developer_uid: zonemercy
submission_id: mistralai-mistral-nemo-_9330_v31
model_name: 0731v1-0
model_group: mistralai/Mistral-Nemo-I
status: torndown
timestamp: 2024-07-31T18:43:30+00:00
num_battles: 19410
num_wins: 8387
celo_rating: 1153.52
family_friendly_score: 0.0
submission_type: basic
model_repo: mistralai/Mistral-Nemo-Instruct-2407
model_architecture: MistralForCausalLM
reward_repo: ChaiML/gpt2_xl_pairwise_89m_step_347634
model_num_parameters: 12772070400.0
best_of: 1
max_input_tokens: 1024
max_output_tokens: 64
display_name: 0731v1-0
is_internal_developer: True
language_model: mistralai/Mistral-Nemo-Instruct-2407
model_size: 13B
ranking_group: single
us_pacific_date: 2024-07-31
win_ratio: 0.43209685729005665
generation_params: {'temperature': 0.95, 'top_p': 1.0, 'min_p': 0.05, 'top_k': 80, 'presence_penalty': 0.0, 'frequency_penalty': 0.0, 'stopping_words': ['</s>', '###', 'Bot:', 'User:', 'You:', '<|im_end|>'], 'max_input_tokens': 1024, 'best_of': 1, 'max_output_tokens': 64, 'reward_max_token_input': 256}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': False}
reward_formatter: {'bot_template': '{bot_name}: {message}\n', 'memory_template': '', 'prompt_template': '', 'response_template': '{bot_name}:', 'truncate_by_message': False, 'user_template': '{user_name}: {message}\n'}
Resubmit model
Running pipeline stage MKMLizer
Starting job with name mistralai-mistral-nemo-9330-v31-mkmlizer
Waiting for job on mistralai-mistral-nemo-9330-v31-mkmlizer to finish
mistralai-mistral-nemo-9330-v31-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
mistralai-mistral-nemo-9330-v31-mkmlizer: ║ _____ __ __ ║
mistralai-mistral-nemo-9330-v31-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
mistralai-mistral-nemo-9330-v31-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
mistralai-mistral-nemo-9330-v31-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
mistralai-mistral-nemo-9330-v31-mkmlizer: ║ /___/ ║
mistralai-mistral-nemo-9330-v31-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v31-mkmlizer: ║ Version: 0.9.7 ║
mistralai-mistral-nemo-9330-v31-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
mistralai-mistral-nemo-9330-v31-mkmlizer: ║ https://mk1.ai ║
mistralai-mistral-nemo-9330-v31-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v31-mkmlizer: ║ The license key for the current software has been verified as ║
mistralai-mistral-nemo-9330-v31-mkmlizer: ║ belonging to: ║
mistralai-mistral-nemo-9330-v31-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v31-mkmlizer: ║ Chai Research Corp. ║
mistralai-mistral-nemo-9330-v31-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
mistralai-mistral-nemo-9330-v31-mkmlizer: ║ Expiration: 2024-10-15 23:59:59 ║
mistralai-mistral-nemo-9330-v31-mkmlizer: ║ ║
mistralai-mistral-nemo-9330-v31-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
mistralai-mistral-nemo-9330-v31-mkmlizer: Downloaded to shared memory in 53.581s
mistralai-mistral-nemo-9330-v31-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmp4ac40g_e, device:0
mistralai-mistral-nemo-9330-v31-mkmlizer: Saving flywheel model at /dev/shm/model_cache
mistralai-mistral-nemo-9330-v31-mkmlizer: quantized model in 35.659s
mistralai-mistral-nemo-9330-v31-mkmlizer: Processed model mistralai/Mistral-Nemo-Instruct-2407 in 89.240s
mistralai-mistral-nemo-9330-v31-mkmlizer: creating bucket guanaco-mkml-models
mistralai-mistral-nemo-9330-v31-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
