developer_uid: Jellywibble
submission_id: mistralai-mistral-nemo_9330_v220
model_name: asdasd
model_group: mistralai/Mistral-Nemo-I
status: inactive
timestamp: 2024-12-22T23:43:56+00:00
num_battles: 23139
num_wins: 11297
celo_rating: 1247.28
family_friendly_score: 0.5992
family_friendly_standard_error: 0.0069305030120475385
submission_type: basic
model_repo: mistralai/Mistral-Nemo-Instruct-2407
model_architecture: MistralForCausalLM
model_num_parameters: 12772070400.0
best_of: 8
max_input_tokens: 1024
max_output_tokens: 64
latencies: [{'batch_size': 1, 'throughput': 0.6151411652078108, 'latency_mean': 1.625581021308899, 'latency_p50': 1.6259047985076904, 'latency_p90': 1.8006028175354003}, {'batch_size': 3, 'throughput': 1.1492607866480504, 'latency_mean': 2.6047407746315003, 'latency_p50': 2.603744626045227, 'latency_p90': 2.9148350477218625}, {'batch_size': 5, 'throughput': 1.400590813474744, 'latency_mean': 3.553801543712616, 'latency_p50': 3.5258584022521973, 'latency_p90': 3.9951316833496096}, {'batch_size': 6, 'throughput': 1.4877344950895959, 'latency_mean': 4.0167714369297025, 'latency_p50': 3.983317017555237, 'latency_p90': 4.4778005361557005}, {'batch_size': 8, 'throughput': 1.5458408441370204, 'latency_mean': 5.138776262998581, 'latency_p50': 5.15111231803894, 'latency_p90': 5.770779800415039}, {'batch_size': 10, 'throughput': 1.5848608468621401, 'latency_mean': 6.267067890167237, 'latency_p50': 6.276922583580017, 'latency_p90': 7.079888844490051}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: asdasd
is_internal_developer: True
language_model: mistralai/Mistral-Nemo-Instruct-2407
model_size: 13B
ranking_group: single
throughput_3p7s: 1.44
us_pacific_date: 2024-12-22
win_ratio: 0.48822334586628635
generation_params: {'temperature': 1.0, 'top_p': 1.0, 'min_p': 0.0, 'top_k': 40, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n'], 'max_input_tokens': 1024, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': False}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name mistralai-mistral-nemo-9330-v220-mkmlizer
Waiting for job on mistralai-mistral-nemo-9330-v220-mkmlizer to finish
mistralai-mistral-nemo-9330-v220-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
mistralai-mistral-nemo-9330-v220-mkmlizer: ║ _____ __ __ ║
mistralai-mistral-nemo-9330-v220-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
mistralai-mistral-nemo-9330-v220-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
mistralai-mistral-nemo-9330-v220-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
mistralai-mistral-nemo-9330-v220-mkmlizer: ║ /___/ ║
mistralai-mistral-nemo-9330-v220-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v220-mkmlizer: ║ Version: 0.11.12 ║
mistralai-mistral-nemo-9330-v220-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
mistralai-mistral-nemo-9330-v220-mkmlizer: ║ https://mk1.ai ║
mistralai-mistral-nemo-9330-v220-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v220-mkmlizer: ║ The license key for the current software has been verified as ║
mistralai-mistral-nemo-9330-v220-mkmlizer: ║ belonging to: ║
mistralai-mistral-nemo-9330-v220-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v220-mkmlizer: ║ Chai Research Corp. ║
mistralai-mistral-nemo-9330-v220-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
mistralai-mistral-nemo-9330-v220-mkmlizer: ║ Expiration: 2025-01-15 23:59:59 ║
mistralai-mistral-nemo-9330-v220-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v220-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
mistralai-mistral-nemo-9330-v220-mkmlizer: Downloaded to shared memory in 55.556s
mistralai-mistral-nemo-9330-v220-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmp6dcs59t4, device:0
