submission_id: mistralai-mistral-nemo_9330_v193
developer_uid: chai_backend_admin
best_of: 8
celo_rating: 1246.73
display_name: mistralai-mistral-nemo_9330_v193
family_friendly_score: 0.5748
family_friendly_standard_error: 0.006991494260885866
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': False}
generation_params: {'temperature': 1.0, 'top_p': 1.0, 'min_p': 0.0, 'top_k': 40, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['\n'], 'max_input_tokens': 1024, 'best_of': 8, 'max_output_tokens': 64}
gpu_counts: {'NVIDIA RTX A5000': 1}
is_internal_developer: True
language_model: mistralai/Mistral-Nemo-Instruct-2407
latencies: [{'batch_size': 1, 'throughput': 0.6048281089216848, 'latency_mean': 1.6532670557498932, 'latency_p50': 1.6435965299606323, 'latency_p90': 1.8176429748535157}, {'batch_size': 3, 'throughput': 1.1139416711822874, 'latency_mean': 2.6850901007652284, 'latency_p50': 2.6585623025894165, 'latency_p90': 2.999036860466003}, {'batch_size': 5, 'throughput': 1.3413687394091138, 'latency_mean': 3.7116278839111327, 'latency_p50': 3.695399522781372, 'latency_p90': 4.127927970886231}, {'batch_size': 6, 'throughput': 1.4140315249739464, 'latency_mean': 4.224700770378113, 'latency_p50': 4.27324640750885, 'latency_p90': 4.793902516365051}, {'batch_size': 8, 'throughput': 1.4637449108843752, 'latency_mean': 5.426686081886292, 'latency_p50': 5.432748913764954, 'latency_p90': 6.056432294845581}, {'batch_size': 10, 'throughput': 1.5050417567952479, 'latency_mean': 6.590407791137696, 'latency_p50': 6.672607421875, 'latency_p90': 7.485409498214722}]
max_input_tokens: 1024
max_output_tokens: 64
model_architecture: MistralForCausalLM
model_group: mistralai/Mistral-Nemo-I
model_name: mistralai-mistral-nemo_9330_v193
model_num_parameters: 12772070400.0
model_repo: mistralai/Mistral-Nemo-Instruct-2407
model_size: 13B
num_battles: 13344
num_wins: 6754
ranking_group: single
status: inactive
submission_type: basic
throughput_3p7s: 1.35
timestamp: 2024-11-06T16:53:15+00:00
us_pacific_date: 2024-11-06
win_ratio: 0.5061450839328537
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name mistralai-mistral-nemo-9330-v193-mkmlizer
Waiting for job on mistralai-mistral-nemo-9330-v193-mkmlizer to finish
mistralai-mistral-nemo-9330-v193-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
mistralai-mistral-nemo-9330-v193-mkmlizer: ║ _____ __ __ ║
mistralai-mistral-nemo-9330-v193-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
mistralai-mistral-nemo-9330-v193-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
mistralai-mistral-nemo-9330-v193-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
mistralai-mistral-nemo-9330-v193-mkmlizer: ║ /___/ ║
mistralai-mistral-nemo-9330-v193-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v193-mkmlizer: ║ Version: 0.11.28 ║
mistralai-mistral-nemo-9330-v193-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
mistralai-mistral-nemo-9330-v193-mkmlizer: ║ https://mk1.ai ║
mistralai-mistral-nemo-9330-v193-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v193-mkmlizer: ║ The license key for the current software has been verified as ║
mistralai-mistral-nemo-9330-v193-mkmlizer: ║ belonging to: ║
mistralai-mistral-nemo-9330-v193-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v193-mkmlizer: ║ Chai Research Corp. ║
mistralai-mistral-nemo-9330-v193-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
mistralai-mistral-nemo-9330-v193-mkmlizer: ║ Expiration: 2025-01-15 23:59:59 ║
mistralai-mistral-nemo-9330-v193-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v193-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
mistralai-mistral-nemo-9330-v193-mkmlizer: Downloaded to shared memory in 55.324s
