Running pipeline stage MKMLizer
Starting job with name mistralai-mistral-nemo-9330-v32-mkmlizer
Waiting for job on mistralai-mistral-nemo-9330-v32-mkmlizer to finish
mistralai-mistral-nemo-9330-v32-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
mistralai-mistral-nemo-9330-v32-mkmlizer: ║ _____ __ __ ║
mistralai-mistral-nemo-9330-v32-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
mistralai-mistral-nemo-9330-v32-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
mistralai-mistral-nemo-9330-v32-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
mistralai-mistral-nemo-9330-v32-mkmlizer: ║ /___/ ║
mistralai-mistral-nemo-9330-v32-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v32-mkmlizer: ║ Version: 0.9.7 ║
mistralai-mistral-nemo-9330-v32-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
mistralai-mistral-nemo-9330-v32-mkmlizer: ║ https://mk1.ai ║
mistralai-mistral-nemo-9330-v32-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v32-mkmlizer: ║ The license key for the current software has been verified as ║
mistralai-mistral-nemo-9330-v32-mkmlizer: ║ belonging to: ║
mistralai-mistral-nemo-9330-v32-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v32-mkmlizer: ║ Chai Research Corp. ║
mistralai-mistral-nemo-9330-v32-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
mistralai-mistral-nemo-9330-v32-mkmlizer: ║ Expiration: 2024-10-15 23:59:59 ║
mistralai-mistral-nemo-9330-v32-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v32-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
Failed to get response for submission chaiml-sao10k-l3-rp-v3-3_v66: ('http://chaiml-sao10k-l3-rp-v3-3-v66-predictor.tenant-chaiml-guanaco.k.chaiverse.com/v1/models/GPT-J-6B-lit-v2:predict', 'read tcp 127.0.0.1:50002->127.0.0.1:8080: read: connection reset by peer\n')
mistralai-mistral-nemo-9330-v32-mkmlizer: Downloaded to shared memory in 51.577s
mistralai-mistral-nemo-9330-v32-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmp765or677, device:0
mistralai-mistral-nemo-9330-v32-mkmlizer: Saving flywheel model at /dev/shm/model_cache
mistralai-mistral-nemo-9330-v32-mkmlizer: quantized model in 35.533s
mistralai-mistral-nemo-9330-v32-mkmlizer: Processed model mistralai/Mistral-Nemo-Instruct-2407 in 87.110s
mistralai-mistral-nemo-9330-v32-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
mistralai-mistral-nemo-9330-v32-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v32
mistralai-mistral-nemo-9330-v32-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v32/config.json
mistralai-mistral-nemo-9330-v32-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v32/special_tokens_map.json
mistralai-mistral-nemo-9330-v32-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v32/tokenizer_config.json
mistralai-mistral-nemo-9330-v32-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v32/tokenizer.json
mistralai-mistral-nemo-9330-v32-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v32/flywheel_model.0.safetensors
mistralai-mistral-nemo-9330-v32-mkmlizer: loading reward model from ChaiML/gpt2_xl_pairwise_89m_step_347634
mistralai-mistral-nemo-9330-v32-mkmlizer:
Loading 0: 0%| | 0/363 [00:00<?, ?it/s]
