developer_uid: azuruce
submission_id: mistralai-mistral-nemo_9330_v214
model_name: mistralai-mistral-nemo_9330_v214
model_group: mistralai/Mistral-Nemo-I
status: inactive
timestamp: 2024-12-17T23:55:02+00:00
num_battles: 13221
num_wins: 6070
celo_rating: 1236.85
family_friendly_score: 0.5986
family_friendly_standard_error: 0.006932215230357464
submission_type: basic
model_repo: mistralai/Mistral-Nemo-Instruct-2407
model_architecture: MistralForCausalLM
model_num_parameters: 12772070400.0
best_of: 4
max_input_tokens: 1024
max_output_tokens: 64
latencies: [{'batch_size': 1, 'throughput': 0.6446686231602187, 'latency_mean': 1.5511270248889923, 'latency_p50': 1.5478427410125732, 'latency_p90': 1.7061341047286986}, {'batch_size': 3, 'throughput': 1.2823707088831846, 'latency_mean': 2.3333573007583617, 'latency_p50': 2.335045576095581, 'latency_p90': 2.552640962600708}, {'batch_size': 5, 'throughput': 1.6024528114287209, 'latency_mean': 3.101115550994873, 'latency_p50': 3.103113532066345, 'latency_p90': 3.5082658529281616}, {'batch_size': 6, 'throughput': 1.7258686691195542, 'latency_mean': 3.4562124955654143, 'latency_p50': 3.4751129150390625, 'latency_p90': 3.9214380264282225}, {'batch_size': 8, 'throughput': 1.891773983663686, 'latency_mean': 4.18790666103363, 'latency_p50': 4.195134162902832, 'latency_p90': 4.691834855079651}, {'batch_size': 10, 'throughput': 1.9672015015760485, 'latency_mean': 5.047457332611084, 'latency_p50': 5.096768736839294, 'latency_p90': 5.751064682006835}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: mistralai-mistral-nemo_9330_v214
is_internal_developer: True
language_model: mistralai/Mistral-Nemo-Instruct-2407
model_size: 13B
ranking_group: single
throughput_3p7s: 1.8
us_pacific_date: 2024-12-17
win_ratio: 0.45911806973753877
generation_params: {'temperature': 1.0, 'top_p': 1.0, 'min_p': 0.0, 'top_k': 40, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n', '<|eot_id|>', '<|end_of_text|>', 'You:'], 'max_input_tokens': 1024, 'best_of': 4, 'max_output_tokens': 64}
formatter: {'memory_template': '', 'prompt_template': '', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '### Response:\n{bot_name}:', 'truncate_by_message': False}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name mistralai-mistral-nemo-9330-v214-mkmlizer
Waiting for job on mistralai-mistral-nemo-9330-v214-mkmlizer to finish
mistralai-mistral-nemo-9330-v214-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
mistralai-mistral-nemo-9330-v214-mkmlizer: ║ _____ __ __ ║
mistralai-mistral-nemo-9330-v214-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
mistralai-mistral-nemo-9330-v214-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
mistralai-mistral-nemo-9330-v214-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
mistralai-mistral-nemo-9330-v214-mkmlizer: ║ /___/ ║
mistralai-mistral-nemo-9330-v214-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v214-mkmlizer: ║ Version: 0.11.12 ║
mistralai-mistral-nemo-9330-v214-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
mistralai-mistral-nemo-9330-v214-mkmlizer: ║ https://mk1.ai ║
mistralai-mistral-nemo-9330-v214-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v214-mkmlizer: ║ The license key for the current software has been verified as ║
mistralai-mistral-nemo-9330-v214-mkmlizer: ║ belonging to: ║
mistralai-mistral-nemo-9330-v214-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v214-mkmlizer: ║ Chai Research Corp. ║
