developer_uid: zonemercy
submission_id: mistralai-mistral-nemo_9330_v227
model_name: tempv1-3
model_group: mistralai/Mistral-Nemo-I
status: torndown
timestamp: 2024-12-27T08:49:33+00:00
num_battles: 15510
num_wins: 7753
celo_rating: 1234.6
family_friendly_score: 0.5958
family_friendly_standard_error: 0.0069400628239231375
submission_type: basic
model_repo: mistralai/Mistral-Nemo-Instruct-2407
model_architecture: MistralForCausalLM
model_num_parameters: 12772070400.0
best_of: 4
max_input_tokens: 1024
max_output_tokens: 64
reward_model: default
latencies: [{'batch_size': 1, 'throughput': 0.6366964971738353, 'latency_mean': 1.57052317738533, 'latency_p50': 1.5597238540649414, 'latency_p90': 1.7484302282333375}, {'batch_size': 3, 'throughput': 1.2705559862026288, 'latency_mean': 2.3527125895023344, 'latency_p50': 2.3504198789596558, 'latency_p90': 2.5785425424575803}, {'batch_size': 5, 'throughput': 1.600377906009479, 'latency_mean': 3.1135460937023165, 'latency_p50': 3.114062786102295, 'latency_p90': 3.461029314994812}, {'batch_size': 6, 'throughput': 1.6990751999178735, 'latency_mean': 3.516235443353653, 'latency_p50': 3.5243616104125977, 'latency_p90': 3.9672020196914675}, {'batch_size': 8, 'throughput': 1.867018937604652, 'latency_mean': 4.264383745193482, 'latency_p50': 4.250849008560181, 'latency_p90': 4.804209685325622}, {'batch_size': 10, 'throughput': 1.939086209627354, 'latency_mean': 5.128511414527893, 'latency_p50': 5.109878420829773, 'latency_p90': 5.880586719512939}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: tempv1-3
is_internal_developer: True
language_model: mistralai/Mistral-Nemo-Instruct-2407
model_size: 13B
ranking_group: single
throughput_3p7s: 1.75
us_pacific_date: 2024-12-27
win_ratio: 0.4998710509348807
generation_params: {'temperature': 1.0, 'top_p': 1.0, 'min_p': 0.0, 'top_k': 40, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['Bot:', '####', 'You:', '</s>', '\n', '<|eot_id|>', 'User:', '<|im_end|>'], 'max_input_tokens': 1024, 'best_of': 4, 'max_output_tokens': 64}
formatter: {'memory_template': '', 'prompt_template': '', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': False}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name mistralai-mistral-nemo-9330-v227-mkmlizer
Waiting for job on mistralai-mistral-nemo-9330-v227-mkmlizer to finish
mistralai-mistral-nemo-9330-v227-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
mistralai-mistral-nemo-9330-v227-mkmlizer: ║ _____ __ __ ║
mistralai-mistral-nemo-9330-v227-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
mistralai-mistral-nemo-9330-v227-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
mistralai-mistral-nemo-9330-v227-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
mistralai-mistral-nemo-9330-v227-mkmlizer: ║ /___/ ║
mistralai-mistral-nemo-9330-v227-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v227-mkmlizer: ║ Version: 0.11.12 ║
mistralai-mistral-nemo-9330-v227-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
mistralai-mistral-nemo-9330-v227-mkmlizer: ║ https://mk1.ai ║
mistralai-mistral-nemo-9330-v227-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v227-mkmlizer: ║ The license key for the current software has been verified as ║
mistralai-mistral-nemo-9330-v227-mkmlizer: ║ belonging to: ║
mistralai-mistral-nemo-9330-v227-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v227-mkmlizer: ║ Chai Research Corp. ║
mistralai-mistral-nemo-9330-v227-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
mistralai-mistral-nemo-9330-v227-mkmlizer: ║ Expiration: 2025-01-15 23:59:59 ║
mistralai-mistral-nemo-9330-v227-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v227-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
Connection pool is full, discarding connection: %s. Connection pool size: %s