Loading 0: 1%|▏ | 5/363 [00:00<00:10, 33.80it/s]
Loading 0: 4%|▎ | 13/363 [00:00<00:06, 54.75it/s]
Loading 0: 5%|▌ | 19/363 [00:00<00:06, 49.94it/s]
Loading 0: 7%|▋ | 25/363 [00:00<00:06, 50.86it/s]
Loading 0: 9%|▊ | 31/363 [00:00<00:06, 53.07it/s]
Loading 0: 10%|█ | 37/363 [00:00<00:06, 50.41it/s]
Loading 0: 12%|█▏ | 43/363 [00:00<00:06, 48.85it/s]
Loading 0: 13%|█▎ | 49/363 [00:00<00:06, 50.87it/s]
Loading 0: 15%|█▌ | 55/363 [00:01<00:06, 48.29it/s]
Loading 0: 17%|█▋ | 61/363 [00:01<00:08, 37.05it/s]
Loading 0: 18%|█▊ | 66/363 [00:01<00:07, 37.82it/s]
Loading 0: 20%|█▉ | 72/363 [00:01<00:06, 42.10it/s]
Loading 0: 21%|██▏ | 78/363 [00:01<00:06, 42.55it/s]
Loading 0: 23%|██▎ | 83/363 [00:01<00:06, 42.54it/s]
Loading 0: 25%|██▍ | 90/363 [00:01<00:05, 46.79it/s]
Loading 0: 26%|██▌ | 95/363 [00:02<00:05, 46.32it/s]
Loading 0: 28%|██▊ | 100/363 [00:02<00:06, 39.34it/s]
Loading 0: 30%|███ | 109/363 [00:02<00:04, 50.91it/s]
Loading 0: 32%|███▏ | 115/363 [00:02<00:05, 46.30it/s]
Loading 0: 33%|███▎ | 121/363 [00:02<00:05, 45.91it/s]
Loading 0: 35%|███▍ | 126/363 [00:02<00:05, 46.76it/s]
Loading 0: 36%|███▋ | 132/363 [00:02<00:05, 45.03it/s]
Loading 0: 38%|███▊ | 137/363 [00:03<00:05, 42.78it/s]
Loading 0: 39%|███▉ | 142/363 [00:03<00:06, 33.59it/s]
Loading 0: 40%|████ | 146/363 [00:03<00:06, 34.54it/s]
Loading 0: 41%|████▏ | 150/363 [00:03<00:06, 33.70it/s]
Loading 0: 43%|████▎ | 157/363 [00:03<00:05, 40.13it/s]
Loading 0: 45%|████▍ | 163/363 [00:03<00:05, 39.30it/s]
Loading 0: 46%|████▋ | 168/363 [00:03<00:04, 39.15it/s]
Loading 0: 48%|████▊ | 174/363 [00:04<00:04, 43.88it/s]
Loading 0: 49%|████▉ | 179/363 [00:04<00:04, 43.19it/s]
Loading 0: 51%|█████ | 184/363 [00:04<00:04, 43.74it/s]
Loading 0: 52%|█████▏ | 189/363 [00:04<00:03, 45.18it/s]
Loading 0: 53%|█████▎ | 194/363 [00:04<00:04, 38.66it/s]
Loading 0: 56%|█████▌ | 202/363 [00:04<00:03, 46.46it/s]
Loading 0: 57%|█████▋ | 208/363 [00:04<00:03, 44.47it/s]
Loading 0: 59%|█████▊ | 213/363 [00:04<00:03, 42.18it/s]
Loading 0: 60%|██████ | 219/363 [00:05<00:03, 46.26it/s]
Loading 0: 62%|██████▏ | 224/363 [00:05<00:04, 33.91it/s]
Loading 0: 63%|██████▎ | 228/363 [00:05<00:03, 34.17it/s]
Loading 0: 64%|██████▍ | 232/363 [00:05<00:03, 33.75it/s]
Loading 0: 65%|██████▌ | 237/363 [00:05<00:03, 36.70it/s]
Loading 0: 66%|██████▋ | 241/363 [00:05<00:03, 36.55it/s]
Loading 0: 68%|██████▊ | 246/363 [00:05<00:02, 39.90it/s]
Loading 0: 69%|██████▉ | 251/363 [00:05<00:02, 41.24it/s]
Loading 0: 71%|███████ | 256/363 [00:06<00:02, 43.26it/s]
Loading 0: 72%|███████▏ | 262/363 [00:06<00:02, 42.53it/s]
Loading 0: 74%|███████▎ | 267/363 [00:06<00:02, 41.38it/s]
Loading 0: 75%|███████▌ | 274/363 [00:06<00:01, 46.79it/s]
Loading 0: 77%|███████▋ | 280/363 [00:06<00:01, 45.13it/s]
Loading 0: 79%|███████▊ | 285/363 [00:06<00:01, 43.01it/s]
Loading 0: 80%|████████ | 292/363 [00:06<00:01, 47.25it/s]
Loading 0: 82%|████████▏ | 298/363 [00:06<00:01, 44.85it/s]
Loading 0: 83%|████████▎ | 303/363 [00:07<00:01, 45.88it/s]
Loading 0: 85%|████████▍ | 308/363 [00:13<00:21, 2.59it/s]
Loading 0: 86%|████████▌ | 312/363 [00:13<00:15, 3.32it/s]
Loading 0: 88%|████████▊ | 320/363 [00:14<00:07, 5.42it/s]