mistralai-mistral-nemo-9330-v214-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
mistralai-mistral-nemo-9330-v214-mkmlizer: ║ Expiration: 2025-01-15 23:59:59 ║
mistralai-mistral-nemo-9330-v214-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v214-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
mistralai-mistral-nemo-9330-v214-mkmlizer: Downloaded to shared memory in 54.353s
mistralai-mistral-nemo-9330-v214-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmp622vubf6, device:0
mistralai-mistral-nemo-9330-v214-mkmlizer: Saving flywheel model at /dev/shm/model_cache
mistralai-mistral-nemo-9330-v214-mkmlizer: quantized model in 36.011s
mistralai-mistral-nemo-9330-v214-mkmlizer: Processed model mistralai/Mistral-Nemo-Instruct-2407 in 90.364s
mistralai-mistral-nemo-9330-v214-mkmlizer: creating bucket guanaco-mkml-models
mistralai-mistral-nemo-9330-v214-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
mistralai-mistral-nemo-9330-v214-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v214
mistralai-mistral-nemo-9330-v214-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v214/config.json
mistralai-mistral-nemo-9330-v214-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v214/special_tokens_map.json
mistralai-mistral-nemo-9330-v214-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v214/tokenizer_config.json
mistralai-mistral-nemo-9330-v214-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v214/tokenizer.json
mistralai-mistral-nemo-9330-v214-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v214/flywheel_model.0.safetensors
mistralai-mistral-nemo-9330-v214-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:11, 31.94it/s] Loading 0: 4%|▎ | 13/363 [00:00<00:06, 54.27it/s] Loading 0: 5%|▌ | 19/363 [00:00<00:06, 49.83it/s] Loading 0: 7%|▋ | 25/363 [00:00<00:06, 51.73it/s] Loading 0: 9%|▉ | 32/363 [00:00<00:07, 46.83it/s] Loading 0: 11%|█ | 40/363 [00:00<00:05, 55.05it/s] Loading 0: 13%|█▎ | 46/363 [00:00<00:06, 52.14it/s] Loading 0: 14%|█▍ | 52/363 [00:01<00:06, 51.62it/s] Loading 0: 16%|█▌ | 58/363 [00:01<00:05, 53.81it/s] Loading 0: 18%|█▊ | 64/363 [00:01<00:09, 32.57it/s] Loading 0: 20%|█▉ | 72/363 [00:01<00:07, 40.67it/s] Loading 0: 21%|██▏ | 78/363 [00:01<00:06, 41.05it/s] Loading 0: 23%|██▎ | 83/363 [00:01<00:06, 42.23it/s] Loading 0: 25%|██▍ | 90/363 [00:01<00:05, 46.21it/s] Loading 0: 26%|██▋ | 96/363 [00:02<00:06, 43.14it/s] Loading 0: 28%|██▊ | 101/363 [00:02<00:06, 43.37it/s] Loading 0: 30%|██▉ | 108/363 [00:02<00:05, 49.63it/s] Loading 0: 31%|███▏ | 114/363 [00:02<00:05, 45.49it/s] Loading 0: 33%|███▎ | 119/363 [00:02<00:05, 44.33it/s] Loading 0: 34%|███▍ | 125/363 [00:02<00:04, 47.72it/s] Loading 0: 36%|███▌ | 130/363 [00:02<00:05, 44.27it/s] Loading 0: 37%|███▋ | 135/363 [00:02<00:05, 44.77it/s] Loading 0: 39%|███▉ | 141/363 [00:03<00:05, 43.42it/s] Loading 0: 40%|████ | 146/363 [00:03<00:06, 31.10it/s] Loading 0: 41%|████▏ | 150/363 [00:03<00:06, 30.88it/s] Loading 0: 43%|████▎ | 156/363 [00:03<00:05, 36.71it/s] Loading 0: 44%|████▍ | 161/363 [00:03<00:05, 37.85it/s] Loading 0: 46%|████▌ | 166/363 [00:03<00:04, 39.88it/s] Loading 0: 47%|████▋ | 172/363 [00:04<00:04, 39.82it/s] Loading 0: 49%|████▉ | 177/363 [00:04<00:04, 39.35it/s] Loading 0: 50%|█████ | 183/363 [00:04<00:04, 43.37it/s] Loading 0: 52%|█████▏ | 188/363 [00:04<00:04, 42.84it/s] Loading 0: 53%|█████▎ | 193/363 [00:04<00:03, 43.44it/s] Loading 0: 55%|█████▍ | 198/363 [00:04<00:03, 44.88it/s] Loading 0: 56%|█████▌ | 203/363 [00:04<00:04, 