mistralai-mistral-nemo-9330-v227-mkmlizer: Downloaded to shared memory in 54.425s
mistralai-mistral-nemo-9330-v227-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmpqgbsrpo_, device:0
mistralai-mistral-nemo-9330-v227-mkmlizer: Saving flywheel model at /dev/shm/model_cache
mistralai-mistral-nemo-9330-v227-mkmlizer: quantized model in 37.995s
mistralai-mistral-nemo-9330-v227-mkmlizer: Processed model mistralai/Mistral-Nemo-Instruct-2407 in 92.420s
mistralai-mistral-nemo-9330-v227-mkmlizer: creating bucket guanaco-mkml-models
mistralai-mistral-nemo-9330-v227-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
mistralai-mistral-nemo-9330-v227-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v227
mistralai-mistral-nemo-9330-v227-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v227/config.json
mistralai-mistral-nemo-9330-v227-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v227/special_tokens_map.json
mistralai-mistral-nemo-9330-v227-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v227/tokenizer_config.json
mistralai-mistral-nemo-9330-v227-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v227/tokenizer.json
mistralai-mistral-nemo-9330-v227-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v227/flywheel_model.0.safetensors
mistralai-mistral-nemo-9330-v227-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:11, 29.88it/s] Loading 0: 3%|▎ | 10/363 [00:00<00:09, 38.97it/s] Loading 0: 4%|▍ | 15/363 [00:00<00:09, 38.24it/s] Loading 0: 6%|▌ | 22/363 [00:00<00:07, 46.61it/s] Loading 0: 8%|▊ | 28/363 [00:00<00:07, 44.50it/s] Loading 0: 9%|▉ | 33/363 [00:00<00:07, 43.54it/s] Loading 0: 11%|█ | 40/363 [00:00<00:06, 48.70it/s] Loading 0: 12%|█▏ | 45/363 [00:00<00:06, 48.86it/s] Loading 0: 14%|█▍ | 50/363 [00:01<00:07, 39.76it/s] Loading 0: 16%|█▌ | 58/363 [00:01<00:06, 49.14it/s] Loading 0: 18%|█▊ | 64/363 [00:01<00:10, 29.78it/s] Loading 0: 20%|█▉ | 71/363 [00:01<00:08, 36.44it/s] Loading 0: 21%|██ | 76/363 [00:01<00:07, 37.22it/s] Loading 0: 22%|██▏ | 81/363 [00:02<00:07, 38.10it/s] Loading 0: 24%|██▎ | 86/363 [00:02<00:06, 39.80it/s] Loading 0: 25%|██▌ | 91/363 [00:02<00:08, 33.86it/s] Loading 0: 26%|██▋ | 96/363 [00:02<00:07, 36.14it/s] Loading 0: 28%|██▊ | 101/363 [00:02<00:07, 32.88it/s] Loading 0: 29%|██▉ | 106/363 [00:02<00:07, 35.33it/s] Loading 0: 30%|███ | 110/363 [00:02<00:07, 36.13it/s] Loading 0: 31%|███▏ | 114/363 [00:02<00:07, 35.01it/s] Loading 0: 33%|███▎ | 118/363 [00:03<00:07, 33.00it/s] Loading 0: 34%|███▍ | 125/363 [00:03<00:05, 40.80it/s] Loading 0: 36%|███▌ | 130/363 [00:03<00:05, 40.62it/s] Loading 0: 37%|███▋ | 135/363 [00:03<00:05, 40.56it/s] Loading 0: 39%|███▊ | 140/363 [00:03<00:05, 42.19it/s] Loading 0: 40%|███▉ | 145/363 [00:03<00:08, 25.98it/s] Loading 0: 41%|████ | 149/363 [00:04<00:08, 26.13it/s] Loading 0: 42%|████▏ | 154/363 [00:04<00:06, 30.47it/s] Loading 0: 44%|████▎ | 158/363 [00:04<00:07, 28.77it/s] Loading 0: 45%|████▌ | 165/363 [00:04<00:05, 35.59it/s] Loading 0: 47%|████▋ | 169/363 [00:04<00:05, 33.91it/s] Loading 0: 48%|████▊ | 174/363 [00:04<00:05, 35.41it/s] Loading 0: 49%|████▉ | 178/363 [00:04<00:05, 33.72it/s] Loading 0: 50%|█████ | 183/363 [00:05<00:05, 35.48it/s] Loading 0: 52%|█████▏ | 187/363 [00:05<00:05, 33.69it/s] Loading 0: 53%|█████▎ | 192/363 [00:05<00:04, 35.97it/s] Loading 0: 54%|█████▍ | 196/363 [00:05<00:04, 35.29it/s] Loading 0: 55%|█████▌ | 201/363 [00:05<00:04, 38.25it/s] Loading 0: 56%|█████▋ | 205/363 [00:05<00:04, 37.39it/s] Loading 0: 58%|█████▊ | 210/363 [00:05<00:03, 38.70it/s] Loading 0: 59%|█████▉ | 214/363 [00:05<00:03, 37.28it/s] Loading 0: 60%|██████ | 218/363 [00:05<00:03, 37.08it/s] Loading 0: 61%|██████▏ | 223/363 [00:06<00:04, 28.03it/s] Loading 0: 63%|██████▎ | 227/363 [00:06<00:04, 29.38it/s] Loading 0: 64%|██████▎ | 231/363 [00:06<00:04, 29.11it/s] Loading 