Loading 0: 90%|████████▉ | 326/363 [00:14<00:05, 7.38it/s]
Loading 0: 91%|█████████ | 331/363 [00:14<00:03, 9.46it/s]
Loading 0: 93%|█████████▎| 338/363 [00:14<00:01, 13.43it/s]
Loading 0: 95%|█████████▍| 344/363 [00:14<00:01, 16.93it/s]
Loading 0: 96%|█████████▌| 349/363 [00:14<00:00, 20.05it/s]
Loading 0: 98%|█████████▊| 356/363 [00:14<00:00, 26.41it/s]
Loading 0: 100%|█████████▉| 362/363 [00:14<00:00, 29.44it/s]
/opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:957: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
mistralai-mistral-nemo-9330-v32-mkmlizer: warnings.warn(
mistralai-mistral-nemo-9330-v32-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:785: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
mistralai-mistral-nemo-9330-v32-mkmlizer: warnings.warn(
mistralai-mistral-nemo-9330-v32-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:469: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
mistralai-mistral-nemo-9330-v32-mkmlizer: warnings.warn(
mistralai-mistral-nemo-9330-v32-mkmlizer:
Downloading shards: 0%| | 0/2 [00:00<?, ?it/s]
Downloading shards: 50%|█████ | 1/2 [00:05<00:05, 5.23s/it]
Downloading shards: 100%|██████████| 2/2 [00:08<00:00, 3.80s/it]
Downloading shards: 100%|██████████| 2/2 [00:08<00:00, 4.01s/it]
mistralai-mistral-nemo-9330-v32-mkmlizer:
Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]
Loading checkpoint shards: 50%|█████ | 1/2 [00:00<00:00, 2.33it/s]
Loading checkpoint shards: 100%|██████████| 2/2 [00:00<00:00, 3.83it/s]
Loading checkpoint shards: 100%|██████████| 2/2 [00:00<00:00, 3.49it/s]
mistralai-mistral-nemo-9330-v32-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
mistralai-mistral-nemo-9330-v32-mkmlizer: Saving duration: 1.417s
mistralai-mistral-nemo-9330-v32-mkmlizer: Processed model ChaiML/gpt2_xl_pairwise_89m_step_347634 in 13.516s
mistralai-mistral-nemo-9330-v32-mkmlizer: creating bucket guanaco-reward-models
mistralai-mistral-nemo-9330-v32-mkmlizer: Bucket 's3://guanaco-reward-models/' created
mistralai-mistral-nemo-9330-v32-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v32_reward
mistralai-mistral-nemo-9330-v32-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v32_reward/special_tokens_map.json
mistralai-mistral-nemo-9330-v32-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v32_reward/config.json
mistralai-mistral-nemo-9330-v32-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v32_reward/tokenizer_config.json
mistralai-mistral-nemo-9330-v32-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v32_reward/merges.txt
mistralai-mistral-nemo-9330-v32-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v32_reward/vocab.json
mistralai-mistral-nemo-9330-v32-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v32_reward/tokenizer.json
mistralai-mistral-nemo-9330-v32-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v32_reward/reward.tensors
Job mistralai-mistral-nemo-9330-v32-mkmlizer completed after 137.09s with status: succeeded
Stopping job with name mistralai-mistral-nemo-9330-v32-mkmlizer
Pipeline stage MKMLizer completed in 138.12s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.11s
Running pipeline stage ISVCDeployer