mistralai-mistral-nemo-9330-v31-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v31
mistralai-mistral-nemo-9330-v31-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v31/config.json
mistralai-mistral-nemo-9330-v31-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v31/special_tokens_map.json
mistralai-mistral-nemo-9330-v31-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v31/tokenizer_config.json
mistralai-mistral-nemo-9330-v31-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v31/tokenizer.json
mistralai-mistral-nemo-9330-v31-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/mistralai-mistral-nemo-9330-v31/flywheel_model.0.safetensors
mistralai-mistral-nemo-9330-v31-mkmlizer: loading reward model from ChaiML/gpt2_xl_pairwise_89m_step_347634
mistralai-mistral-nemo-9330-v31-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:10, 34.38it/s] Loading 0: 4%|▎ | 13/363 [00:00<00:06, 54.56it/s] Loading 0: 5%|▌ | 19/363 [00:00<00:07, 47.10it/s] Loading 0: 7%|▋ | 24/363 [00:00<00:07, 44.87it/s] Loading 0: 9%|▊ | 31/363 [00:00<00:06, 50.97it/s] Loading 0: 10%|█ | 37/363 [00:00<00:06, 47.50it/s] Loading 0: 12%|█▏ | 42/363 [00:00<00:07, 45.24it/s] Loading 0: 13%|█▎ | 49/363 [00:01<00:06, 50.55it/s] Loading 0: 15%|█▌ | 55/363 [00:01<00:06, 45.96it/s] Loading 0: 17%|█▋ | 61/363 [00:01<00:08, 35.85it/s] Loading 0: 18%|█▊ | 66/363 [00:01<00:07, 37.29it/s] Loading 0: 20%|█▉ | 72/363 [00:01<00:06, 41.63it/s] Loading 0: 21%|██▏ | 78/363 [00:01<00:06, 41.08it/s] Loading 0: 23%|██▎ | 83/363 [00:01<00:06, 40.31it/s] Loading 0: 25%|██▍ | 89/363 [00:02<00:06, 44.84it/s] Loading 0: 26%|██▌ | 94/363 [00:02<00:06, 44.21it/s] Loading 0: 27%|██▋ | 99/363 [00:02<00:05, 44.60it/s] Loading 0: 29%|██▊ | 104/363 [00:02<00:05, 45.49it/s] Loading 0: 30%|███ | 109/363 [00:02<00:05, 46.57it/s] Loading 0: 31%|███▏ | 114/363 [00:02<00:06, 38.79it/s] Loading 0: 33%|███▎ | 119/363 [00:02<00:06, 38.67it/s] Loading 0: 34%|███▍ | 125/363 [00:02<00:05, 43.57it/s] Loading 0: 36%|███▌ | 130/363 [00:03<00:05, 42.78it/s] Loading 0: 37%|███▋ | 135/363 [00:03<00:05, 43.34it/s] Loading 0: 39%|███▉ | 141/363 [00:03<00:05, 41.50it/s] Loading 0: 40%|████ | 146/363 [00:03<00:07, 29.89it/s] Loading 0: 41%|████▏ | 150/363 [00:03<00:07, 30.05it/s] Loading 0: 43%|████▎ | 156/363 [00:03<00:05, 36.01it/s] Loading 0: 44%|████▍ | 161/363 [00:03<00:05, 38.39it/s] Loading 0: 46%|████▌ | 166/363 [00:04<00:04, 40.08it/s] Loading 0: 47%|████▋ | 171/363 [00:04<00:04, 42.23it/s] Loading 0: 48%|████▊ | 176/363 [00:04<00:05, 36.74it/s] Loading 0: 50%|█████ | 183/363 [00:04<00:04, 44.63it/s] Loading 0: 52%|█████▏ | 188/363 [00:04<00:03, 44.45it/s] Loading 0: 53%|█████▎ | 193/363 [00:04<00:03, 44.89it/s] Loading 0: 55%|█████▍ | 199/363 [00:04<00:03, 42.61it/s] Loading 0: 56%|█████▌ | 204/363 [00:04<00:03, 41.93it/s] Loading 0: 58%|█████▊ | 210/363 [00:04<00:03, 46.06it/s] Loading 0: 59%|█████▉ | 215/363 [00:05<00:03, 45.72it/s] Loading 0: 61%|██████ | 221/363 [00:05<00:02, 49.45it/s] Loading 0: 63%|██████▎ | 227/363 [00:05<00:04, 32.34it/s] Loading 0: 64%|██████▍ | 232/363 [00:05<00:03, 33.96it/s] Loading 0: 65%|██████▌ | 237/363 [00:05<00:03, 36.95it/s] Loading 0: 67%|██████▋ | 242/363 [00:05<00:03, 38.67it/s] Loading 0: 68%|██████▊ | 247/363 [00:05<00:02, 40.63it/s] Loading 0: 70%|██████▉ | 253/363 [00:06<00:02, 40.55it/s] Loading 0: 71%|███████ | 258/363 [00:06<00:02, 40.03it/s] Loading 0: 73%|███████▎ | 264/363 [00:06<00:02, 44.71it/s] Loading 0: 74%|███████▍ | 269/363 [00:06<00:02, 44.64it/s] Loading 0: 75%|███████▌ | 274/363 [00:06<00:01, 45.07it/s] Loading 0: 77%|███████▋ | 280/363 [00:06<00:01, 42.45it/s] Loading 0: 79%|███████▊ | 285/363 [00:06<00:01, 42.00it/s] Loading 0: 80%|████████ | 291/363 [00:06<00:01, 46.38it/s] Loading 0: 82%|████████▏ | 296/363 [00:07<00:01, 45.86it/s] Loading 0: 83%|████████▎ | 302/363 [00:07<00:01, 49.02it/s] Loading 0: 85%|████████▍ | 307/363 [00:13<00:21, 2.56it/s] Loading 0: 86%|████████▌ | 312/363 [00:14<00:14, 3.49it/s] Loading 0: 88%|████████▊ | 320/363 [00:14<00:07, 5.59it/s] Loading 0: 90%|████████▉ | 326/363 [00:14<00:04, 7.51it/s] Loading 0: 91%|█████████ | 331/363 [00:14<00:03, 9.57it/s] Loading 0: 93%|█████████▎| 338/363 [00:14<00:01, 13.53it/s] Loading 0: 95%|█████████▍| 344/363 [00:14<00:01, 16.92it/s] Loading 0: 96%|█████████▌| 349/363 [00:14<00:00, 20.10it/s] Loading 0: 98%|█████████▊| 356/363 [00:14<00:00, 26.00it/s] Loading 0: 100%|█████████▉| 362/363 [00:15<00:00, 29.27it/s] /opt/conda/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:957: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
mistralai-mistral-nemo-9330-v31-mkmlizer: warnings.warn(
mistralai-mistral-nemo-9330-v31-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:785: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
mistralai-mistral-nemo-9330-v31-mkmlizer: warnings.warn(
mistralai-mistral-nemo-9330-v31-mkmlizer: /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:469: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
mistralai-mistral-nemo-9330-v31-mkmlizer: warnings.warn(
mistralai-mistral-nemo-9330-v31-mkmlizer: Downloading shards: 0%| | 0/2 [00:00<?, ?it/s] Downloading shards: 50%|█████ | 1/2 [00:05<00:05, 5.76s/it] Downloading shards: 100%|██████████| 2/2 [00:08<00:00, 3.96s/it] Downloading shards: 100%|██████████| 2/2 [00:08<00:00, 4.23s/it]
mistralai-mistral-nemo-9330-v31-mkmlizer: Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s] Loading checkpoint shards: 50%|█████ | 1/2 [00:00<00:00, 2.39it/s] Loading checkpoint shards: 100%|██████████| 2/2 [00:00<00:00, 3.92it/s] Loading checkpoint shards: 100%|██████████| 2/2 [00:00<00:00, 3.57it/s]
mistralai-mistral-nemo-9330-v31-mkmlizer: Saving model to /tmp/reward_cache/reward.tensors
mistralai-mistral-nemo-9330-v31-mkmlizer: Bucket 's3://guanaco-reward-models/' created
mistralai-mistral-nemo-9330-v31-mkmlizer: uploading /tmp/reward_cache to s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v31_reward
mistralai-mistral-nemo-9330-v31-mkmlizer: cp /tmp/reward_cache/config.json s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v31_reward/config.json
mistralai-mistral-nemo-9330-v31-mkmlizer: cp /tmp/reward_cache/special_tokens_map.json s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v31_reward/special_tokens_map.json
mistralai-mistral-nemo-9330-v31-mkmlizer: cp /tmp/reward_cache/tokenizer_config.json s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v31_reward/tokenizer_config.json
mistralai-mistral-nemo-9330-v31-mkmlizer: cp /tmp/reward_cache/merges.txt s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v31_reward/merges.txt
mistralai-mistral-nemo-9330-v31-mkmlizer: cp /tmp/reward_cache/vocab.json s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v31_reward/vocab.json
mistralai-mistral-nemo-9330-v31-mkmlizer: cp /tmp/reward_cache/tokenizer.json s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v31_reward/tokenizer.json
mistralai-mistral-nemo-9330-v31-mkmlizer: cp /tmp/reward_cache/reward.tensors s3://guanaco-reward-models/mistralai-mistral-nemo-9330-v31_reward/reward.tensors