mistralai-mistral-nemo-9330-v193-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmptn96ldnv, device:0
mistralai-mistral-nemo-9330-v193-mkmlizer: Saving flywheel model at /dev/shm/model_cache
Connection pool is full, discarding connection: %s. Connection pool size: %s
mistralai-mistral-nemo-9330-v193-mkmlizer: quantized model in 38.435s
mistralai-mistral-nemo-9330-v193-mkmlizer: Processed model mistralai/Mistral-Nemo-Instruct-2407 in 93.759s
mistralai-mistral-nemo-9330-v193-mkmlizer: creating bucket guanaco-mkml-models
mistralai-mistral-nemo-9330-v193-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
mistralai-mistral-nemo-9330-v193-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v193
mistralai-mistral-nemo-9330-v193-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v193/config.json
mistralai-mistral-nemo-9330-v193-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v193/special_tokens_map.json
mistralai-mistral-nemo-9330-v193-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v193/tokenizer_config.json
mistralai-mistral-nemo-9330-v193-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v193/tokenizer.json
mistralai-mistral-nemo-9330-v193-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v193/flywheel_model.0.safetensors
mistralai-mistral-nemo-9330-v193-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:13, 26.94it/s] Loading 0: 3%|▎ | 10/363 [00:00<00:09, 36.67it/s] Loading 0: 4%|▍ | 14/363 [00:00<00:11, 31.50it/s] Loading 0: 6%|▌ | 21/363 [00:00<00:08, 40.81it/s] Loading 0: 7%|▋ | 26/363 [00:00<00:08, 39.71it/s] Loading 0: 9%|▊ | 31/363 [00:00<00:08, 39.26it/s] Loading 0: 10%|▉ | 36/363 [00:00<00:08, 40.39it/s] Loading 0: 11%|█▏ | 41/363 [00:01<00:10, 31.96it/s] Loading 0: 13%|█▎ | 48/363 [00:01<00:08, 38.71it/s] Loading 0: 15%|█▍ | 53/363 [00:01<00:08, 38.16it/s] Loading 0: 16%|█▌ | 58/363 [00:01<00:07, 39.12it/s] Loading 0: 17%|█▋ | 63/363 [00:01<00:11, 26.05it/s] Loading 0: 18%|█▊ | 67/363 [00:02<00:10, 27.77it/s] Loading 0: 20%|█▉ | 71/363 [00:02<00:10, 29.18it/s] Loading 0: 21%|██ | 75/363 [00:02<00:09, 29.14it/s] Loading 0: 22%|██▏ | 80/363 [00:02<00:08, 32.15it/s] Loading 0: 23%|██▎ | 84/363 [00:02<00:08, 31.74it/s] Loading 0: 25%|██▍ | 89/363 [00:02<00:08, 34.13it/s] Loading 0: 26%|██▌ | 93/363 [00:02<00:08, 33.62it/s] Loading 0: 27%|██▋ | 98/363 [00:02<00:07, 35.85it/s] Loading 0: 28%|██▊ | 102/363 [00:02<00:07, 35.74it/s] Loading 0: 30%|███ | 109/363 [00:03<00:05, 44.52it/s] Loading 0: 31%|███▏ | 114/363 [00:03<00:06, 40.36it/s] Loading 0: 33%|███▎ | 119/363 [00:03<00:05, 40.96it/s] Loading 0: 35%|███▍ | 126/363 [00:03<00:05, 45.79it/s] Loading 0: 36%|███▋ | 132/363 [00:03<00:05, 44.57it/s] Loading 0: 38%|███▊ | 137/363 [00:03<00:05, 43.07it/s] Loading 0: 39%|███▉ | 142/363 [00:03<00:06, 34.10it/s] Loading 0: 40%|████ | 146/363 [00:04<00:06, 34.34it/s] Loading 0: 41%|████▏ | 150/363 [00:04<00:06, 31.46it/s] Loading 0: 42%|████▏ | 154/363 [00:04<00:06, 33.34it/s] Loading 0: 44%|████▎ | 158/363 [00:04<00:06, 30.13it/s] Loading 0: 45%|████▌ | 165/363 [00:04<00:05, 37.40it/s] Loading 0: 47%|████▋ | 169/363 [00:04<00:05, 35.47it/s] Loading 0: 48%|████▊ | 174/363 [00:04<00:05, 36.91it/s] Loading 0: 49%|████▉ | 178/363 [00:05<00:05, 34.93it/s] Loading 0: 50%|█████ | 183/363 [00:05<00:04, 37.10it/s] Loading 0: 52%|█████▏ | 187/363 [00:05<00:05, 35.09it/s] Loading 0: 53%|█████▎ | 192/363 [00:05<00:04, 36.24it/s] Loading 0: 54%|█████▍ | 196/363 [00:05<00:04, 34.66it/s] Loading 0: 55%|█████▌ | 201/363 [00:05<00:04, 37.74it/s] Loading 0: 56%|█████▋ | 205/363 [00:05<00:04, 34.75it/s] Loading 0: 58%|█████▊ | 210/363 [00:05<00:04, 36.18it/s] Loading 0: 59%|█████▉ | 214/363 [00:06<00:04, 34.10it/s] Loading 0: 60%|██████ | 218/363 [00:06<00:04, 33.39it/s] Loading 0: 61%|██████▏ | 223/363 [00:06<00:05, 24.80it/s] Loading 0: 62%|██████▏ | 226/363 [00:06<00:05, 24.70it/s] Loading 0: 63%|██████▎ | 230/363 [00:06<00:05, 25.77it/s] Loading 0: 65%|██████▍ | 235/363 [00:06<00:04, 30.90it/s] Loading 0: 66%|██████▌ | 239/363 [00:06<00:04, 29.31it/s] Loading 0: 67%|██████▋ | 244/363 [00:07<00:03, 33.78it/s] Loading 0: 68%|██████▊ | 248/363 [00:07<00:03, 30.95it/s] Loading 0: 70%|██████▉ | 253/363 [00:07<00:03, 35.30it/s] Loading 0: 71%|███████ | 257/363 [00:07<00:03, 32.14it/s] Loading 0: 72%|███████▏ | 262/363 [00:07<00:02, 35.21it/s] Loading 0: 73%|███████▎ | 266/363 [00:07<00:03, 31.69it/s] Loading 0: 75%|███████▍ | 271/363 [00:07<00:02, 35.62it/s] Loading 0: 76%|███████▌ | 275/363 [00:08<00:02, 31.89it/s] Loading 0: 78%|███████▊ | 282/363 [00:08<00:02, 38.73it/s] Loading 0: 79%|███████▉ | 287/363 [00:08<00:02, 37.73it/s] Loading 0: 80%|████████ | 291/363 [00:08<00:01, 36.97it/s] Loading 0: 81%|████████▏ | 295/363 [00:08<00:01, 34.93it/s] Loading 0: 82%|████████▏ | 299/363 [00:08<00:01, 35.32it/s] Loading 0: 84%|████████▎ | 304/363 [00:15<00:27, 2.15it/s] Loading 0: 85%|████████▍ | 307/363 [00:15<00:20, 2.68it/s] Loading 0: 86%|████████▌ | 312/363 [00:15<00:12, 3.93it/s] Loading 0: 88%|████████▊ | 319/363 [00:15<00:06, 6.34it/s] Loading 0: 89%|████████▉ | 323/363 [00:15<00:05, 7.92it/s] Loading 0: 90%|█████████ | 328/363 [00:16<00:03, 10.63it/s] Loading 0: 91%|█████████▏| 332/363 [00:16<00:02, 12.91it/s] Loading 0: 93%|█████████▎| 337/363 [00:16<00:01, 16.87it/s] Loading 0: 94%|█████████▍| 342/363 [00:16<00:01, 20.55it/s] Loading 0: 96%|█████████▌| 347/363 [00:16<00:00, 24.25it/s] Loading 0: 97%|█████████▋| 352/363 [00:16<00:00, 27.99it/s] Loading 0: 98%|█████████▊| 357/363 [00:16<00:00, 25.68it/s]
Job mistralai-mistral-nemo-9330-v193-mkmlizer completed after 124.3s with status: succeeded
Stopping job with name mistralai-mistral-nemo-9330-v193-mkmlizer
Pipeline stage MKMLizer completed in 124.83s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.22s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service mistralai-mistral-nemo-9330-v193
Waiting for inference service mistralai-mistral-nemo-9330-v193 to be ready
Connection pool is full, discarding connection: %s. Connection pool size: %s
Inference service mistralai-mistral-nemo-9330-v193 ready after 170.5791699886322s
Pipeline stage MKMLDeployer completed in 171.20s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.0229434967041016s
Received healthy response to inference request in 1.2274327278137207s
Received healthy response to inference request in 1.895937442779541s
Received healthy response to inference request in 1.207057237625122s
Received healthy response to inference request in 1.9067559242248535s
5 requests
0 failed requests
5th percentile: 1.2111323356628418
10th percentile: 1.2152074337005616
20th percentile: 1.223357629776001
30th percentile: 1.3611336708068849
40th percentile: 1.628535556793213
50th percentile: 1.895937442779541
60th percentile: 1.900264835357666
70th percentile: 1.904592227935791
80th percentile: 1.9299934387207032
90th percentile: 1.9764684677124023
95th percentile: 1.999705982208252
99th percentile: 2.018295993804932
mean time: 1.6520253658294677
Pipeline stage StressChecker completed in 9.73s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 2.64s
Shutdown handler de-registered
mistralai-mistral-nemo_9330_v193 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 2673.20s
Shutdown handler de-registered
mistralai-mistral-nemo_9330_v193 status is now inactive due to auto deactivation removed underperforming models