mistralai-mistral-nemo-9330-v220-mkmlizer: Saving flywheel model at /dev/shm/model_cache
mistralai-mistral-nemo-9330-v220-mkmlizer: quantized model in 37.301s
mistralai-mistral-nemo-9330-v220-mkmlizer: Processed model mistralai/Mistral-Nemo-Instruct-2407 in 92.857s
mistralai-mistral-nemo-9330-v220-mkmlizer: creating bucket guanaco-mkml-models
mistralai-mistral-nemo-9330-v220-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
mistralai-mistral-nemo-9330-v220-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v220
mistralai-mistral-nemo-9330-v220-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v220/config.json
mistralai-mistral-nemo-9330-v220-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v220/special_tokens_map.json
mistralai-mistral-nemo-9330-v220-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v220/tokenizer_config.json
mistralai-mistral-nemo-9330-v220-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v220/tokenizer.json
mistralai-mistral-nemo-9330-v220-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v220/flywheel_model.0.safetensors
mistralai-mistral-nemo-9330-v220-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:11, 31.17it/s] Loading 0: 4%|▎ | 13/363 [00:00<00:06, 51.77it/s] Loading 0: 5%|▌ | 19/363 [00:00<00:07, 46.02it/s] Loading 0: 7%|▋ | 24/363 [00:00<00:07, 45.46it/s] Loading 0: 9%|▊ | 31/363 [00:00<00:06, 52.05it/s] Loading 0: 10%|█ | 37/363 [00:00<00:06, 49.40it/s] Loading 0: 12%|█▏ | 43/363 [00:00<00:06, 48.26it/s] Loading 0: 13%|█▎ | 49/363 [00:01<00:06, 49.93it/s] Loading 0: 15%|█▌ | 55/363 [00:01<00:06, 47.75it/s] Loading 0: 17%|█▋ | 61/363 [00:01<00:08, 36.35it/s] Loading 0: 18%|█▊ | 66/363 [00:01<00:08, 35.53it/s] Loading 0: 20%|█▉ | 71/363 [00:01<00:07, 37.99it/s] Loading 0: 21%|██ | 76/363 [00:01<00:07, 38.17it/s] Loading 0: 22%|██▏ | 81/363 [00:01<00:07, 38.77it/s] Loading 0: 24%|██▍ | 87/363 [00:02<00:07, 39.17it/s] Loading 0: 25%|██▌ | 92/363 [00:02<00:06, 39.99it/s] Loading 0: 27%|██▋ | 98/363 [00:02<00:05, 44.51it/s] Loading 0: 28%|██▊ | 103/363 [00:02<00:05, 44.99it/s] Loading 0: 30%|███ | 110/363 [00:02<00:05, 43.88it/s] Loading 0: 32%|███▏ | 115/363 [00:02<00:05, 43.41it/s] Loading 0: 33%|███▎ | 120/363 [00:02<00:05, 41.12it/s] Loading 0: 34%|███▍ | 125/363 [00:02<00:05, 42.49it/s] Loading 0: 36%|███▌ | 130/363 [00:03<00:06, 38.20it/s] Loading 0: 37%|███▋ | 134/363 [00:03<00:06, 35.85it/s] Loading 0: 38%|███▊ | 138/363 [00:03<00:06, 34.84it/s] Loading 0: 39%|███▉ | 142/363 [00:03<00:07, 27.82it/s] Loading 0: 40%|████ | 146/363 [00:03<00:07, 28.98it/s] Loading 0: 41%|████▏ | 150/363 [00:03<00:07, 29.36it/s] Loading 0: 43%|████▎ | 156/363 [00:03<00:05, 35.78it/s] Loading 0: 44%|████▍ | 160/363 [00:04<00:05, 35.06it/s] Loading 0: 45%|████▌ | 165/363 [00:04<00:05, 37.44it/s] Loading 0: 47%|████▋ | 169/363 [00:04<00:05, 36.55it/s] Loading 0: 48%|████▊ | 175/363 [00:04<00:04, 40.41it/s] Loading 0: 50%|████▉ | 180/363 [00:04<00:04, 41.37it/s] Loading 0: 51%|█████ | 185/363 [00:04<00:05, 31.51it/s] Loading 0: 53%|█████▎ | 192/363 [00:04<00:04, 38.70it/s] Loading 0: 54%|█████▍ | 197/363 [00:04<00:04, 39.30it/s] Loading 0: 56%|█████▌ | 202/363 [00:05<00:04, 39.85it/s] Loading 0: 57%|█████▋ | 208/363 [00:05<00:03, 40.02it/s] Loading 0: 59%|█████▊ | 213/363 [00:05<00:03, 39.47it/s] Loading 0: 60%|██████ | 218/363 [00:05<00:03, 41.81it/s] Loading 0: 61%|██████▏ | 223/363 [00:05<00:04, 30.76it/s] Loading 0: 63%|██████▎ | 227/363 [00:05<00:04, 31.08it/s] Loading 0: 64%|██████▎ | 231/363 [00:06<00:04, 30.38it/s] Loading 0: 65%|██████▍ | 235/363 [00:06<00:03, 32.23it/s] Loading 0: 66%|██████▌ | 239/363 [00:06<00:04, 30.05it/s] Loading 0: 