Job mistralai-mistral-nemo-9330-v31-mkmlizer completed after 138.67s with status: succeeded
Stopping job with name mistralai-mistral-nemo-9330-v31-mkmlizer
Pipeline stage MKMLizer completed in 139.94s
Running pipeline stage MKMLKubeTemplater
Pipeline stage MKMLKubeTemplater completed in 0.09s
Running pipeline stage ISVCDeployer
Creating inference service mistralai-mistral-nemo-9330-v31
Waiting for inference service mistralai-mistral-nemo-9330-v31 to be ready
Inference service mistralai-mistral-nemo-9330-v31 ready after 121.10607266426086s
Pipeline stage ISVCDeployer completed in 122.67s
Running pipeline stage StressChecker
Received healthy response to inference request in 1.494405746459961s
Received healthy response to inference request in 0.8086822032928467s
Received healthy response to inference request in 0.9827430248260498s
Received healthy response to inference request in 1.4796104431152344s
Received healthy response to inference request in 1.4973647594451904s
5 requests
0 failed requests
5th percentile: 0.8434943675994873
10th percentile: 0.878306531906128
20th percentile: 0.9479308605194092
30th percentile: 1.0821165084838866
40th percentile: 1.2808634757995605
50th percentile: 1.4796104431152344
60th percentile: 1.485528564453125
70th percentile: 1.4914466857910156
80th percentile: 1.4949975490570069
90th percentile: 1.4961811542510985
95th percentile: 1.4967729568481445
99th percentile: 1.4972463989257812
mean time: 1.2525612354278564
Pipeline stage StressChecker completed in 6.88s
mistralai-mistral-nemo-_9330_v31 status is now deployed due to DeploymentManager action
mistralai-mistral-nemo-_9330_v31 status is now inactive due to admin request
admin requested tearing down of mistralai-mistral-nemo-_9330_v31
Running pipeline stage ISVCDeleter
Checking if service mistralai-mistral-nemo-9330-v31 is running
Tearing down inference service mistralai-mistral-nemo-9330-v31
Service mistralai-mistral-nemo-9330-v31 has been torndown
Pipeline stage ISVCDeleter completed in 4.73s
Running pipeline stage MKMLModelDeleter
Cleaning model data from S3
Cleaning model data from model cache
Deleting key mistralai-mistral-nemo-9330-v31/config.json from bucket guanaco-mkml-models
Deleting key mistralai-mistral-nemo-9330-v31/flywheel_model.0.safetensors from bucket guanaco-mkml-models
Deleting key mistralai-mistral-nemo-9330-v31/special_tokens_map.json from bucket guanaco-mkml-models
Deleting key mistralai-mistral-nemo-9330-v31/tokenizer.json from bucket guanaco-mkml-models
Deleting key mistralai-mistral-nemo-9330-v31/tokenizer_config.json from bucket guanaco-mkml-models
Cleaning model data from model cache
Deleting key mistralai-mistral-nemo-9330-v31_reward/config.json from bucket guanaco-reward-models
Deleting key mistralai-mistral-nemo-9330-v31_reward/merges.txt from bucket guanaco-reward-models
Deleting key mistralai-mistral-nemo-9330-v31_reward/reward.tensors from bucket guanaco-reward-models
Deleting key mistralai-mistral-nemo-9330-v31_reward/special_tokens_map.json from bucket guanaco-reward-models
Deleting key mistralai-mistral-nemo-9330-v31_reward/tokenizer.json from bucket guanaco-reward-models
Deleting key mistralai-mistral-nemo-9330-v31_reward/tokenizer_config.json from bucket guanaco-reward-models
Deleting key mistralai-mistral-nemo-9330-v31_reward/vocab.json from bucket guanaco-reward-models
Pipeline stage MKMLModelDeleter completed in 5.92s
mistralai-mistral-nemo-_9330_v31 status is now torndown due to DeploymentManager action