developer_uid: azuruce
submission_id: mistralai-mistral-nemo_9330_v211
model_name: mistralai-mistral-nemo_9330_v211
model_group: mistralai/Mistral-Nemo-I
status: inactive
timestamp: 2024-12-10T09:21:25+00:00
num_battles: 11138
num_wins: 5144
celo_rating: 1224.59
family_friendly_score: 0.5840000000000001
family_friendly_standard_error: 0.006970566691453429
submission_type: basic
model_repo: mistralai/Mistral-Nemo-Instruct-2407
model_architecture: MistralForCausalLM
model_num_parameters: 12772070400.0
best_of: 4
max_input_tokens: 1024
max_output_tokens: 64
latencies: [{'batch_size': 1, 'throughput': 0.6433801485400181, 'latency_mean': 1.5541341054439544, 'latency_p50': 1.5436265468597412, 'latency_p90': 1.7140612363815309}, {'batch_size': 3, 'throughput': 1.2720012074340838, 'latency_mean': 2.34596776008606, 'latency_p50': 2.341098427772522, 'latency_p90': 2.5940091371536256}, {'batch_size': 5, 'throughput': 1.6171585903308752, 'latency_mean': 3.084331066608429, 'latency_p50': 3.0705116987228394, 'latency_p90': 3.478147220611572}, {'batch_size': 6, 'throughput': 1.7221983152561673, 'latency_mean': 3.4712660026550295, 'latency_p50': 3.4968326091766357, 'latency_p90': 3.858475613594055}, {'batch_size': 8, 'throughput': 1.8824626925876367, 'latency_mean': 4.2242172026634215, 'latency_p50': 4.230776906013489, 'latency_p90': 4.958313202857971}, {'batch_size': 10, 'throughput': 1.961127977194623, 'latency_mean': 5.061095221042633, 'latency_p50': 5.060848116874695, 'latency_p90': 5.71203510761261}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: mistralai-mistral-nemo_9330_v211
is_internal_developer: True
language_model: mistralai/Mistral-Nemo-Instruct-2407
model_size: 13B
ranking_group: single
throughput_3p7s: 1.79
us_pacific_date: 2024-12-10
win_ratio: 0.46184234153348896
generation_params: {'temperature': 1.0, 'top_p': 1.0, 'min_p': 0.0, 'top_k': 100, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n', '</s>', '####', 'Bot:', 'User:', 'You:', '<|im_end|>', '<|eot_id|>'], 'max_input_tokens': 1024, 'best_of': 4, 'max_output_tokens': 64}
formatter: {'memory_template': '', 'prompt_template': '', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': False}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name mistralai-mistral-nemo-9330-v211-mkmlizer
Waiting for job on mistralai-mistral-nemo-9330-v211-mkmlizer to finish
mistralai-mistral-nemo-9330-v211-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
mistralai-mistral-nemo-9330-v211-mkmlizer: ║ _____ __ __ ║
mistralai-mistral-nemo-9330-v211-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
mistralai-mistral-nemo-9330-v211-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
mistralai-mistral-nemo-9330-v211-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
mistralai-mistral-nemo-9330-v211-mkmlizer: ║ /___/ ║
mistralai-mistral-nemo-9330-v211-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v211-mkmlizer: ║ Version: 0.11.12 ║
mistralai-mistral-nemo-9330-v211-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
mistralai-mistral-nemo-9330-v211-mkmlizer: ║ https://mk1.ai ║
mistralai-mistral-nemo-9330-v211-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v211-mkmlizer: ║ The license key for the current software has been verified as ║
mistralai-mistral-nemo-9330-v211-mkmlizer: ║ belonging to: ║
mistralai-mistral-nemo-9330-v211-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v211-mkmlizer: ║ Chai Research Corp. ║
mistralai-mistral-nemo-9330-v211-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
mistralai-mistral-nemo-9330-v211-mkmlizer: ║ Expiration: 2025-01-15 23:59:59 ║