36.06it/s] Loading 0: 58%|█████▊ | 210/363 [00:04<00:03, 43.78it/s] Loading 0: 59%|█████▉ | 215/363 [00:05<00:03, 43.99it/s] Loading 0: 61%|██████ | 222/363 [00:05<00:03, 43.79it/s] Loading 0: 63%|██████▎ | 227/363 [00:05<00:04, 31.33it/s] Loading 0: 64%|██████▎ | 231/363 [00:05<00:04, 31.17it/s] Loading 0: 65%|██████▌ | 237/363 [00:05<00:03, 35.39it/s] Loading 0: 66%|██████▋ | 241/363 [00:05<00:03, 35.21it/s] Loading 0: 68%|██████▊ | 247/363 [00:05<00:02, 39.67it/s] Loading 0: 70%|██████▉ | 253/363 [00:06<00:02, 39.79it/s] Loading 0: 71%|███████ | 258/363 [00:06<00:02, 38.98it/s] Loading 0: 73%|███████▎ | 265/363 [00:06<00:02, 44.30it/s] Loading 0: 75%|███████▍ | 271/363 [00:06<00:02, 43.32it/s] Loading 0: 76%|███████▌ | 276/363 [00:06<00:02, 41.78it/s] Loading 0: 78%|███████▊ | 282/363 [00:06<00:01, 45.84it/s] Loading 0: 79%|███████▉ | 287/363 [00:06<00:01, 45.87it/s] Loading 0: 80%|████████ | 292/363 [00:06<00:01, 46.08it/s] Loading 0: 82%|████████▏ | 298/363 [00:07<00:01, 43.91it/s] Loading 0: 83%|████████▎ | 303/363 [00:07<00:01, 45.36it/s] Loading 0: 85%|████████▍ | 308/363 [00:14<00:22, 2.46it/s] Loading 0: 86%|████████▌ | 312/363 [00:14<00:16, 3.19it/s] Loading 0: 88%|████████▊ | 320/363 [00:14<00:08, 5.26it/s] Loading 0: 90%|████████▉ | 326/363 [00:14<00:05, 7.15it/s] Loading 0: 91%|█████████ | 331/363 [00:14<00:03, 9.14it/s] Loading 0: 93%|█████████▎| 338/363 [00:14<00:01, 13.03it/s] Loading 0: 95%|█████████▍| 344/363 [00:14<00:01, 16.43it/s] Loading 0: 96%|█████████▌| 349/363 [00:14<00:00, 19.74it/s] Loading 0: 98%|█████████▊| 356/363 [00:15<00:00, 25.75it/s] Loading 0: 100%|█████████▉| 362/363 [00:15<00:00, 29.66it/s]
Job mistralai-mistral-nemo-9330-v214-mkmlizer completed after 114.25s with status: succeeded
Stopping job with name mistralai-mistral-nemo-9330-v214-mkmlizer
Pipeline stage MKMLizer completed in 114.73s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.15s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service mistralai-mistral-nemo-9330-v214
Waiting for inference service mistralai-mistral-nemo-9330-v214 to be ready
Inference service mistralai-mistral-nemo-9330-v214 ready after 220.7665717601776s
Pipeline stage MKMLDeployer completed in 221.28s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 1.9552264213562012s
Received healthy response to inference request in 1.349172592163086s
Received healthy response to inference request in 1.3598921298980713s
Received healthy response to inference request in 1.4862768650054932s
Received healthy response to inference request in 1.3471250534057617s
5 requests
0 failed requests
5th percentile: 1.3475345611572265
10th percentile: 1.3479440689086915
20th percentile: 1.3487630844116212
30th percentile: 1.351316499710083
40th percentile: 1.355604314804077
50th percentile: 1.3598921298980713
60th percentile: 1.4104460239410401
70th percentile: 1.4609999179840087
80th percentile: 1.5800667762756349
90th percentile: 1.767646598815918
95th percentile: 1.8614365100860595
99th percentile: 1.936468439102173
mean time: 1.4995386123657226
Pipeline stage StressChecker completed in 8.74s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 2.33s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 2.08s
Shutdown handler de-registered
mistralai-mistral-nemo_9330_v214 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 3202.63s
Shutdown handler de-registered
mistralai-mistral-nemo_9330_v214 status is now inactive due to auto deactivation removed underperforming models