68%|██████▊ | 246/363 [00:06<00:03, 37.82it/s] Loading 0: 69%|██████▉ | 251/363 [00:06<00:02, 38.63it/s] Loading 0: 71%|███████ | 256/363 [00:06<00:02, 39.92it/s] Loading 0: 72%|███████▏ | 262/363 [00:06<00:02, 39.76it/s] Loading 0: 74%|███████▎ | 267/363 [00:06<00:02, 37.97it/s] Loading 0: 75%|███████▌ | 273/363 [00:07<00:02, 41.12it/s] Loading 0: 77%|███████▋ | 278/363 [00:07<00:02, 39.83it/s] Loading 0: 78%|███████▊ | 283/363 [00:07<00:01, 40.82it/s] Loading 0: 79%|███████▉ | 288/363 [00:07<00:01, 41.68it/s] Loading 0: 81%|████████ | 293/363 [00:07<00:02, 31.88it/s] Loading 0: 82%|████████▏ | 299/363 [00:07<00:01, 36.68it/s] Loading 0: 84%|████████▎ | 304/363 [00:14<00:24, 2.38it/s] Loading 0: 85%|████████▍ | 307/363 [00:14<00:19, 2.90it/s] Loading 0: 86%|████████▌ | 312/363 [00:15<00:12, 4.12it/s] Loading 0: 88%|████████▊ | 320/363 [00:15<00:06, 6.84it/s] Loading 0: 90%|████████▉ | 326/363 [00:15<00:03, 9.29it/s] Loading 0: 91%|█████████ | 331/363 [00:15<00:02, 11.79it/s] Loading 0: 93%|█████████▎| 338/363 [00:15<00:01, 16.53it/s] Loading 0: 95%|█████████▍| 344/363 [00:15<00:00, 20.38it/s] Loading 0: 96%|█████████▌| 349/363 [00:15<00:00, 23.58it/s] Loading 0: 98%|█████████▊| 356/363 [00:15<00:00, 30.21it/s] Loading 0: 100%|█████████▉| 362/363 [00:16<00:00, 33.22it/s]
Job mistralai-mistral-nemo-9330-v220-mkmlizer completed after 115.42s with status: succeeded
Stopping job with name mistralai-mistral-nemo-9330-v220-mkmlizer
Pipeline stage MKMLizer completed in 115.96s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.17s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service mistralai-mistral-nemo-9330-v220
Waiting for inference service mistralai-mistral-nemo-9330-v220 to be ready
Failed to get response for submission function_lijit_2024-11-26: ('http://zonemercy-lexical-viral-7348-v17-predictor.tenant-chaiml-guanaco.k2.chaiverse.com/v1/models/GPT-J-6B-lit-v2:predict', 'read tcp 127.0.0.1:45716->127.0.0.1:8080: read: connection reset by peer\n')
Inference service mistralai-mistral-nemo-9330-v220 ready after 270.9376332759857s
Pipeline stage MKMLDeployer completed in 271.48s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 1.9810826778411865s
Received healthy response to inference request in 1.4528844356536865s
Received healthy response to inference request in 1.0477359294891357s
Received healthy response to inference request in 1.3761749267578125s
Received healthy response to inference request in 1.442901611328125s
5 requests
0 failed requests
5th percentile: 1.113423728942871
10th percentile: 1.1791115283966065
20th percentile: 1.3104871273040772
30th percentile: 1.389520263671875
40th percentile: 1.4162109375
50th percentile: 1.442901611328125
60th percentile: 1.4468947410583497
70th percentile: 1.4508878707885742
80th percentile: 1.5585240840911867
90th percentile: 1.7698033809661866
95th percentile: 1.8754430294036863
99th percentile: 1.9599547481536865
mean time: 1.4601559162139892
Pipeline stage StressChecker completed in 8.60s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.64s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 0.57s
Shutdown handler de-registered
mistralai-mistral-nemo_9330_v220 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.11s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.09s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service mistralai-mistral-nemo-9330-v220-profiler
Waiting for inference service mistralai-mistral-nemo-9330-v220-profiler to be ready
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 2539.55s
Shutdown handler de-registered
mistralai-mistral-nemo_9330_v220 status is now inactive due to auto deactivation removed underperforming models