mistralai-mistral-nemo-9330-v211-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v211-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
mistralai-mistral-nemo-9330-v211-mkmlizer: Downloaded to shared memory in 61.103s
mistralai-mistral-nemo-9330-v211-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmpt9e2rzaa, device:0
mistralai-mistral-nemo-9330-v211-mkmlizer: Saving flywheel model at /dev/shm/model_cache
mistralai-mistral-nemo-9330-v211-mkmlizer: quantized model in 39.074s
mistralai-mistral-nemo-9330-v211-mkmlizer: Processed model mistralai/Mistral-Nemo-Instruct-2407 in 100.177s
mistralai-mistral-nemo-9330-v211-mkmlizer: creating bucket guanaco-mkml-models
mistralai-mistral-nemo-9330-v211-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
mistralai-mistral-nemo-9330-v211-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v211
mistralai-mistral-nemo-9330-v211-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v211/config.json
mistralai-mistral-nemo-9330-v211-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v211/special_tokens_map.json
mistralai-mistral-nemo-9330-v211-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v211/tokenizer.json
mistralai-mistral-nemo-9330-v211-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v211/flywheel_model.0.safetensors
mistralai-mistral-nemo-9330-v211-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:13, 27.52it/s] Loading 0: 3%|▎ | 10/363 [00:00<00:09, 37.30it/s] Loading 0: 4%|▍ | 15/363 [00:00<00:09, 35.29it/s] Loading 0: 6%|▌ | 21/363 [00:00<00:08, 40.57it/s] Loading 0: 7%|▋ | 26/363 [00:00<00:08, 39.39it/s] Loading 0: 9%|▊ | 31/363 [00:00<00:08, 38.82it/s] Loading 0: 10%|▉ | 35/363 [00:00<00:08, 37.41it/s] Loading 0: 11%|█ | 39/363 [00:01<00:08, 36.76it/s] Loading 0: 12%|█▏ | 43/363 [00:01<00:09, 34.97it/s] Loading 0: 13%|█▎ | 48/363 [00:01<00:08, 36.75it/s] Loading 0: 14%|█▍ | 52/363 [00:01<00:08, 35.05it/s] Loading 0: 15%|█▌ | 56/363 [00:01<00:08, 34.70it/s] Loading 0: 17%|█▋ | 61/363 [00:01<00:11, 25.98it/s] Loading 0: 18%|█▊ | 64/363 [00:01<00:12, 24.75it/s] Loading 0: 20%|█▉ | 71/363 [00:02<00:08, 33.89it/s] Loading 0: 21%|██ | 75/363 [00:02<00:08, 34.28it/s] Loading 0: 22%|██▏ | 80/363 [00:02<00:07, 37.55it/s] Loading 0: 23%|██▎ | 85/363 [00:02<00:07, 38.35it/s] Loading 0: 25%|██▍ | 90/363 [00:02<00:06, 41.01it/s] Loading 0: 26%|██▋ | 96/363 [00:02<00:06, 40.46it/s] Loading 0: 28%|██▊ | 101/363 [00:02<00:06, 40.48it/s] Loading 0: 29%|██▉ | 106/363 [00:02<00:05, 42.84it/s] Loading 0: 31%|███ | 112/363 [00:03<00:05, 45.98it/s] Loading 0: 32%|███▏ | 117/363 [00:03<00:05, 44.18it/s] Loading 0: 34%|███▍ | 123/363 [00:03<00:05, 42.65it/s] Loading 0: 35%|███▌ | 128/363 [00:03<00:05, 41.06it/s] Loading 0: 37%|███▋ | 134/363 [00:03<00:05, 45.58it/s] Loading 0: 38%|███▊ | 139/363 [00:03<00:04, 44.97it/s] Loading 0: 40%|███▉ | 144/363 [00:04<00:08, 27.08it/s] Loading 0: 41%|████ | 149/363 [00:04<00:07, 29.18it/s] Loading 0: 43%|████▎ | 156/363 [00:04<00:05, 36.47it/s] Loading 0: 44%|████▍ | 161/363 [00:04<00:05, 37.56it/s] Loading 0: 46%|████▌ | 166/363 [00:04<00:05, 39.10it/s] Loading 0: 47%|████▋ | 171/363 [00:04<00:04, 40.92it/s] Loading 0: 48%|████▊ | 176/363 [00:04<00:05, 34.27it/s] Loading 0: 50%|█████ | 183/363 [00:04<00:04, 40.07it/s] Loading 0: 52%|█████▏ | 188/363 [00:05<00:04, 37.86it/s] Loading 0: 53%|█████▎ | 193/363 [00:05<00:04, 36.58it/s] Loading 0: 54%|█████▍ | 197/363 [00:05<00:04, 36.13it/s] Loading 0: 55%|█████▌ | 201/363 [00:05<00:04, 35.94it/s] Loading 0: 56%|█████▋ | 205/363 [00:05<00:04, 34.10it/s] Loading 0: 58%|█████▊ | 210/363 [00:05<00:04, 36.15it/s] Loading 0: 59%|█████▉ | 214/363 [00:05<00:04, 34.99it/s] Loading 0: 60%|██████ | 218/363 [00:05<00:04, 