 's3://guanaco-reward-models/' created
mistralai-mixtral-8x7b-3473-v37-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/mistralai-mixtral-8x7b-3473-v37_reward
mistralai-mixtral-8x7b-3473-v37-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/mistralai-mixtral-8x7b-3473-v37_reward/config.json
mistralai-mixtral-8x7b-3473-v37-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/mistralai-mixtral-8x7b-3473-v37_reward/special_tokens_map.json
mistralai-mixtral-8x7b-3473-v37-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/mistralai-mixtral-8x7b-3473-v37_reward/tokenizer_config.json
mistralai-mixtral-8x7b-3473-v37-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/mistralai-mixtral-8x7b-3473-v37_reward/merges.txt
mistralai-mixtral-8x7b-3473-v37-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/mistralai-mixtral-8x7b-3473-v37_reward/vocab.json
mistralai-mixtral-8x7b-3473-v37-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/mistralai-mixtral-8x7b-3473-v37_reward/tokenizer.json
mistralai-mixtral-8x7b-3473-v37-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/mistralai-mixtral-8x7b-3473-v37_reward/reward.tensors
Job mistralai-mixtral-8x7b-3473-v37-mkmlizer completed after 332.13s with status: succeeded
Stopping job with name mistralai-mixtral-8x7b-3473-v37-mkmlizer
Pipeline stage MKMLizer completed in 336.87s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.08s
Running pipeline stage ISVCDeployer
Creating inference service mistralai-mixtral-8x7b-3473-v37
Waiting for inference service mistralai-mixtral-8x7b-3473-v37 to be ready
Inference service mistralai-mixtral-8x7b-3473-v37 ready after 50.329341411590576s
Pipeline stage ISVCDeployer completed in 58.20s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.6180238723754883s
Received healthy response to inference request in 1.1494691371917725s
Received healthy response to inference request in 2.006589412689209s
Received healthy response to inference request in 1.6858305931091309s
Received healthy response to inference request in 2.0423054695129395s
5 requests
0 failed requests
5th percentile: 1.256741428375244
10th percentile: 1.3640137195587159
20th percentile: 1.5785583019256593
30th percentile: 1.7499823570251465
40th percentile: 1.8782858848571777
50th percentile: 2.006589412689209
60th percentile: 2.020875835418701
70th percentile: 2.035162258148193
80th percentile: 2.157449150085449
90th percentile: 2.387736511230469
95th percentile: 2.5028801918029786
99th percentile: 2.5949951362609864
mean time: 1.900443696975708
Pipeline stage StressChecker completed in 10.20s
Running pipeline stage DaemonicModelEvalScorer
Pipeline stage DaemonicModelEvalScorer completed in 0.03s
Running pipeline stage DaemonicSafetyScorer
Pipeline stage DaemonicSafetyScorer completed in 0.03s
Running M-Eval for topic stay_in_character
mistralai-mixtral-8x7b-_3473_v37 status is now deployed due to DeploymentManager action
M-Eval Dataset for topic stay_in_character is loaded
mistralai-mixtral-8x7b-_3473_v37 status is now inactive due to auto deactivation removed underperforming models
admin requested tearing down of mistralai-mixtral-8x7b-_3473_v37
Running pipeline stage ISVCDeleter
Checking if service mistralai-mixtral-8x7b-3473-v37 is running
Tearing down inference service mistralai-mixtral-8x7b-3473-v37
Toredown service mistralai-mixtral-8x7b-3473-v37
Pipeline stage ISVCDeleter completed in 5.54s
Running pipeline stage MKMLModelDeleter
Cleaning model data from S3
Cleaning model data from model cache
Deleting key mistralai-mixtral-8x7b-3473-v37/config.json from bucket guanaco-mkml-models
Deleting key mistralai-mixtral-8x7b-3473-v37/flywheel_model.0.safetensors from bucket guanaco-mkml-models
Connection pool is full, discarding connection: %s
Connection pool is full, discarding connection: %s
Connection pool is full, discarding connection: %s
Connection pool is full, discarding connection: %s
Deleting key mistralai-mixtral-8x7b-3473-v37/flywheel_model.1.safetensors from bucket guanaco-mkml-models
Deleting key mistralai-mixtral-8x7b-3473-v37/flywheel_model.2.safetensors from bucket guanaco-mkml-models
Deleting key mistralai-mixtral-8x7b-3473-v37/flywheel_model.3.safetensors from bucket guanaco-mkml-models
Deleting key mistralai-mixtral-8x7b-3473-v37/special_tokens_map.json from bucket guanaco-mkml-models
Deleting key mistralai-mixtral-8x7b-3473-v37/tokenizer.json from bucket guanaco-mkml-models
Deleting key mistralai-mixtral-8x7b-3473-v37/tokenizer.model from bucket guanaco-mkml-models
Deleting key mistralai-mixtral-8x7b-3473-v37/tokenizer_config.json from bucket guanaco-mkml-models
Cleaning model data from model cache
Deleting key mistralai-mixtral-8x7b-3473-v37_reward/config.json from bucket guanaco-reward-models
Deleting key mistralai-mixtral-8x7b-3473-v37_reward/merges.txt from bucket guanaco-reward-models
Deleting key mistralai-mixtral-8x7b-3473-v37_reward/reward.tensors from bucket guanaco-reward-models
Deleting key mistralai-mixtral-8x7b-3473-v37_reward/special_tokens_map.json from bucket guanaco-reward-models
Deleting key mistralai-mixtral-8x7b-3473-v37_reward/tokenizer.json from bucket guanaco-reward-models
Deleting key mistralai-mixtral-8x7b-3473-v37_reward/tokenizer_config.json from bucket guanaco-reward-models
Deleting key mistralai-mixtral-8x7b-3473-v37_reward/vocab.json from bucket guanaco-reward-models
Pipeline stage MKMLModelDeleter completed in 6.22s
mistralai-mixtral-8x7b-_3473_v37 status is now torndown due to DeploymentManager action