Creating inference service mistralai-mistral-nemo-9330-v32
Waiting for inference service mistralai-mistral-nemo-9330-v32 to be ready
Inference service mistralai-mistral-nemo-9330-v32 ready after 130.98042058944702s
Pipeline stage ISVCDeployer completed in 132.60s
Running pipeline stage StressChecker
Received healthy response to inference request in 1.7141671180725098s
Received healthy response to inference request in 0.8555500507354736s
Received healthy response to inference request in 0.8763108253479004s
Received healthy response to inference request in 1.5034525394439697s
Received healthy response to inference request in 0.9926435947418213s
5 requests
0 failed requests
5th percentile: 0.859702205657959
10th percentile: 0.8638543605804443
20th percentile: 0.8721586704254151
30th percentile: 0.8995773792266846
40th percentile: 0.9461104869842529
50th percentile: 0.9926435947418213
60th percentile: 1.1969671726226807
70th percentile: 1.40129075050354
80th percentile: 1.5455954551696778
90th percentile: 1.6298812866210937
95th percentile: 1.6720242023468017
99th percentile: 1.7057385349273682
mean time: 1.188424825668335
Pipeline stage StressChecker completed in 6.70s
mistralai-mistral-nemo-_9330_v32 status is now deployed due to DeploymentManager action
mistralai-mistral-nemo-_9330_v32 status is now inactive due to auto deactivation removed underperforming models
admin requested tearing down of mistralai-mistral-nemo-_9330_v32
Running pipeline stage ISVCDeleter
Checking if service mistralai-mistral-nemo-9330-v32 is running
Tearing down inference service mistralai-mistral-nemo-9330-v32
Service mistralai-mistral-nemo-9330-v32 has been torndown
Pipeline stage ISVCDeleter completed in 4.52s
Running pipeline stage MKMLModelDeleter
Cleaning model data from S3
Cleaning model data from model cache
Deleting key mistralai-mistral-nemo-9330-v32/config.json from bucket guanaco-mkml-models
Deleting key mistralai-mistral-nemo-9330-v32/flywheel_model.0.safetensors from bucket guanaco-mkml-models
Deleting key mistralai-mistral-nemo-9330-v32/special_tokens_map.json from bucket guanaco-mkml-models
Deleting key mistralai-mistral-nemo-9330-v32/tokenizer.json from bucket guanaco-mkml-models
Deleting key mistralai-mistral-nemo-9330-v32/tokenizer_config.json from bucket guanaco-mkml-models
Cleaning model data from model cache
Deleting key mistralai-mistral-nemo-9330-v32_reward/config.json from bucket guanaco-reward-models
Deleting key mistralai-mistral-nemo-9330-v32_reward/merges.txt from bucket guanaco-reward-models
Deleting key mistralai-mistral-nemo-9330-v32_reward/reward.tensors from bucket guanaco-reward-models
Deleting key mistralai-mistral-nemo-9330-v32_reward/special_tokens_map.json from bucket guanaco-reward-models
Deleting key mistralai-mistral-nemo-9330-v32_reward/tokenizer.json from bucket guanaco-reward-models
Deleting key mistralai-mistral-nemo-9330-v32_reward/tokenizer_config.json from bucket guanaco-reward-models
Deleting key mistralai-mistral-nemo-9330-v32_reward/vocab.json from bucket guanaco-reward-models
Pipeline stage MKMLModelDeleter completed in 6.13s
mistralai-mistral-nemo-_9330_v32 status is now torndown due to DeploymentManager action