35.11it/s] Loading 0: 61%|██████▏ | 223/363 [00:06<00:05, 25.78it/s] Loading 0: 62%|██████▏ | 226/363 [00:06<00:05, 25.32it/s] Loading 0: 63%|██████▎ | 230/363 [00:06<00:05, 25.48it/s] Loading 0: 65%|██████▍ | 235/363 [00:06<00:04, 30.45it/s] Loading 0: 66%|██████▌ | 239/363 [00:06<00:04, 29.43it/s] Loading 0: 68%|██████▊ | 246/363 [00:06<00:03, 37.06it/s] Loading 0: 69%|██████▉ | 250/363 [00:07<00:03, 35.38it/s] Loading 0: 70%|██████▉ | 254/363 [00:07<00:03, 36.16it/s] Loading 0: 71%|███████ | 258/363 [00:07<00:03, 33.00it/s] Loading 0: 72%|███████▏ | 262/363 [00:07<00:02, 34.71it/s] Loading 0: 73%|███████▎ | 266/363 [00:07<00:03, 31.76it/s] Loading 0: 75%|███████▍ | 271/363 [00:07<00:02, 35.93it/s] Loading 0: 76%|███████▌ | 275/363 [00:07<00:02, 33.19it/s] Loading 0: 78%|███████▊ | 282/363 [00:07<00:02, 40.04it/s] Loading 0: 79%|███████▉ | 287/363 [00:08<00:01, 38.55it/s] Loading 0: 80%|████████ | 291/363 [00:08<00:01, 37.43it/s] Loading 0: 81%|████████▏ | 295/363 [00:08<00:01, 34.82it/s] Loading 0: 82%|████████▏ | 299/363 [00:08<00:01, 34.02it/s] Loading 0: 83%|████████▎ | 303/363 [00:08<00:01, 35.31it/s] Loading 0: 85%|████████▍ | 307/363 [00:15<00:29, 1.89it/s] Loading 0: 86%|████████▌ | 312/363 [00:15<00:18, 2.78it/s] Loading 0: 88%|████████▊ | 319/363 [00:15<00:09, 4.53it/s] Loading 0: 89%|████████▉ | 323/363 [00:15<00:06, 5.75it/s] Loading 0: 90%|█████████ | 328/363 [00:16<00:04, 7.85it/s] Loading 0: 91%|█████████▏| 332/363 [00:16<00:03, 9.78it/s] Loading 0: 93%|█████████▎| 337/363 [00:16<00:02, 12.95it/s] Loading 0: 94%|█████████▍| 341/363 [00:16<00:01, 15.30it/s] Loading 0: 95%|█████████▌| 346/363 [00:16<00:00, 19.23it/s] Loading 0: 96%|█████████▋| 350/363 [00:16<00:00, 21.37it/s] Loading 0: 98%|█████████▊| 355/363 [00:16<00:00, 25.40it/s] Loading 0: 99%|█████████▉| 359/363 [00:16<00:00, 26.60it/s]
Job mistralai-mistral-nemo-9330-v211-mkmlizer completed after 135.26s with status: succeeded
Stopping job with name mistralai-mistral-nemo-9330-v211-mkmlizer
Pipeline stage MKMLizer completed in 135.76s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.15s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service mistralai-mistral-nemo-9330-v211
Waiting for inference service mistralai-mistral-nemo-9330-v211 to be ready
Inference service mistralai-mistral-nemo-9330-v211 ready after 180.7066056728363s
Pipeline stage MKMLDeployer completed in 181.21s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 1.4993324279785156s
Received healthy response to inference request in 1.0113916397094727s
Received healthy response to inference request in 1.132112979888916s
Received healthy response to inference request in 0.6005363464355469s
Received healthy response to inference request in 0.9737458229064941s
5 requests
0 failed requests
5th percentile: 0.6751782417297363
10th percentile: 0.7498201370239258
20th percentile: 0.8991039276123047
30th percentile: 0.9812749862670899
40th percentile: 0.9963333129882812
50th percentile: 1.0113916397094727
60th percentile: 1.05968017578125
70th percentile: 1.1079687118530273
80th percentile: 1.205556869506836
90th percentile: 1.3524446487426758
95th percentile: 1.4258885383605957
99th percentile: 1.4846436500549316
mean time: 1.043423843383789
Pipeline stage StressChecker completed in 6.55s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 2.22s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 2.08s
Shutdown handler de-registered
mistralai-mistral-nemo_9330_v211 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 2339.64s
Shutdown handler de-registered
mistralai-mistral-nemo_9330_v211 status is now inactive due to auto deactivation removed underperforming models