0: 65%|██████▌ | 237/363 [00:06<00:03, 34.91it/s] Loading 0: 66%|██████▋ | 241/363 [00:06<00:03, 34.40it/s] Loading 0: 68%|██████▊ | 246/363 [00:06<00:03, 37.45it/s] Loading 0: 69%|██████▉ | 250/363 [00:06<00:03, 36.73it/s] Loading 0: 70%|███████ | 255/363 [00:07<00:02, 39.78it/s] Loading 0: 72%|███████▏ | 260/363 [00:07<00:02, 40.20it/s] Loading 0: 73%|███████▎ | 265/363 [00:07<00:02, 41.05it/s] Loading 0: 74%|███████▍ | 270/363 [00:07<00:02, 42.20it/s] Loading 0: 76%|███████▌ | 275/363 [00:07<00:02, 34.22it/s] Loading 0: 78%|███████▊ | 282/363 [00:07<00:01, 41.45it/s] Loading 0: 79%|███████▉ | 287/363 [00:07<00:01, 41.31it/s] Loading 0: 80%|████████ | 292/363 [00:07<00:01, 41.52it/s] Loading 0: 82%|████████▏ | 297/363 [00:08<00:01, 42.34it/s] Loading 0: 83%|████████▎ | 302/363 [00:08<00:01, 43.79it/s] Loading 0: 85%|████████▍ | 307/363 [00:15<00:23, 2.35it/s] Loading 0: 86%|████████▌ | 312/363 [00:15<00:15, 3.24it/s] Loading 0: 88%|████████▊ | 319/363 [00:15<00:08, 5.02it/s] Loading 0: 89%|████████▉ | 324/363 [00:15<00:05, 6.62it/s] Loading 0: 91%|█████████ | 329/363 [00:15<00:03, 8.70it/s] Loading 0: 92%|█████████▏| 334/363 [00:15<00:02, 11.39it/s] Loading 0: 93%|█████████▎| 339/363 [00:15<00:01, 13.59it/s] Loading 0: 96%|█████████▌| 347/363 [00:16<00:00, 19.89it/s] Loading 0: 97%|█████████▋| 353/363 [00:16<00:00, 23.09it/s] Loading 0: 99%|█████████▊| 358/363 [00:16<00:00, 25.79it/s]
Job mistralai-mistral-nemo-9330-v227-mkmlizer completed after 135.01s with status: succeeded
Stopping job with name mistralai-mistral-nemo-9330-v227-mkmlizer
Pipeline stage MKMLizer completed in 135.51s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.17s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service mistralai-mistral-nemo-9330-v227
Waiting for inference service mistralai-mistral-nemo-9330-v227 to be ready
Inference service mistralai-mistral-nemo-9330-v227 ready after 281.5542185306549s
Pipeline stage MKMLDeployer completed in 282.11s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 1.4227550029754639s
Received healthy response to inference request in 1.4283788204193115s
Received healthy response to inference request in 0.7076878547668457s
Received healthy response to inference request in 0.7790086269378662s
Received healthy response to inference request in 1.028815507888794s
5 requests
0 failed requests
5th percentile: 0.7219520092010498
10th percentile: 0.7362161636352539
20th percentile: 0.7647444725036621
30th percentile: 0.8289700031280518
40th percentile: 0.9288927555084229
50th percentile: 1.028815507888794
60th percentile: 1.1863913059234619
70th percentile: 1.3439671039581298
80th percentile: 1.4238797664642333
90th percentile: 1.4261292934417724
95th percentile: 1.427254056930542
99th percentile: 1.4281538677215577
mean time: 1.0733291625976562
Pipeline stage StressChecker completed in 6.69s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.66s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 0.66s
Shutdown handler de-registered
mistralai-mistral-nemo_9330_v227 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.10s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.10s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service mistralai-mistral-nemo-9330-v227-profiler
Waiting for inference service mistralai-mistral-nemo-9330-v227-profiler to be ready
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 2483.46s
Shutdown handler de-registered
mistralai-mistral-nemo_9330_v227 status is now inactive due to auto deactivation removed underperforming models
mistralai-mistral-nemo_9330_v227 status is now torndown due to DeploymentManager action
mistralai-mistral-nemo_9330_v227 status is now torndown due to DeploymentManager action
mistralai-mistral-nemo_9330_v227 status is now torndown due to DeploymentManager action